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ON SOME TYPES OF GEODESICS ON
RIEMANNIAN MANIFOLDS
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§0. Introduction

For a given Riemannian manifold M and its submanifold IV, one can
find various types of geodesics on M starting from any point of N and
ending in any point of N. For example, geodesics which start perpen-
dicularly from NN and end perpendicularly in NN are treated by many
mathematicians. K. Grove has stated a condition in a general case for
the existence of such a geodesic ([4]), where he has used the method of
the infinite dimensional critical point theory. This method is very useful
for the study of geodesics and many geometricians have used it success-
fully. It has two aspects: one is an existence theory and the other is a
quantitative theory, which one can find, for instance, in the excellent
theory for closed geodesics of W. Klingenberg ([1], [7]) and so on.

On the other hand the works of K. Grove ([2], [4]) suggest us that
this method is applicable to qualitative questions for geodesics. Here we
shall study some types of geodesics from this point of view.

Let M be a complete Riemannian manifold and let IV be a closed sub-
manifold, then it seems very interesting to ask “Do there exist geodesics
on M which start from N with one angle and end in N with the same
angle?”

Unfortunately for our problem, we cannot use the infinite dimen-
sional method directly, because it is difficult to find a satisfactory infinite
dimensional manifold. Under some nice conditions, however, we can apply
this method to our problem: that is to find a good isometry on M with
respect to N.

We don’t know whether our idea is extensible to a more general
theory or not, but we are sure to give a little clue to solve a more general
problem. And at the same time our work makes an example of the in-

Received September 13, 1977.
27

https://doi.org/10.1017/50027763000019139 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019139

28 TETSUNORI KUROGI

finite dimensional method to be useful for a qualitative study of geodesics.
This paper is divided into four sections. In the first section, we point
out an infinite dimensional submanifold of L:(I, M), which is a Hilbert
manifold of absolutely continuous maps from the unit interval I=[0, 1] to
M with square integrable derivative, and we point out its related geodesic
on M, which is obtained as a critical point for the energy function on
this infinite dimensional manifold. We call it “geodesic with the same
angle” (See Definition 1-1). In the next section, we discuss the existence
of such a geodesic in the same way as K. Grove ([2]). We get our main
theorem (Theorem A) and some corollaries. In the third section, we treat
of geodesic loops (self-intersecting geodesics) as a special case of the second
section (Theorem B). And in the last section, we consider very special
geodesics which we call N-I-geodesics (normal connecting invariant geo-
desics) and give a condition for the existence of N-I-geodesics (Theorem C).
Our main results are contained in

THEOREM A. Let M be a complete Riemannian manifold, N a connected
compact closed submanifold of codimension 1 with 0N = ¢ and f an isometry
on M with f(N) = N. If n(M) = {0}, then there exists a non-trivial geodesic
with the same angle for N when f has finite fixed points on N except that
it has exactly one fixed point.

THEOREM B. Let M be a complete Riemannian manifold and let N be a
connected compact closed submanifold of codimension I with N = ¢. If
(M) % 0 for some k= 1, then there exists a non-trivial geodesic loop starting
from N with the same angle for N.

Let I'(M) be a group of isometries of M and let I",(M) be a subgroup
of I'(M) such that any element of I'y(M) leaves N invariant.

THEOREM C. Let M be a complete Riemannian manifold and let N be
a connected compact closed submanifold of codimension 1 with N = ¢. If
I'y(M) acts on N transitively and N is not the same homotopy type as M,
then there exists an element [ of I'y(M) such that it has a N-I-geodesic.

§1. Hilbert submanifold and energy function

Let M be a complete Riemannian manifold with a Riemannian metric
{,> and let LY, M) be the set of absolutely continuous maps from the
unit interval I = [0, 1] to M with square integrable derivative. Then it is
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known that LI, M) is a complete Hilbert Riemannian manifold with the
Riemannian structure given by

<X, Y = [ (X0, L0 + TX0, Y0

where X,, Y, are elements of the tangent space T,L¥I, M) at o c LI, M),
which is a linear space of absolutely continuous vector fields along « on M
with square integrable covariant derivative V X,.

