T. Sirao Nagoya Math. J. Vol. 38 (1970), 91–101

A REMARK ON THE MOYAL'S CONSTRUCTION OF MARKOV PROCESSES

TUNEKITI SIRAO

To Professor Katuji Ono on the occasion of his 60th birthday.

§ 1. **Result.** In the author's previous paper [3], we used Theorem 1 of the present paper to assure the existence of a signed branching Markov process with age satisfying given conditions in [3]. The purpose of this paper is to give a proof of Theorem 1.

Let $X = \{X_t, \zeta, \mathscr{B}_t, P_X; x \in E\}$ be a right continuous Markov process¹) on a locally compact Hausdorff space E satisfying the second axiom of countability, and Ω be the sample space of X. A non-negative function $\sigma(\omega)$ ($\omega \in \Omega$) is called a \mathscr{B}_t -Markov time if it holds that for each $t \ge 0$

$$\{\omega \in \Omega; \sigma(\omega) \leq t < \zeta(\omega)\} \in \mathscr{B}_t.$$

For any Markov time σ , \mathscr{B}_{σ} is defined as the collection of the sets A such that for any $t \ge 0$

$$A \in \bigvee_{t \geq 0} \mathscr{B}_t ext{ and } A \cap \{\omega; \sigma(\omega) \leq t < \zeta(\omega)\} \in \mathscr{B}_t,$$

where $\bigvee_{t\geq 0} \mathscr{B}_t$ denotes the σ -algebra generated by the sets of \mathscr{B}_t , $t\geq 0$. Let C(E) be the space of all bounded continuous functions on E. A right continuous Markov process X is said to be strong Markov if it holds that for any Markov time σ , $t\geq 0$, $x\in E$, $f\in C(E)$, and $A\in \mathscr{B}_{\sigma}$,

$$E_x[f(X_{t+\sigma}); A \cap \{\sigma < \zeta\}] = E_x[E_{X_{\sigma}}[f(X_t)]; A \cap \{\sigma < \zeta\}],$$

where $E_x[\cdot; A]$ expresses the integral over A by P_x .

Let $\chi_0(t, x, \cdot)$ and $\Psi(x; t, \cdot)$ be substochastic measures on the σ -algebra $\mathscr{B}(E)^{2^{2}}$, and suppose that $\chi_0(\cdot, \cdot, B)$ and $\Psi(\cdot; \cdot, B)$ are Borel measurable

Received March 31, 1969

¹⁾ A Markov process is said to be right continuous if their almost all sample paths are right continuous in $t \ge 0$.

 $^{^{2)}}$ $\mathscr{B}(\mathscr{X})$ denotes the class of Borel set on the topological space \mathscr{X} .

TUNEKITI SIRAO

functions of $(t, x) \in [0, \infty) \times E$ for any fixed $B \in \mathscr{B}(E)$. A pair of χ_0 and Ψ is said to be satisfied Moyal's $\chi_0 \Psi$ -condition if they satisfy the following conditions³:

 $\begin{array}{ll} (1) & \chi_0(t+s,x,B) = \int_E \chi_0(t,x,dy)\chi_0(s,y,B), & \chi_0(0,x,E) = 1, \\ (2) & \lim_{t \to \infty} \Psi(x\,;\,t,E) = 1 - \lim_{t \to \infty} \chi_0(t,x,E) \\ (3) & \Psi(x\,;\,t+s,B) = \Psi(x\,;\,t,B) + \int_E \chi_0(t,x,dy)\Psi(y\,;\,s,B) \\ (4) & \Psi(x\,;\,t,E) \text{ is continuous in } t \ t \ge 0, \ x \in E, \ B \in \mathscr{B}(E). \end{array}$

