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ON SOME TYPES OF GEODESICS ON

RIEMANNIAN MANIFOLDS

TETSUNORI KUROGI

§ 0. Introduction

For a given Riemannian manifold M and its submanifold N, one can
find various types of geodesies on M starting from any point of N and
ending in any point of N. For example, geodesies which start perpen-
dicularly from N and end perpendicularly in N are treated by many
mathematicians. K. Grove has stated a condition in a general case for
the existence of such a geodesic ([4]), where he has used the method of
the infinite dimensional critical point theory. This method is very useful
for the study of geodesies and many geometricians have used it success-
fully. It has two aspects: one is an existence theory and the other is a
quantitative theory, which one can find, for instance, in the excellent
theory for closed geodesies of W. Klingenberg ([1], [7]) and so on.

On the other hand the works of K. Grove ([2], [4]) suggest us that
this method is applicable to qualitative questions for geodesies. Here we
shall study some types of geodesies from this point of view.

Let M be a complete Riemannian manifold and let N be a closed sub-
manifold, then it seems very interesting to ask "Do there exist geodesies
on M which start from N with one angle and end in N with the same
angle?"

Unfortunately for our problem, we cannot use the infinite dimen-
sional method directly, because it is difficult to find a satisfactory infinite
dimensional manifold. Under some nice conditions, however, we can apply
this method to our problem: that is to find a good isometry on M with
respect to N.

We don't know whether our idea is extensible to a more general
theory or not, but we are sure to give a little clue to solve a more general
problem. And at the same time our work makes an example of the in-
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28 TETSUNORI KUROGI

finite dimensional method to be useful for a qualitative study of geodesies.
This paper is divided into four sections. In the first section, we point

out an infinite dimensional submanifold of Ll(I, M), which is a Hubert
manifold of absolutely continuous maps from the unit interval 1= [0,1] to
M with square integrable derivative, and we point out its related geodesic
on M, which is obtained as a critical point for the energy function on
this infinite dimensional manifold. We call it "geodesic with the same
angle" (See Definition 1-1). In the next section, we discuss the existence
of such a geodesic in the same way as K. Grove ([2]). We get our main
theorem (Theorem A) and some corollaries. In the third section, we treat
of geodesic loops (self-intersecting geodesies) as a special case of the second
section (Theorem B). And in the last section, we consider very special
geodesies which we call iV-I-geodesics (normal connecting invariant geo-
desies) and give a condition for the existence of iV-J-geodesics (Theorem C).

Our main results are contained in

THEOREM A. Let M be a complete Rίemannian manifold, N a connected

compact closed submanifold of codimension 1 with dN = φ and f an isometry

on M with f(N) = N. If πx(M) = {0}, then there exists a non-trivial geodesic

with the same angle for N when f has finite fixed points on N except that

it has exactly one fixed point

THEOREM B. Let M be a complete Riemannian manifold and let N be a

connected compact closed submanifold of codimension 1 with dN = φ. If

πk(M) ^ 0 for some k^>l, then there exists a non-trivial geodesic loop starting

from N with the same angle for N.

Let Γ(M) be a group of isometries of M and let ΓN(M) be a subgroup
of Γ(M) such that any element of ΓN{M) leaves N invariant.

THEOREM C. Let M be a complete Rίemannian manifold and let N be

a connected compact closed submanifold of codimension 1 with dN = φ% If

ΓN(M) acts on N transitively and N is not the same homotopy type as M,

then there exists an element f of ΓN{M) such that it has a N-I-geodesic.

§ 1. Hubert submanifold and energy function

Let M be a complete Riemannian manifold with a Riemannian metric
< , ) and let Ll(I, M) be the set of absolutely continuous maps from the
unit interval I = [0,1] to M with square integrable derivative. Then it is
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known that L\{I, M) is a complete Hubert Riemannian manifold with the

Riemannian structure given by

where Xa, Ya are elements of the tangent space TaL\(I, M) at a e L\(I, M),

which is a linear space of absolutely continuous vector fields along α o n i l ί

with square integrable covariant derivative PaXa.

Since the map P: L\(I, M)-+Mχ M defined by P(a) = (α(0), α(l)) for

all α e Ll(I, M) induces a surjective linear map P#α: TaL\(I, M) -> Tα ( 0 )Mχ

Ta(1)M which has a splitting kernel, P is a submersion so that the preimage

of any submanifold of M X M is a submanifold of L\{I, M).