Since the map P: LXI, M) —» M X M defined by P(x) = («(0), (1)) for
all « e LI, M) induces a surjective linear map P,,: T.LiI, M) — T, ,M X
T,.,M which has a splitting kernel, P is a submersion so that the preimage
of any submanifold of M X M is a submanifold of LI, M).

Let N be a closed submanifold of M with dN = ¢ and let f be an
isometry on M with f(N) = N. We introduce the following sets written
as A(M, f) and 4,(M, f) respectively:

AM, f) = {e e L, M)|f((0)) = a(1)}
Ax(M, f) = {a € AM, )| a(0) € N} .

Let G(M, f) and G(M, N, f) be graphs {(x, f(x))|x e M} and {(x, f(x))|xe N}
of an isometry f respectively, then A(M,f) and Ay(M, f) are submanifolds
of LI, M) because P (G(M,f)) = AM,f) and P (G(M, N, f)) = Ay(M, ).
The space A(M,[) is originally introduced by K. Grove for the study of
invariant geodesics. Here we consider the space 4,(M, f) for our problem.
Then we have

ProposiTioN 1-1. A,(M, f) is a Hilbert Riemannian submanifold of
LI, M) and its tangent space T, . Ay(M,[) at a is given by

T.4,(M, f) = {X, e T.Li(I, M)|(X.0), X.(1)) € TowN X T.,,N, £, X.(0) = X, (1)} .

Define an energy function E: LI, M)— R by E(a)=1/2 Jl |l&(®)|2dt, then
0

it is a C*-map. In particular we consider the restriction of E on 4,(M,f)
and we also write it E. It is known that

M dE(X) = [ 7.X.0), av)dt

for all X, e T, LI, M) .

Then the following regularity is given by K. Grove ([2]).
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ProposiTioN 1-2 (regularity). If V is a submanifold of LXI, M) such
that T,V for a €V contains all X, e T,L}(I, M) with X,(0) = 0 and X (1) =
0, and if « is a critical point for E|,, then a is C* and a is a geodesic.

Now we define a new type of geodesic in order to see what sort of
geodesics is a critical point of E on Ay(M,f). Let M be a complete
Riemannian manifold and let NV be a closed submanifold of codimension 1.
At a point x e N, we denote by e, a unit normal to T, N in T,M.

DerFinITION 1-1. A geodesic a: I— M with (a(0), (1)) € N X N is called
“geodesic with the same angle for N” (simply “geodesic with the same

angle”), if

el0), €0y + <a(1), €xryy =0
or

a(0), .0y — {a(D), €) = 0.

When N is a totally geodesic submanifold, any geodesic on N is
always a geodesic with the same angle.

Combining Propositions 1-1 and 1-2, we get

TueoreM 1-3. Let M be a complete Riemannian manifold, N a closed
submanifold of codimension 1 and f an isometry of M with f(N) = N. If
aedy(M, f) is a critical point for E: Ay(M, f) — R, then « is a geodesic
with the same angle.

Proof. Assume that a« e Ay(M, f) is a critical point for E. By Propo-
sition 1-2, « is a geodesic on M so that for any tangent vector X, e

T.Ay(M, f),
" dE(X) = [ 7.X.0, a@)at

- f 0 .X0), «®)> + (X.0), Va()}dt
@ = [[-Lx., awpar

= (X.(1), &(1)) — <XL0), &0)>
= (XD, (1) — f,(0)) .

Since « is a critical point, we have &(1) — f,&(0) | T,,,N from (2). If e
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is unit normal to TN, then f.e is unit normal to T,,NN and so there
exists a number 2 such that &(1) — f,&(0) = 2f,e. From this, we have ||&(1)|}
= ||&(0)|F + 22{&(0), e> + 2%. Since « is a geodesic, [|¢(0)| = ||&(1)| and hence
we have 21 =0 or 2 = —2{a(0),e). If 2 =0, then we have &(l) = f,&(0)
which implies that the geodesic « is invariant under f and it is also a
geodesic with the same angle. On the other hand, since

2= Qfve, fre)
= (1) — f,(0), fie)
= <a(1), fye) — (x(0), &),
we have {(a(l),f.e) + <(&(0),e) = 0 if 2 = —2{«(0), ). Therefore « is a
geodesic with the same angle. [Q.E.D.]