Now, suppose that the $\chi_0 \Psi$ -condition is satisfied for a given pair of χ_0 and Ψ_0 . By virtue of (3), $\Psi(x; t, B)$ is monotone nondecreasing in t, and hence it determines a measure $\Psi(x; dt, dy)$ on $\mathscr{B}([0, \infty) \times E)$. Using this measure,

we shall define measures
$$\Psi_r(x; \cdot, \cdot)$$
 and $\chi_r(t, x, \cdot)$ as follows:

$$\begin{split} \Psi_1(x; dt, dy) &= \Psi(x; dt, dy), \\ (5) \quad \Psi_{r+1}(x; dt, dy) = \int_0^t \int_E \Psi_r(x; ds, dz) \Psi(z; d(t-s), dy), \\ \chi_r(t, x, dy) &= \int_0^t \int_E \Psi_r(x; ds, dz) \chi_0(t-s, z, dy), \\ r \geq 1, t \geq 0, B \in \mathscr{B}(E). \end{split}$$

Further we set

$$(6) \quad \Psi_r(x; t, dy) = \int_0^t \Psi_r(x; ds, dy), \ r \ge 1.$$

Then we have

THEOREM. (J.E. Moyal) If the $\chi_0 \Psi$ -condition is satisfied, then it holds that for any $t, s \ge 0$, $x \in E$, and $B \in \mathscr{B}(E)$,

$$(7) \quad \Psi_{r+r'}(x; dt, B) = \int_{0}^{t} \int_{E} \Psi_{r}(x; ds, dy) \Psi_{r'}(y; d(t-s), B), \quad r, r' \ge 1,$$

$$(8) \quad \chi_{r+r'}(t, x, B) = \int_{0}^{t} \int_{E} \Psi_{r}(x; ds, dy) \chi_{r'}(t-s, y, B), \quad r \ge 1, \quad r' \ge 0,$$

$$(9) \quad \chi_{r}(t+s, x, B) = \sum_{r'=0}^{r} \int_{E} \chi_{r'}(t, x, dy) \chi_{r-r'}(s, y, B), \quad r \ge 0,$$

³⁾ J.E. Moyal [2] defined the $\chi_0 \Psi$ -condition for non-stationary Markov processes. The condition stated here is the one for stationary case with an additional condition (4).

(10)
$$\sum_{r=0}^{\infty} \chi_r(t, x, E) = 1 - \lim_{r \to \infty} \Psi_r(x, t, E).$$

Moreover, if we set

(11)
$$\chi(t,x,B) = \sum_{r=0}^{\infty} \chi_r(t,x,B), \quad t \ge 0, \quad x \in E, \quad B \in \mathscr{B}(E),$$

then χ satisfies so-called Chapman-Kolmogorov's equation, i.e.,

(12)
$$\chi(t+s,x,B) = \int_{E} \chi(t,x,dy) \chi(s,y,B),$$

and further χ is the minimal non-negative solution of the equation:

(13)
$$\chi(t,x,B) = \chi_0(t,x,B) + \int_0^t \int_E \Psi(x;ds,dy)\chi(t-s,y,B).$$

In addition, χ is the unique solution of (13) if it holds that for each $t \ge 0$

(14) $\lim_{r\to\infty}\Psi_r(x; t, E)=0.$

According to Kolmogorov's extension theorem, (1) and (12) imply that there exist two Markov process X and X^0 whose transition functions are given by χ and χ_0 respectively. We shall consider the relation between Xand X^0 .

Let $E \cup \{\Delta\}$ be the one-point compactification of E and set

$$C_{0}(E) = \{f; f \in C(E) \text{ and } \lim_{x \to d} f(x) = 0\},\$$
$$\| f \| = \sup \{ |f(x)| ; x \in E \},\$$
$$T_{t}^{(r)}f(x) = \int_{E} \chi_{r}(t, x, dy)f(y), \ r \ge 0, \ f \in C_{0}(E),\$$

and

$$T_t f(x) = \int_E \chi(t, x, dy) f(y), \qquad f \in C_0(E).$$

Then (1) and (12) imply $T_{t+s}^{(0)} = T_t^{(0)} T_s^{(0)}$ and $T_{t+s} = T_t T_s$ if they act on $C_0(E)$. Now we can state