Let JV be a closed submanifold of M with dN = φ and let / be an

isometry on M with f(N) = N. We introduce the following sets written

as A{Myf) and ΛN(M,f) respectively:

Λ(M, f) = {ae L\& M)\f(a(0)) = a(ί)}

ΛN(M,f) = {aeΛ(M,f)\a(O)eN}.

Let G(M,f) and G{M,N,f) be graphs {(x,f(x))\xeM} and {(x9f(x))\xeN}

of an isometry / respectively, then Λ(M, f) and ΛN(M, f) are submanifolds

of Ll(I, M) because P~\G{M,f)) = Λ(M,f) and P-\G(M, N,f)) = ΛN{M,f).

The space Λ(M,f) is originally introduced by K. Grove for the study of

invariant geodesies. Here we consider the space AN(M, f) for our problem.

Then we have

PROPOSITION 1-1. ΛN(M, f) is a Hilbert Riemannian submanifold of

L\(I, M) and its tangent space TaΛN(M, f) at a is given by

TaΛN(M, f) = {Xa e TMl M) \ (Xβ(0), Xa(ϊ)) e TaWN x TβωN, /*Xα(0) = Xβ(l)}.

Define an energy function E: L\(I9 M)-*R by E(ά) = 1/2 f \\ά(f)\\2dt, then
Jo

it is a C°°-map. In particular we consider the restriction of E on ΛN(M, f)

and we also write it E. It is known that

(1) dEa(Xa)= Γ <yaXa{t\ ά(φdt

Jo

for all Xa e TaL\(l M) .

Then the following regularity is given by K. Grove ([2]).
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PROPOSITION 1-2 (regularity). If V is a submanifold of L\(I, M) such

that TaV for aeV contains all Xa e TaL\(I, M) with Xa(0) = 0 and Xa(ϊ) =

0, and if a is a critical point for E\v, then a is C°° and a is a geodesic.

Now we define a new type of geodesic in order to see what sort of

geodesies is a critical point of E on ΛN(M, /). Let M be a complete

Riemannian manifold and let N be a closed submanifold of codimension 1.

At a point xeN, we denote by ex SL unit normal to TXN in TXM.

DEFINITION 1-1. A geodesic a: I~>M with (a(0), a(ί)) e Nx N is called

"geodesic with the same angle for N" (simply "geodesic with the same

angle"), if

<ά(0), *α(0)> + <Λ(1), eaW) = 0

or

eam) = 0 .

When N is a totally geodesic submanifold, any geodesic on N is

always a geodesic with the same angle.

Combining Propositions 1-1 and 1-2, we get

THEOREM 1-3. Let M be a complete Riemannian manifold, N a closed

submanifold of codimension 1 and f an isometry of M with f(N) = N. If

a e ΛN(M, f) is a critical point for E: ΛN(M, f) —• R, then a is a geodesic

with the same angle.

Proof. Assume that a e ΛN(M, f) is a critical point for E. By Propo-

sition 1-2, a is a geodesic on M so that for any tangent vector Xa e

TaΛN(M,f),

dEa(Xa) = f <yaXa{t\ ά(φdt
Jo

= f {vaxa{t\ ά(t)y + (xa(t),
Jo

(2)

Since or is a critical point, we have ά(l) — f*ά(0) J_ TaWN from (2). If e
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is unit normal to Ta{Q)N, then f%e is unit normal to Ta(1)N and so there

exists a number λ such that ά(l) — f*ά(O) = λf*e. From this, we have j|«(l)||2

= ||ά(0)||2 + 2*<Λ(0), e} + λ\ Since a is a geodesic, ||ά(0)|| = ||ά(l)|| and hence

we have λ = 0 or λ = -2<ά(0), e). If λ = 0, then we have ά(ΐ) = /*ά{0)

which implies that the geodesic a is invariant under / and it is also a

geodesic with the same angle. On the other hand, since

λ =

we have < ά ( l ) , / » + <ά(0), e> = 0 if λ = — 2<ά(0),*>. Therefore α is a

geodesic with the same angle. [Q.E.D.]