Remark. As seen in the proof of Theorem 1-3, a critical point « ¢
Ay(M, f) for E is an invariant geodesic under f when 1=0. And here the
concept of “geodesic with the same angle” contains partly the concept ot
“invariant geodesic”.

When f = identity on M in Theorem 1-3, « is a self-intersecting
geodesic with the same angle at a point of N if e 4y(M, f) is a critical
point for E. (On this we shall study further in §3.) In a special case a
closed geodesic on M passing through N may occur as a critical point of
Ay(M, f) for E.

Furthermore we have the following interesting results.

CoRrROLLARY 1-4. Let M, N and f be the same as Theorem 1-3. If a is
a critical point with &0)e T, N, then « is an f-invariant geodesic on M
such that both ends are tangent to N.

Proof. If &(0) is tangent to N, 2 must be 0 so that « is an f-invariant
geodesic. On the other hand, since 2 = {(&(1), f.e) — {(&(0), &), we get
a(1), fre> = 0 if &(0) e T, ,,V, and so (1) is tangent to N. [Q.E.D.]

From Remark and Corollary 1-4 we have

COROLLARY 1-5. Let M and N be the same as Theorem 1-3. If a ¢
Ay (M, id) is a critical point for E starting tangent to N, then « is a closed
geodesic on M passing through N.

Proof. Note that an f-invariant geodesic is a closed geodesic when
f=1id. Then our conclusion follows from Remark and Corollary 1-4.

[QED]
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§2. Geodesic with the same angle

Let M be a complete Riemannian manifold and let N be a closed sub-
manifold of M, then we propose a question: “Do there exist geodesics on
M which start from N with one angle and end in N with the same angle?”.
Here we construct an existence theory for the above problem under some
conditions by using an isometry on M. For that in an analogous way to
Grove’s method ([2]) we study the space A,(M,f) and its energy function
as we have seen in §1: that is the critical point theory for (4y(M, f), E).
In this theory it is very important to find the conditions to guarantee the
existence of critical point for E. In general, such a fundamental analytic
condition is known as Palais-Smale’s condition (usually called “Condition
(C)”). Condition (C) is that whenever {«,} is a sequence on which E is
bounded and for which [|grad E,|ll.,—0 when n— o, {a,} has a con-
vergent subsequence, where ||| ||, denotes the norm in T,4y(M,f). Then
by Theorem 2-4 ([2]), we have

ProrositioN 2-1. The energy function E: Ay(M,f) — R satisfies the
Condition (C) if N is compact.

Now we see what is the E-'(0) for E: Ay(M, f) — R. If « is an element
of 4,(M,f) with E(x) = 0, « must be a constant map which we identify
with a point of N and f(«(0)) = «(1) and so we have that p = a(t) for any
telis a fixed point of f in N. Conversely if p is a fixed point of f in
N, then we can define a map a € Ay(M, f) by a(t) = p for any ¢ € I so that
a is an element of E-'(0). Thus we can identify E-'(0) with the set of
fixed points for f in N. We denote the set of fixed points for f in N by
F(WN,f). (The F(N,f) will be F(f) N N where F(f) is the set of fixed
points for f) Let F,(IV,f) be a connected component of F(N,f), then
F(N,f) = >, F(N,f). And it is clear that F,(V,f) is a totally geodesic
submanifold of N by using a relation exp,of, = foexp, when f(p) =peN
where exp, is an exponential map with respect to the induced metric on
N from M. Thus we have that each F,(I,f) is a critical submanifold of
An(M, f).

Next we see the index of Fy(IV, f) and the non-degeneracy for F(N,f).
For that we must calculate the Hessian H(E), for E at a critical point
aeAy(M, f). Calculate H(E).(X,, Y,) = (6°/0tds)E(w(t, 8)):,p=0,0y DY using a
2-parameter variation w: IXI— A,(M,f) with »(0,0) =«a, ©/(0,0) = X,
040, 0) = Y,, then we have
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HE).(X., Y) = [ 7.X0, 7.Y.0)at
®) .
- j (R, aO)a(d), V()

for any tangent vectors X,, Y, € T, Ay(M, f) if a € Ay(M, f) is a critical point
for E, where R(,) is a Riemannian curvature for M. This form is already
obtained by many people (see [1], [2]). Moreover as to the Hessian for
the energy function we have a decomposition lemma.