THEOREM 1. Let the semi-group $T_t^{(0)}$, $t \ge 0$, be strongly continuous on $C_0(E)$ with respect to the norm || ||, and assume that for any $r \ge 1$, $T_t^{(r)}$ maps $C_0(E)$ into itself and it holds that

TUNEKITI SIRAO

(15) $\lim_{t\to 0} ||T_t^{(r)}f|| = 0, \quad r \ge 1, \quad f \in C_0(E).$

Then it holds that (i) there exists a right and quasi-left continuous⁴⁾ strong Markov process $X = \{X_t, \zeta, \mathcal{B}_t, P_x; x \in E\}$ corresponding to the semi-group T_t , (ii) there exists a Markov time τ of X_t such that the killed process $X^0 = \{X_t^0, \zeta^0, \mathcal{B}_t^0, P_x^0; x \in E\}$ of X at time τ^{5} corresponds to the semi-group $T_t^{(0)}$, (iii) setting

$$\tau_0 = 0, \ \tau_1 = \tau, \ \tau_{r+1} = \tau_r + \theta_{\tau_r} \tau^{6}, \ r \ge 1,$$

we have

(16)
$$P_{x}(X_{t} \in B, \tau_{\tau} \leq t < \tau_{\tau+1}) = \chi_{\tau}(t, x, B),$$

(17)
$$P_{x}(X_{\tau_{\tau}} \in B, \tau_{\tau} \in dt) = \Psi_{\tau}(x; dt, B),$$

$$x \in E, B \in \mathscr{B}(E), t \geq 0, r \geq 0.$$

§ 2. **Proof.** Let $N = \{0, 1, 2, \dots\}$ and S be the product space $E \times N$ where the topology of S is introduced in a natural way. Then S is a locally compact Hausdorff space satisfying the second axiom of countability. We define a measure $P(t, (x, p), \cdot)^{r}$ on $\mathscr{B}(S)$ by

(18)
$$P(t, (x, p), (B, q)) = \begin{cases} \chi_{q-p}(t, x, B), & \text{if } q \ge p, \\ 0, & \text{otherwise}, \end{cases}$$
$$(x, p) \in S, \ t \ge 0, \ B \in \mathscr{B}(E), \ p, q \in N \end{cases}$$

Then we have

LEMMA 1. For $t, s \ge 0$, $(x, p) \in S$, $A \in \mathscr{B}(S)$, it holds that

$$P(t + s, (x, p), A) = \int_{s} P(t, (x, p), d(y, r)) P(s, (y, r), A)$$

Proof. It suffices to prove the above equality for A = (B,q) where $q \ge p$. By the definitions of $P(t,(x,p), \cdot)$ and (9), we have

4) A Markov process $X = \{X_t, \zeta, \mathscr{B}_t, P_x; x \in E\}$ is said to be quasi-left continuous if it holds that for any increasing sequence τ_r of Markov times,

 $P_x(\lim_{r\to\infty} X_{\tau_r} = X_{\tau}, \tau < \zeta) = P_x(\tau < \zeta),$

where

$$\tau(\omega) = \lim_{r \to \infty} \tau_r(\omega).$$

⁵⁾ The killed process X^0 of X at time τ means that

$$X_{t}^{0}(\omega) = \begin{cases} X_{t}(\omega), & \text{if } t < \tau, \\ \mathcal{A}, & \text{if } t \geq \tau. \end{cases}$$

6) θ_t denotes the shift operator.

7) $P(\cdot, \cdot, (B, q))$ is $\mathscr{B}([0, \infty) \times S)$ -measurable.