Remark. As seen in the proof of Theorem 1-3, a critical point a e

ΛN(M, f) for Z? is an invariant geodesic under / when λ = 0. And here the

concept of "geodesic with the same angle" contains partly the concept ot

"invariant geodesic".

When / = identity on M in Theorem 1-3, a is a self-intersecting

geodesic with the same angle at a point of N if a e ΛN(M, f) is a critical

point for E. (On this we shall study further in § 3.) In a special case a

closed geodesic on M passing through N may occur as a critical point of

AN(M,f) for E.

Furthermore we have the following interesting results.

COROLLARY 1-4. Let M, N and f be the same as Theorem 1-3. If a is

a critical point with ά(0) e TaWN, then a is an f-invariant geodesic on M

such that both ends are tangent to N.

Proof. If ά(0) is tangent to N, λ must be 0 so that a is an /-invariant

geodesic. On the other hand, since λ = <ά(l), f*e) — <ά(0), e), we get

<ά(l), / » = 0 if ά(0) e TamN, and so ά(ϊ) is tangent to N. [Q.E.D.]

From Remark and Corollary 1-4 we have

COROLLARY 1-5. Let M and N be the same as Theorem 1-3. If ae

ΛN(M, id) is a critical point for E starting tangent to N, then a is a closed

geodesic on M passing through N.

Proof. Note that an /-invariant geodesic is a closed geodesic when

/ = id. Then our conclusion follows from Remark and Corollary 1-4.

[Q.E.D.]
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§ 2. Geodesic with the same angle

Let M be a complete Riemannian manifold and let N be a closed sub-
manifold of M, then we propose a question: "Do there exist geodesies on
M which start from N with one angle and end in N with the same angle?".
Here we construct an existence theory for the above problem under some
conditions by using an isometry on M. For that in an analogous way to
Grove's method ([2]) we study the space ΛN(M,f) and its energy function
as we have seen in § 1: that is the critical point theory for (ΛN(M, /), E).
In this theory it is very important to find the conditions to guarantee the
existence of critical point for E. In general, such a fundamental analytic
condition is known as Palais-Smale's condition (usually called "Condition
(C)") Condition (C) is that whenever {an} is a sequence on which E is
bounded and for which |||grad Ean\\\an-*0 when n—> oo, {an} has a con-
vergent subsequence, where ||| |||βn denotes the norm in TaΛN(M,f). Then
by Theorem 2-4 ([2]), we have

PROPOSITION 2-1. The energy function E: ΛN(M,f)-> R satisfies the
Condition (C) if N is compact.

Now we see what is the E'^O) for E: ΛN(M, f)-+ R. If a is an element
of ΛN(M, f) with E(a) — 0, a must be a constant map which we identify
with a point of N and f(a(0)) = a(ΐ) and so we have that p = a(t) for any
161 is a fixed point of / in N. Conversely if p is a fixed point of / in
N, then we can define a map a e ΛN(M, f) by a(t) = p for any t e I so that
a is an element of E~\ΰ). Thus we can identify E~\Q) with the set of
fixed points for / in N. We denote the set of fixed points for / in N by
F(N, /). (The F(N, f) will be F(f) Π N where F(f) is the set of fixed
points for /.) Let Fi(N,f) be a connected component of F(N,f), then
F(N, f) = Σ ^ W /)• And it is clear that Ft(N, f) is a totally geodesic
submanifold of N by using a relation exppo/% = /oexpp when f(p) = p eN
where expp is an exponential map with respect to the induced metric on
N from M. Thus we have that each Ft(N, f) is a critical submanifold of
ΛN(MJ).

Next we see the index of F^N, f) and the non-degeneracy for F^N, f).
For that we must calculate the Hessian H(E)a for £ at a critical point
aeAN(M,f). Calculate H(E)a(Xa, Ya) = (d2/dtds)E(ω(t, β))(ίft).(OfO, by using a

2-parameter variation ω: IχI-+ΛN(M,f) with ω(0, 0) = a, ωt(0, 0) = Xa9

ωs(0, 0) = Ya, then we have
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H(E)a(Xa, y.) = f <FaXa(t), FaYa(φdt
(3)

- Γ (R(Xa(t)^(t))ά(t)9 Ya{φdt
Jo

for any tangent vectors Xa, Ya e TaAN(M, f) if a e ΛN(M, f) is a critical point

for E, where R(,) is a Riemannian curvature for M. This form is already

obtained by many people (see [1], [2]). Moreover as to the Hessian for

the energy function we have a decomposition lemma.