LEMMA 2-2. Let X be a submanifold of LX(I, M) and E: X— R be an
energy function. If the Hessian H(E),v, w) for E is given by J: Pu(e),

Fw@)>dt at xe X for any vectors v, we T, X, then there exists a compact
operator k,: T.X — T,X such that h(E), = 1+ k, where W(E), is defined
by < WME),v,w> = H(E),(v, w). Here £ ,> is the induced metric on X by
LI, M).

Proof. Since <v, w> — L (D), w@)> + Fu@), Fw@®d)de for any
vectors v, we T, X, we have < (W(E), — Dv, w>» = — r {u(®), w(t)>dt.

On the other hand we define a continuous bilinear form on 7,X by

1
(v, w) — —I {u(t), w(t)>dt, then there exists a continuous linear map k,:
0

T.X— T,X such that kv, w>=— Il {v(®), w)>dt. Thus we have A(E),
0

=1+ k,.
Next we see that k, is a compact operator. Let &, >, be the inner

product on T, X defined by <v, w>, = Il {u(®), w(t)>dt, then note that the
0

identity map from T,X with <, > to T, X with <, >, is a compact oper-

ator. Thus we have

I&.v]]| £ const-|||v]]l, for any ve T, X

where |l| -|ll, Il - |llb are norms defined by <, >, < ,>, respectively. This
implies that %, is a compact operator. [Q.E.D.]

Now we make clear the structure of E-*(0).

ProrosiTiON 2-3. Let f be an isometry on M with f(N) = N. Then
the set of fixed points for f|y is a disjoint union of totally geodesic sub-
manifolds of N each of which is a non-degenerate critical submanifold of
Ay(M, f) with index 0.
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Proof. Here we must prove that each component F,(N,f) is non-
degenerate and its index is 0. (We write F,(%V,f) simply by F, and we
identify a point p of F, with a constant map « e 4,(M, f) such that «(f)
= p for all teI in a natural way.)

We introduce the self-adjoint operator A(E),: T, 4,(M,f)— T.A.(M,f)
at a e Ay(M, f) defined by

SKME)X, Y.> = HE)(X,, Y), X, Y.eT.Ay(M,f).

Since A(E), is self-adjoint, we have A(E) (T, 4,(M,f)) C T, F}+ for ae
F, and so W(E)(T.F+) ¢ T,F*. Thus in order to see the non-degeneracy
for F, we have only to show that restriction of A(E), on T,F; (denote it
R(E),) is invertible.

At first we see that A(E),: T.F+ — T,F+ is bijective. Note that the
tangent space of F, at ac F, consists of constant vector fields X, e
T.Ay(M,f) along o and note that from (3) for any constant map « € 4,(M, f)

@  HE.X,Y)=[ CXOFY0), X, YLeTALOL)).

Then from (4) ker A(E), = {X, € T, 4y(M, )|V . X.(t) = 0 for almost every-
where} for a e F,. If X, € ker h(E),, then X,(¢) is constant in T, ,IN because
7. X.(t) as a curve T,V at a e F; is just X (f). Thus we have X, e T,F,
because f,(X.(0) = X,(1) and therefore ker h(E), C T ,F,. On the other
hand, we have also T,F; C ker h(E), from (4) so that ker h(E), = T.F,.
Hence h(E),: T ,F} — T,F;- is bijective.

Consequently A(E), is invertible because A(E), is actually a Fredholm
operator by Lemma 2-2. Lastly since H(E), is semipositive definite for
« € F,, we have that the index of F, is 0. [Q.E.D.]

To get a very important property we need the following lemma.

LemMA 2-4 (Generalized Morse Lemma. W. Meyer [12]).