94

$$\begin{split} P(t+s,(x,p),(B,q)) &= \chi_{q-p}(t+s,x,B) \\ &= \sum_{r=0}^{q-p} \int_{E} \chi_{r}(t,x,dy) \chi_{q-p-r}(s,y,B) \\ &= \sum_{r=0}^{q-p} \int_{E} P(t,(x,p);(dy,p+r)) P(s,(y,p+r);(B,q)) \\ &= \int_{S} P(t,(x,p),d(y,r)) P(s,(y,r);(B,q)), \end{split}$$

as was to be proved.

Q.E.D.

According to Lemma 1, there exists a Markov process $Y = \{Y_t = (X_t, N_t), \zeta, \mathcal{B}_t, P_{(x,p)}; (x,p) \in S\}$ with transition function $P(t, (x,p), \cdot)$ where \mathcal{B}_t is the σ -algebra generated by sets of the form $\{Y_s \in A; s \leq t, A \in \mathcal{B}(S)\}$. Since it follows from (18), (11), and (13) that for any $t, h \geq 0$

$$P_{(x,p)}(N(t) > N(t+h)) = 0,$$

and

$$\begin{split} P_{(x,p)}(N(t) < N(t+h)) \\ &= \sum_{r=0,s=1}^{\infty} \int_{E} \chi_{r}(t,x,dy) \chi_{s}(h,y,E) \\ &= \sum_{s=1}^{\infty} \int_{E} \chi(t,x,dy) \chi_{s}(h,y,E) \\ &= \int_{E} \chi(t,x,dy) \{ \chi(h,y,E) - \chi_{0}(h,y,E) \} \\ &= \int_{E} \chi(t,x,dy) \int_{0}^{h} \int_{E} \Psi(y;du,dz) \chi(h-u,z,E) \\ &\longrightarrow 0 \quad \text{as} \quad h \longrightarrow 0, \end{split}$$

there exists a version of Y in which N_t is right continuous in t. So we take this version as Y.

Now let us consider $\chi_0(t, x, dy)$. As was stated already, χ_0 defines a Markov process $X^0 = \{X_t^0, \zeta^0, \mathscr{B}_t^0, P_x^0; x \in E\}$ on E. Let us denote its sample space by $\Omega^0 = \{\omega^0 = \omega^0(t); \omega^0(t) \text{ is a mapping of } [0, \zeta^0) \text{ to } E\}$. Next we consider a function space $\hat{\Omega}_r$ which is a kind of copy of shifted Ω_0 . This means that

$$\hat{\mathcal{Q}}_r = \{ \hat{\omega} = (\hat{\omega}_1(t), \hat{\omega}_2(t)); \hat{\omega} \text{ is a mapping of } [\alpha_r, \beta_r) \\ \text{to } E \times \{r\} \text{ where } 0 \leq \alpha_r(\hat{\omega}) \leq \beta_r(\hat{\omega}) \leq \infty \text{ and they} \\ \text{may vary with } \hat{\omega} \},$$

and, for each $\hat{\omega} \in \hat{\Omega}_r$, there corresponds one and only one $\omega^0 \in \Omega^0$, such that the graph $\{(t, \omega^0(t)); 0 \leq t < \zeta^0(\omega^0)\}$ is identical to $\{(t, \hat{\omega}(t + \alpha_r)); 0 \leq t < \beta_r(\hat{\omega}) - \alpha_r(\hat{\omega})\}$. Let $\hat{\mathscr{F}}_r$ be the algebra generated by cylinder sets of the following type

$$\hat{B} = \{ \hat{\omega} \in \hat{\Omega}_r ; t_0 \leq \alpha_r(\hat{\omega}) < t_1, \hat{\omega}_1(\alpha_r(\hat{\omega})) \in B_0, \hat{\omega}_1(t_i) \in B_i, \quad i = 1, 2, \cdots, n \}$$
(19)
$$0 \leq t_0 \leq t_1 \leq t_2 \leq \cdots \leq t_n,$$

$$B_i \in \mathscr{B}(E), \quad i = 0, 1, 2, \cdots, n, \quad n = 0, 1, 2, \cdots,$$

and define a finitely additive measure $\nu_x(\cdot)$ on $\hat{\mathscr{F}}_r$ by

(20)
$$\nu_x(\hat{B}) = \int_{t_0}^{t_1} \int_{B_0} \Psi_r(x; dt, dy) P_y^0(X_{t_i-t}^0 \in B_i, i = 1, 2, \cdots, n).$$

Then we have

LEMMA 2. $\nu_x(\cdot)$ can be extended to a measure on the σ -algebra \mathscr{B}_r generated by $\hat{\mathscr{F}}_r$.