LEMMA 2-2. Let X be a submanifold of L\(I, M) and E: X-* R be an

energy function. If the Hessian H(E)x(v, w) for E is given by (Fv(t),
Jo

Fw(t))dt at x e X for any vectors v, w e TXX, then there exists a compact

operator kx\ TxX-> TXX such that h{E)x = 1 + kx where h(E)x is defined

by <ζh(E)xv, iϋ> = H(E)x(v, w). Here < , > is the induced metric on X by

Proof. Since <ι;, w> = f {(v(t), w(t)) + (Fv(t), Fw(t))}dt for any
Jo

vectors v, w e TXX, we have <t(h(E)x - ΐ)v, w> = - Γ (v(t)9 w(t))dt.
Jo

On the other hand we define a continuous bilinear form on TXX by
(υ, w)->— (v(t), w(t)}dt, then there exists a continuous linear map kx:

Jo
TxX-> TXX such that <kxv, w^> = - Γ (v(t), w(t)}dt. Thus we have h{E)x

Jo
= 1 + K.

Next we see that kx is a compact operator. Let < , > 0 be the inner
product on TXX defined by <y, ^ > 0 = (v(t), w(t)}dt, then note that the

Jo

identity map from TXX with < , > to TXX with < , > 0 is a compact oper-

ator. Thus we have
IIIMH ^ const-|||ι;|||0 for any ve TXX

where ||| |||, ||| |||0 are norms defined by < , >, < , > 0 respectively. This

implies that kx is a compact operator. [Q.E.D.]

Now we make clear the structure of E~\0).

PROPOSITION 2-3. Let f be an ίsometry on M with f(N) = N. Then

the set of fixed points for f\N is a disjoint union of totally geodesic sub-

manifolds of N each of which is a non-degenerate critical submanifold of

ΛN(M,f) with index 0.
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Proof, Here we must prove that each component Fέ(iV,/) is non-

degenerate and its index is 0. (We write Ft(N,f) simply by Ft and we

identify a point p of Ft with a constant map a e ΛN(M, f) such that a(t)

= p for all £ e I in a natural way.)

We introduce the self-adjoint operator h(E)a: TaΛN(M, f) -> TaΛN(M, f)

at or e ^ ( M , /) defined by

<h(E)aXa, Ya> = ff(£J)α(X, y.), X , y. e TaΛN(M,f) .

Since Λ(#)β is self-adjoint, we have h(E)a(TaΛN(M,f)) c Ϊ F/- for ore

jFf and so h{E)a(TaF^) c T̂ î V-. Thus in order to see the non-degeneracy

for Ft we have only to show that restriction of h(E)a on TaFJ- (denote it

h(E)a) is invertible.

At first we see that h(E)a: TaF/- -> TaFJ- is bijective. Note that the

tangent space of Ft at a e Ft consists of constant vector fields Xa e

TaΛN(M, f) along a and note that from (3) for any constant map a e ΛN(M, f)

(4) H(E).(X., Y.) = f (VaXM FaYa(t)}dt, X., Ya e TaΛN(M, f).
JO

Then from (4) ker h(E)a = {Xa e TaΛN(M,f)\VaXa(t) = 0 for almost every-

where} for a e Ft. If Xa e ker h(E)a, then Xa(t) is constant in TaWN because

FaXa(t) as a curve Ta{0)N at or e JF* is just Xα'(£). Thus we have Xa e TaFt

because U(Xa(0)) = Xa(ΐ) and therefore ker h(E)a c T^F,. On the other

hand, we have also TaFt c ker Λ(£;)α from (4) so that ker h(E)a = TaFit

Hence h(E)a: TaF± -> ΓαίV- is bijective.

Consequently Λ(£J)α is invertible because h(E)a is actually a Fredholm

operator by Lemma 2-2. Lastly since H(E)a is semipositive definite for

a e Fί9 we have that the index of Ft is 0. [Q.E.D.]

To get a very important property we need the following lemma.

LEMMA 2-4 (Generalized Morse Lemma. W. Meyer [12]).