Let n: X— N be a differentiable Hilbert bundle over a compact con-
nected manifold and let {,)» be a Riemannian metric for this bundle. Let
K: X— R be a differentiable function such that a zero section N of N is
a non-degenerate critical submanifold for K with level 0. Then there exists
a tubular neighborhood v, = {ve X|||v|| < ¢} for N in X, a fibre preserving
diffeomorphism ¥: v, — ¥'(v,) and an orthogonal projection P such that

Ko¥(v) = || Pulf — (I-P)v|f,  for any vev,
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where | - || is the norm defined by {,>.

In our case consider a tubular neighborhood v,, for Fy(V,f) and K =
Eoexplyv, where exp is the exponential map defined by the Riemannian
metric of 4,(M,f) when N is compact. Then by this lemma we have

Eo®,(v) = [|Pw|l" — [[|[(I; — P)v|f,  for any veuy,

where @; = expo ¥;: v,, — O,(v,) C Ay(M,f) is a diffeomorphism and ||| ||
is the norm defined by the Riemannian metric on A,y(M, f).

Now put @ = | J; @, and ¢ = 1/2 min ¢;, then we have O(_J; v}) = E~'[0, ¢]
because Eo®,(v) = ||| P||f from index F,(IV,f) = 0 as seen in Proposition
2-3.

By using Condition (C) we can find ¢ > 0 such that E'[0,¢] has no
critical point except level 0. And moreover since {0-section of v7} is a
strongly deformation retract of v, we have

ProrositioN 2-5. There exists an ¢ > 0 such that F(N, f) is a strongly
deformation retract of E-' [0, ¢].

From the above proposition we state the following key lemma for the
existence of critical points for E.

LemMA 2-6. Let M be a complete Riemannian manifold, N a connected
compact closed submanifold of codimension 1 with dN = ¢ and f an isometry
of M such that f(N) = N and F(N,f) = ¢. If there exists no non-trivial
geodesic with the same angle, then the inclusion map i: F(N, f)— Ay(M, f)
is @ homotopy equivalence. Moreover there exists a non-trivial geodesic with
the same angle if F(N,f) = ¢.

Proof. This proof is quite similar to a part of Lemma 3-4 in ([2]).
Since F(N,f) and Ay(M,f) are ANR’s, we have only to show that the
induced homomorphism i,: 7 (F(IV, f)) — n(Ax(M, f)) gives an isomorphism
for all integer g = 0.

Choose a base point in F(N, f) and let that be a base point for 4,(M, f).
Let S? be a representative element of z,(F(N, f)) such that i ([SY]) = [S7=0
in 4y(M, f). Since 132 naleagiq( E(y(a)) must be a critical level for E by Con-

dition (C), we have lim max E(y,(a)) = 0 from the assumption of this lemma
t—oo a€le

where 7, is a flow defined by the vector field (-grad E). And so for large
enough £, € R, there exists an ¢ > 0 such that mo(g“) C E-'[0,¢] and E'[0, €]
is deformable to F(N, f) by Proposition 2-4. Thus S? is null homotopic

https://doi.org/10.1017/50027763000019139 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019139

36 TETSUNORI KUROGI

in F(N,f) and so i, is a monomorphism. Conversely let S? be any repre-
sentative element of r(4y(M,f)), then in the same way as above we can
construct a representative element S? of = (F(N,f)) such that i ([S9]) =
{S9. Hence i, is an epimorphism. Consequently i, is an isomorphism.
As to the last half Condition (C) implies that the energy function on
Ay (M, f) attains its infimum on any component of A,(, f) (See [13]), and
the inf points are of course critical points for E which values of E are
different from 0 because F(IV,f) = ¢. And so it is a non-trivial geodesic
with the same angle. [Q.E.D.]

Now we have

THEOREM 2-7. Let M be a complete Riemannien manifold, N a con-
nected compact closed submanifold of codimension 1 with oN = ¢ and f an
isometry on M with f(N) = N. If one of the following conditions is satis-

fied, then there exists a non-trivial geodesic with the same angle for N.
The conditions are

1 $FIN,f)=0
(2 2= 4FWN,f) < oo and n(M) = {0}
where ¥ is the number of elements of F(N, f).