Let π: X-^N be a differentiable Hilbert bundle over a compact con-

nected manifold and let <, > be a Riemannian metric for this bundle. Let

K: X—> R be a differentiable function such that a zero section iV" of N is

a non-degenerate critical submanifold for K with level 0. Then there exists

a tubular neighborhood vε = {υ e X\ \\υ\\< e} for N in X, a fibre preserving

diffeomorphίsm ¥: ve-> W(ve) and an orthogonal projection P such that

KoΨ(V) = \\Pv\f - \\(I-P)v\\2, for any vevε
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where || || is the norm defined by <, >.

In our case consider a tubular neighborhood vH for Ft(N, f) and K =

£Joexp|pε. where exp is the exponential map defined by the Riemannian

metric of ΛN{M, f) when N is compact. Then by this lemma we have

EoΦtiϋ) = \\\PM\\* - UK/, - P > | | | 2 , for any vβvH

where Φt = expo?p\: ve. -> Φt(vH) C ΛN(M,f) is a diffeomorphism and ||| |||

is the norm defined by the Riemannian metric on ΛN(M,f).

Now put φ = UίΦί and ε = 1/2 min e€, then we have Φ(U* ί̂) = -B"1^, ε]

because Eoφ.(v) = \WPiV\\\2 from index Ft(N9f) = 0 as seen in Proposition

2-3.

By using Condition (C) we can find ε > 0 such that 2? "*[(), ε] has no

critical point except level 0. And moreover since {0-section of v]\ is a

strongly deformation retract of v\, we have

PROPOSITION 2-5. There exists an e > 0 such that F(N, f) is a strongly

deformation retract of E'1 [0, ε].

From the above proposition we state the following key lemma for the

existence of critical points for E.

LEMMA 2-6. Let M be a complete Riemannian manifold, N a connected

compact closed submanifold of codίmensίon 1 with dN— φ and f an isometry

of M such that f(N) = N and F(N, f) =*? φ If there exists no non-trivial

geodesic with the same angle, then the inclusion map i: F(N, f)->ΛN(M, f)

is a homotopy equivalence. Moreover there exists a non-trivial geodesic with

the same angle if F(N, f) = φ.

Proof. This proof is quite similar to a part of Lemma 3-4 in ([2]).

Since F(N,f) and ΛN(M,f) are ANR's, we have only to show that the

induced homomorphism iq: πq(F(N,f))->πq(ΛN(M,f)) gives an isomorphism

for all integer q ̂  0.

Choose a base point in F(N, f) and let that be a base point for ΛN(M, /).

Let Sq be a representative element of πq(F(N, /)) such that iq([Sq]) = [Sq] = 0

in ΛN(M, /). Since Km max E(ηt(a)) must be a critical level for E by Con-
ί-»oo aeSQ

dition (C), we have lim max E(ηt(a)) = 0 from the assumption of this lemma

where ηt is a flow defined by the vector field (-grad E). And so for large

enough toeR+ there exists an ε > 0 such that ηt0(SQ) c E'^O, ε] and £7"*[(), ε]

is deformable to F(N, f) by Proposition 2-4. Thus Sq is null homotopic
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in F(N, f) and so ίq is a monomorphism. Conversely let Sq be any repre-

sentative element of πq(ΛN(M, /)), then in the same way as above we can

construct a representative element Sq of πq(F(N, /)) such that /ρ([S9]) =

[Sq]. Hence ίq is an epimorphism. Consequently ia is an isomorphism.

As to the last half Condition (C) implies that the energy function on

ΛN(M, f) attains its infimum on any component of ΛN(M, f) (See [13]), and

the inf points are of course critical points for E which values of E are

different from 0 because F(N, f) = φ. And so it is a non-trivial geodesic

with the same angle. [Q.E.D.]

Now we have

THEOREM 2-7. Let M be a complete Rίemannian manifold, N a con-

nected compact closed submanifold of codίmension 1 with dN = φ and f an

isometry on M with f(N) = JV. If one of the following conditions is satis-

fied, then there exists a non-trivial geodesic with the same angle for N.

The conditions are

(1) #TO/) = 0
(2) 2 £ #F(iV,/) < oo and π,(M) = {0}

where # is the number of elements of F(N, /).

Proof. The case (1) is evident by the last half of Lemma 2-6. Since

the fibration ΛN(M, /)-> G(M, N, /)->iV has a fibre ΛP(M) ={ae ΛN{M, f)\a(0)

= a(ί) = p} where f(p)=P is the base point in N, the homotopy exact
sequence

— > πo(Ap(M)) — • πo(ΛN(M, /)) — • πo(N)

II? II
πo(Ωp(M)) {0}

III

{0}

gives πo(ΛN(M,f)) = 0 because ΛP(M) is the same homotopy type to the

loop space ΩP{M) at p. By the assumption πo{F{N, f)) Φ 0 and so we have

the conclusion by Lemma 2-6. [Q.E.D.]

Remark. When §F(N,f)= + co, we have dim Ft(N,f) ^ 1 for a com-

ponent Ft(N, f) of F(N, f). Since Ft{N, f) is a totally geodesic submanifold

of N as seen in Proposition 2-3, any geodesic on F{(N, f) is an /-invariant
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geodesic on JV. Of course, this geodesic is not necessarily a geodesic on

M.

Now consider an orientation for Λf, then this orientation induces an

orientation for N. When M is orientable, we can apply our consideration

of the previous paper ([10], [11]) to this case.

Let / be an isometry of M with f(N) = N, then we denote a trace of

an induced homomorphism (f\N)k: Hk(N, Q)-> Hk(N, Q) of £-th homology

group by λk(N,f). Then we have the following property.

COROLLARY 2-8. Let M, N and f be the same as Theorem 2-7. Suppose

that M is a simply connected orientable manifold of odd dimension and f

is orientation preserving. Then there exists a non-trivial geodesic with the

same angle or a nontrivίal f-invariant geodesic on N if λk(N, f) is even for

k = l/2(dim M - 1). In particular it is well if Hk(N, Q) = 0.

Proof. By the Poincare duality, we have L(f\N) = 2 Σ * " 1 (-l)%(iV,/)

+ (-l)kλk(N,f) + 2 where L(f\N) is the Lefschetz number of f\N: N-+N.

On the other hand it is known that L{f\N) equals the Euler number

χ(F(N,f)) of F(N,f) ([9]). Thus if λk(N, f) = even, L(f\N)φl and so

χ(F(N, /)) Φ 1. When χ(F(N, /)) ^ 2, our conclusion follows from Theorem

2-7 and the above Remark. If χ(F(N, /)) = 0, then there is no fixed points

or F(N9 f) contains non-isolated fixed point set. Hence in the first case

our conclusion follows from (1) of Theorem 2-7 and in the second case it

follows from the above Remark. [Q.E.D.]

Further when we consider an order of f\N where it is defined by the

minimal integer n such that fn \N is homotopic to the identity, we can des-

cribe which isometries satisfy the condition "λk(N9 f) = even" of Corollary

2-8 in the same way as our previous paper ([11]). We denote the order of

f\Nhy oτd (N,f).

(1) rank Hk(N, Z) = even, ord (N, f) = 2, 4, 8

(2) rank Hk(N, Z) = 2, ord (N, f)φθ (mod 3)

(3) rank Hk(N, Z) = 3, ord (N, f) Φ 0 (mod 2)

/ has no eigenvalue 1

where k > 1 and Z is the group of integers.

In the case of dim M = even, the fixed point F(N9 f) is not isolated

as seen in our paper ([10]). Hence there exists a non-trivial /-invariant

geodesic (actually /-fixed geodesic) of N if F(N, /) φ φ.
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§3. Self-intersecting geodesic

As seen in Remark of § 1 a geodesic with the same angle is a self-

intersecting geodesic if F(N, f) = N and we call it a geodesic loop. Here

we consider the existence of geodesic loops. And we give an answer for

our problem in a sence.

PROPOSITION 3-1. Let M be a complete Riemannian manifold and let

N be a connected compact closed submanifold of codimension 1 with dN =

φ. If f is an isometry of M with F(N, f) = N, then we have

πn(ΛN(M, /)) ^ πn(N) + πn+1{M) (n ^ 2)

and moreover

0 > π2(M) • icMM /)) • π,(N) > 0

is exact.