Proof. The case (1) is evident by the last half of Lemma 2-6. Since
the fibration 4y(M, f)— G(M, N, f)— N has a fibre 4,(M) ={« € Ay(M, f)|a(0)

= «(1) = p} where f(p) = p is the base point in N, the homotopy exact
sequence

—> 1(4,(M)) —> 7(4y(M, f)) — 7(N)
”o(gp(M ) {l(l)}
0

o

gives ny(Ay(M,f)) = 0 because 4,(M) is the same homotopy type to the

loop space 2,(M) at p. By the assumption z(F(N,f)) #+ 0 and so we have
the conclusion by Lemma 2-6. [Q.E.D.]

Remark. When #F(N, f)=+co0, we have dim Fy(N,f) > 1 for a com-
ponent Fy(N, f) of F(N,f). Since F(N,f) is a totally geodesic submanifold
of N as seen in Proposition 2-3, any geodesic on F;(IV, f) is an f-invariant
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geodesic on N. Of course, this geodesic is not necessarily a geodesic on
M.

Now consider an orientation for M, then this orientation induces an
orientation for N. When M is orientable, we can apply our consideration
of the previous paper ([10], [11]) to this case.

Let f be an isometry of M with f(IN) = N, then we denote a trace of
an induced homomorphism (f|y).: H(N, @) — H(N, @) of k-th homology
group by 2.V, f). Then we have the following property.

CoroLLARY 2-8. Let M, N and f be the same as Theorem 2-7. Suppose
that M is a simply connected orientable manifold of odd dimension and f
is orientation preserving. Then there exists a non-trivial geodesic with the
same angle or a nontrivial f-invariant geodesic on N if 1,(N,[) is even for
k = 1/2(dim M — 1). In particular it is well if H(N, ) = 0.

Proof. By the Poincaré duality, we have L(f|,) = 2 > ¥ (—=1)'2,(IV, )
+ (—=1)*2(N, f) + 2 where L(f|y) is the Lefschetz number of f|y: N — N.
On the other hand it is known that L(f|,) equals the Euler number
WEWDN, ) of F(N,f) (9. Thus if (N, f) = even, L(fly) # 1 and so
Y(F(N,f)) +1. When y(F(N,[f)) = 2, our conclusion follows from Theorem
2-7 and the above Remark. If x(F(N, f)) = 0, then there is no fixed points
or F(N, f) contains non-isolated fixed point set. Hence in the first case
our conclusion follows from (1) of Theorem 2-7 and in the second case it
follows from the above Remark. [Q.E.D.]

Further when we consider an order of f|y where it is defined by the
minimal integer n such that f*|, is homotopic to the identity, we can des-
cribe which isometries satisfy the condition “2,(V, f) = even” of Corollary
2-8 in the same way as our previous paper ([11]). We denote the order of
flx by ord (IV, f).

(1) rank H,(N, Z) = even, ord (N, f) =2, 4, 8

(2) rank H(N, Z) = 2, ord (N, f) # 0 (mod 3)

(8) rank H(N, Z) = 3, ord (N, f) # 0 (mod 2)

f has no eigenvalue 1
where £ > 1 and Z is the group of integers.

In the case of dim M = even, the fixed point F(V,[) is not isolated
as seen in our paper ([10]). Hence there exists a non-trivial f-invariant
geodesic (actually f-fixed geodesic) of N if F(N,f) = ¢.
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§3. Self-intersecting geodesic

As seen in Remark of §1 a geodesic with the same angle is a self-
intersecting geodesic if F(N, f) = N and we call it a geodesic loop. Here
we consider the existence of geodesic loops. And we give an answer for
our problem in a sence.

ProrosrrioN 3-1. Let M be a complete Riemannian manifold and let
N be a connected compact closed submanifold of codimension 1 with N =
é. If f is an isometry of M with F(N,f) = N, then we have

T (Ay(M, f)) = 7,(N) + 7, (M)  (n = 2)
and moreover
0 —> 7(M) —> z(Ay(M, f)) —> 7(N) —> 0
is exact.

Proof. It is known that the inclusion map Ay(M, f) —> Cy(M, f) is a
homotopy equivalence where Cy(}, f) = {« € C°(I, M)|«(0) € N, (1) = f(«(0))}
is a Banach manifold of continuous maps with the uniform topology. And
so we consider Cy(M, f) instead of 4,(M, f). We have an exact sequence
for the fibration P: CY(M, f) —> G(M, N, f) ="4(IN) (diagonal), P(a) =
(«(0), x(1)) = (x, x), with fibre as loop space 2,(M) where g is the base
point in N.

Consider now the commutative diagram,

7.(Cx(M, ), 2,(M))
d
P.. l = \
—> T, (AN) 2> 7, (2(M)) —> 7, (CUM, f)) —>
Hod Hlf__-_'
(M)
where ¢ is the boundary map in the exact sequence for the pair (C3(HM, f),
2,M)), H is the Hurewitz map and P,: =, (CY]M, f), 2,(M)) — =, (4(N)) is
an isomorphism induced by projection P for n = 1. Now we see that 9

is a zero homomorphism.
Let 5 e n,(CY{(M, f), 2,(M)) be represented by the map

g (I oI, J"7) — (CH(M, f), 2,(M), q)
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where I" is the n-cube, 0I" its boundary, and J" ' = I""' X {0} U (@I"*"")
X I. Now (&) = a0 P,(&) is represented by the restriction &, of & to the
bottom,
E: ("1, oI X {1} —> (2,(M), q) .
Evaluation of this map,
E: (I X L ol")y —> (M, g)

represents Ho (&) = Hodo Py (5). Thus Hodo P,(F) is represented by the
restriction of the evaluation & of & to I*! X I
(I oI Iy X I—> (M, M, q) .

From this we see that £ gives rise to a homotopy between & restricted to
I"x {0} UI*"' X IUI"X {1} and the constant map.

By the way &|imxurm-1xrumxn represents — Py, o Py (8) + Hodo Py (8)
+ P, o P, (&) where P,: 4(N) —> N is a i-th factor projection. Since P,
= P,, we have Hodo P, (&) = 0 and this implies that 3 is a zero homo-
morphism. Thus we have the following exact sequence,

0 —> 7,(2,(M)) —> 7,(CHM, [)) —> 7, (4(N)) —> 0

for all » = 0. Since we have a trivial cross-secton s: 4(N) — CW(M, f)
defined by s(x, x)(f) = x for all te I, we have

T (CHM, [)) = n,(2,(M)) + = 4(N)) forn=2.
On the other hand, since
T(2,(M)) = 7,.(M)
7, (4N)) = 7, (N)
7 (CY(M, [)) = n(4x(M, f)) ,

we have the conclusion of theorem. [Q.E.D.]

THEOREM 3-2. Let M be a complete Riemannian manifold and let N
be a connected compact closed submanifold of codimension 1 with N = ¢.
If z,(M) x 0 for some k=1 and there exists an isometry f with F(N, f) =
N, then there exists a non-trivial geodesic loop starting from N with the
same angle for N.

Proof. If there exists no non-trivial geodesic with the same angle, we
have an isomorphism induced by the inclusion i: F(N,f) = N— Cy(M, f),
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Iy m(N) = n,(Cy(M, f)) (n = 0). And we have the commutative diagram,

7.(CY(M, f)) L 7,(A(N))

zTg =

() ’

where j, is an isomorphism induced by the map j: N — A(N) where j(x)
= (x,x). Thus P,: n,(CY(M, f)) — =, (4(N)) is an isomorphism. On the
other hand, since the sequence

is exact as seen in the proof of Proposition 3-1, =,(2,(M)) =0 for all n >
0. Therefore we have n,(M) = 0 for all n > 1 so that it contradicts the
assumption of theorem. [Q.E.D.]

For example let M be a product manifold N, X N, with the product
metric where N, is a connected compact manifold of (dim M—1) dimension.
Then we can apply this theorem for the isometries id X g where g is an
arbitrary isometry of N,.

Remark. In the case f = identity we have Theorem B of Introduction.
Moreover maybe we can show the existence of geodesic loops under more
weak conditions and we shall do it elsewhere.