Proof It is known that the inclusion map ΛN(M, f) > C°N{M, f) is a

homotopy equivalence where C°N(M, f) = {ae C°(I, M)\a(0) e N, a(ϊ) = f(a(0))}

is a Banach manifold of continuous maps with the uniform topology. And

so we consider C#(M, f) instead of ΛN(M, f). We have an exact sequence

for the fibration P: C°N(M, f) • G(M, N, f) = *Δ{N) (diagonal), P(a) =

(a(0), a(ΐ)) = (x, x), with fibre as loop space Ωq(M) where q is the base

point in N.

Consider now the commutative diagram,

πn(C°N(M, f), Ωq(M))

> πn{Δ{N))

πn(M)

where d is the boundary map in the exact sequence for the pair (C^(M, f),

Ωq(M)), H is the Hurewitz map and P # : πn(C°N(M,f), Ωq{M))-+πn(Δ(N)) is

an isomorphism induced by projection P for n ^ 1. Now we see that 9

is a zero homomorphism.

Let Ξ e τrn(C£(M, /), Ωq(M)) be represented by the map

ξ: (I , 91", J - 1 ) — > {C%(M, /), Ωq{M\ q)

https://doi.org/10.1017/S0027763000019139 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019139


GEODESICS ON RIEMANNIAN MANIFOLDS 39

where Γ is the n-cube, dΓ its boundary, and Jn~ι = Γ'1 X {0} U (a/71"1)

X 7. Now £(5*) = 3 o P*(Ξ) is represented by the restriction ξ1 of ξ to the

bottom,

ft: ( I - 1 , 3I"-1) X {1} > (flβ(ilί), g) .

Evaluation of this map,

represents Hod(Ξ) = HodoP^B). Thus HodoP^(Ξ) is represented by the

restriction of the evaluation f of ξ to I71'1 X I

I: (/", dln, Jn'1) X / • (M, M, g) .

From this we see that f gives rise to a homotopy between ξ restricted to

In X {0} U I71'1 X / U In X {1} and the constant map.

By the way l|znx{o}U/n-lχ7U/nX{1} represents - P l s | ί °P*(£) + HodoP^(S)

+ P2^oP^(Ξ) where Pt: A(N) > N is a ΐ-th factor projection. Since Px

— P2, we have Hod°P*{Ξ) = 0 and this implies that d is a zero homo-

morphism. Thus we have the following exact sequence,

0 — > πnφq(M)) — > ffn(C^(M, /)) —•> πn(J(iV)) — * 0

for all 7i ^ 0. Since we have a trivial cross-secton s: J(JV) -> C%(M, f)

defined by s(x, x)(t) = x for all t e I, we have

πn(C°N(M, /)) s 7rn(βQ(M)) + ττn<J(iV)) for n ^ 2 .

On the other hand, since

πn(Ωq(M)) S π n + 1 (

we have the conclusion of theorem. [Q.E.D.]

THEOREM 3-2. Let M be a complete Riemannian manifold and let N

be a connected compact closed submanίfold of codimension 1 with dN = φ.

If πk(M) ^F 0 for some k^>l and there exists an isometry f with F(N, f) =

N, then there exists a non-trivial geodesic loop starting from N with the

same angle for N.

Proof. If there exists no non-trivial geodesic with the same angle, we

have an isomorphism induced by the inclusion i: F(N,f) = iV-> C%(M, /),
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z*: πn(N) ^ πn{C°N(M, /)) (n ;> 0). And we have the commutative diagram,

• τ -
πn(N)

where j# is an isomorphism induced by the map j : N-+ Δ(N) where j(x)

= (xt x). Thus P*: πn{CQ

N{M, /)) -> πn{Δ(N)) is an isomorphism. On the

other hand, since the sequence

0 • πn{Ωq{M)) • πn(C°N(M, /)) • πn{Δ{N)) > 0

is exact as seen in the proof of Proposition 3-1, πn(Ωq(M)) = 0 for all n ^

0. Therefore we have πn(M) = 0 for all n ^ 1 so that it contradicts the

assumption of theorem. [Q.E.D.]

For example let M be a product manifold JVΊ X N2 with the product

metric where iVj is a connected compact manifold of (dim M— 1) dimension.

Then we can apply this theorem for the isometries id X g where g is an

arbitrary isometry of N2.

Remark. In the case / = identity we have Theorem B of Introduction.

Moreover maybe we can show the existence of geodesic loops under more

weak conditions and we shall do it elsewhere.

From this theorem we see the following corollaries.

COROLLARY 3-3. Assume that M and N are the same as Theorem 3-2

and there exists an isometry f with F(N, f) = N. If M is compact, then

there exists a non-trivial geodesic loop starting from N with the same angle

for N.

Proof Since M is compact, πn(M) ^ 0 for some n ^ 1. [Q.E.D.]

COROLLARY 3-4. Assume that M and N are the same as Theorem 3-2

and there exists an isometry f with F(N, f) = N. If M is the same homo-

topy type as N, then there exists a non-trivial geodesic loop starting from N

with the same angle for N.

Proof If M is the same homotopy type as N, πn(M) ^ πn(N) for n ^

0. Since M is compact, πn(M) ^ ττn(iV) ^F 0 for some n :> 1. [Q.E.D.]

Here we have an answer for our proposed problem in a sence.
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COROLLARY 3-5. Let M be a complete Riemannίan manifold and let N

be a connected compact closed submanifold of codimension 1 with dN = φ.

Then there exists a non-trivial geodesic with the same angle.

Proof. If M is the same homotopy type as N, then there exists a non-

trivial geodesic ( = geodesic loop) with the same angle by applying Corol-

lary 3-4 for / = identity. On the other hand if M is not the same homotopy

type as N, then it is known that there exists a geodesic which starts per-

pendicularly from N and ends perpendicularly in N by K. Grove ([4]) (The

same results are shown by S. Kawai [6]). Thus we have our conclusion.

[Q.E.D.]

§ 4. 7V-/-geodesic

Here we consider a special case of geodesies with the same angle and

so we give some conditions for the existence of such a geodesic.

Let M be a complete Riemannian manifold, N a closed submanifold

and / an isometry on M with f(N) = N.

DEFINITION 4-1. A geodesic a: I—> M satisfying the condition a(ΐ) =

/(α(0)) and (α(0), a(ϊ)) eN X N is called a normal connected invariant

geodesic (we say it "iV-I-geodesic of /") if it satisfies the following two

conditions.

(1) (ά(0), -Λ(l)) e TaWm x Tβ(1)i\μ

(2) a is invariant under /.

For example let S2 be a 2-dimensional standard sphere, N = S2 Π

{(y> £)-plane} and / = 180°-rotation with the fixed points (0, 0, ±1), then there

exists a iV-J-geodesic of /.

iV-I-geodesic
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On the other hand let T2 be a flat torus, / be an 180°-rotation about

its barycenter and N = horizontal line, then there does not exists a N-I-

geodesic of /.

Thus in general there does not exists iV-J-geodesic for any given M,

N and /.

LEMMA 4-1. Let M be a complete Rίemannian manifold, N a closed

submanifold of codimension 1 with dN == φ and f an isometry of M with

f(N) = N. If ae Λ(Af, /) is a critical point for E with ά(0) J_ TN, then a

is a N-I-geodesic of f.

Proof. It follows by Theorem 1-3 that or is a geodesic with the same

angle and ά(l) ± TN when ά(0) J_ TN. And so f*ά(0) and ά(ϊ) are normal

to Ta{1)N. Since the codimension of N is 1 and ||ά(0)|| = ||ά(l)||, we have

f%ά(0) — ±ά(ϊ). This implies that a is invariant under /. [Q.E.D.]

Let Γ(M) be a group of isometry of M and let ΓN(M) be a subgroup

of Γ(M) such that any element of ΓN(M) leaves N invariant.

THEOREM 4-2. Let M be a complete Riemannian manifold and let N

be a connected compact closed submanifold of codimension 1 with dN = φ.

If ΓN(M) acts on N transitively and N is not the same homotopy type as

M, then there exists an element f of ΓN{M) such that it has a N-I-geodesic.

Proof It is known by K. Grove ([4]) that if N is not the same homo-

topy types as M, then there exists a non-trivial geodesic a with (ά(0),

-ά(l)) e Tal0)N
L X TaωN\ Since ΓN(M) is transitive, there exists an ele-

ment / € ΓN(M) with f(a(0)) = a(ϊ). And moreover this a is a. critical point

for E: AN(M, f)->R so that α is a iV-J-geodesic by Lemma 4-1. [Q.E.DJ

At once we can find easy examples;

(a) M = S\ N= equator.

(b) M= R\ N = S\
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