From this theorem we see the following corollaries.

CoOROLLARY 3-3. Assume that M and N are the same as Theorem 3-2
and there exists an isometry [ with F(N, f)= N. If M is compact, then
there exists a non-trivial geodesic loop starting from N with the same angle
for N.

Proof. Since M is compact, 7,(M) % 0 for some n = 1. [Q.E.D.]

COROLLARY 3-4. Assume that M and N are the same as Theorem 3-2
and there exists an isometry [ with F(N,f) = N. If M is the same homo-
topy type as N, then there exists a non-trivial geodesic loop starting from N
with the same angle for N.

Proof. If M is the same homotopy type as N, =, (M) = =, (N) for n =
0. Since M is compact, n,(M) = #,(IN) = 0 for some n > 1. [Q.E.D.]

Here we have an answer for our proposed problem in a sence.
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CoRoLLARY 3-5. Let M be a complete Riemannian manifold and let N
be a connected compact closed submanifold of codimension 1 with N = ¢.
Then there exists a non-trivial geodesic with the same angle.

Proof. If M is the same homotopy type as N, then there exists a non-
trivial geodesic (=geodesic loop) with the same angle by applying Corol-
lary 3-4 for f = identity. On the other hand if M is not the same homotopy
type as N, then it is known that there exists a geodesic which starts per-
pendicularly from N and ends perpendicularly in N by K. Grove ([4]) (The
same results are shown by S. Kawai [6]). Thus we have our conclusion.

[QED.]

§4. N-I-geodesic
Here we consider a special case of geodesics with the same angle and
so we give some conditions for the existence of such a geodesic.

Let M be a complete Riemannian manifold, N a closed submanifold
and f an isometry on M with f(IN) = N.

DEerFintTION 4-1. A geodesic a: I— M satisfying the condition «(1) =
f(@(0)) and (a(0), «(1)) e N X N is called a normal connected invariant
geodesic (we say it “N-I-geodesic of f”) if it satisfies the following two
conditions.

D (@0), —a) e T,oN* X T, (,N*

(2) « is invariant under f.

For example let S? be a 2-dimensional standard sphere, N = S? N
{(y, 2)-plane} and f = 180°-rotation with the fixed points (0, 0, +1), then there
exists a N-I-geodesic of f.

N-I-geodesic
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On the other hand let T be a flat torus, f be an 180°-rotation about
its barycenter and N = horizontal line, then there does not exists a N-I-
geodesic of f.

pd

™

Thus in general there does not exists N-I-geodesic for any given M,
N and /.

LEMMA 4-1. Let M be a complete Riemannian manifold, N a closed
submanifold of codimension 1 with N = ¢ and f an isomeiry of M with
f(N) = N. If ac Ay(M, f) is a critical point for E with &) | TN, then «
is a N-I-geodesic of f.

Proof. It follows by Theorem 1-3 that « is a geodesic with the same
angle and &(1) | TN when &(0) | TN. And so f,&(0) and &(1) are normal
to T,,N. Since the codimension of N is 1 and [|&(0)| = ||&(1)|, we have
f«@(0) = +a(1). This implies that « is invariant under f. [Q.E.D.]

Let I'(M) be a group of isometry of M and let I',(M) be a subgroup
of I'(M) such that any element of I'y(M) leaves N invariant.

THEOREM 4-2. Let M be a complete Riemannian manifold and let N
be a connected compact closed submanifold of codimension 1 with oN = ¢.
If I'y(M) acts on N transitively and N is not the same homotopy type as
M, then there exists an element f of I'y(M) such that it has a N-I-geodesic.

Proof. It is known by K. Grove ([4]) that if NV is not the same homo-
topy types as M, then there exists a non-trivial geodesic « with (a(0),
—a) e T, oyN+ X T,,,N+. Since I'y(M) is transitive, there exists an ele-
ment f e I'y(M) with f(«(0)) = «(1). And moreover this « is a critical point
for E: Ay(M, f) — R so that « is a N-I-geodesic by Lemma 4-1. [Q.E.D.]

At once we can find easy examples;
(a) M=S? N = equator.
(b) M=R, N=8%
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