Remark. Consider a Markov time τ_r defined by

$$\tau_r(\omega) = \inf \{t; N_t(\omega) = N_0(\omega) + r\},\$$

where N_t is the right continuous second coordinate of $Y_t = (X_t, N_t)$. If the distribution of the joint variable (τ_r, X_{τ_r}) is given by $\Psi_r(x, dt, dy)$, then $\nu_x(\cdot)$ is supposed to be the restricted measure of $P_{(x,0)}$ on $E \times \{r\}$. So intuitively, Lemma 2 is clear.

Proof. The proof is given by the same way as the construction of product measure. It suffices to prove that if a decreasing sequence $\{\hat{B}_n\} \subset \hat{\mathscr{F}}_r$, satisfies

$$\nu_x(\hat{B}_n) \ge c > 0, \qquad n = 1, 2, 3, \cdots,$$

where c is a constant, then we have

$$\bigcap_{n=1}^{\infty}\hat{B}_n\neq\phi.$$

Since $\Psi_r(x; \cdot, E)$ is a finite measure on $[0, \infty)$,

$$\nu_{x}(\{\hat{\omega}; \alpha_{r}(\hat{\omega}) \geq t\}) = \int_{t}^{\infty} \Psi(x; dt, E)$$

tends to zero as t tends to infinity. Therefore, without loss of generality, we may assume that there exists T > 0 such that

$$\hat{B}_n \subset \{ \hat{\omega}; 0 \leq \alpha_r(\hat{\omega}) < T \}, \qquad n = 1, 2, 3, \cdots.$$

Now let us express \hat{B}_n in a form

.

(21)
$$\hat{B}_n = \sum_{j=1}^{k_n} \{ \hat{\omega}; t_{j0}^{(n)} \leq \alpha_r(\hat{\omega}) < t_{j1}^{(n)}, \ \hat{\omega}_1(\alpha_r(\hat{\omega})) \in B_{j0}^{(n)}, \\ \hat{\omega}_1(t_{ji}^{(n)}) \in B_{ji}^{(n)}, \quad i = 1, 2, \cdots, n_j \}^{s_i}, \quad n = 1, 2, 3, \cdots,$$

where the following are assumed to be satisfied.

$$\begin{split} t_{j1}^{(n)} &\leq T, \quad j = 1, 2, \cdots, k_n, \quad n \geq 1, \\ t_{ji}^{(n)} &\leq t_{ji+1}^{(n)}, \quad i = 0, 1, 2, \cdots, n_j - 1, \quad n \geq 1, \\ [t_{j0}^{(n)}, t_{j1}^{(n)}] \times B_{j0}^{(n)} \cap [t_{k0}^{(n)}, t_{k1}^{(n)}] \times B_{k0}^{(n)} = \phi \quad \text{if} \quad j \neq k, n \geq 1, \end{split}$$

and for any n and j there exists j_0 such that

$$[t_{j_0}^{(n+1)}, t_{j_1}^{(n+1)}) \times B_{j_0}^{(n+1)} \subset [t_{j_00}^{(n)}, t_{j_01}^{(n)}) \times B_{j_00}^{(n)}$$
.

 \mathbf{Set}

$$C_{j}^{(n)} = \left\{ (t, y); t_{j0}^{(n)} \leq t < t_{j1}^{(n)}, y \in B_{j0}^{(n)} \text{ and} \right.$$
$$P_{y}^{0}(X_{t_{j1}^{(n)}-t}^{0} \in B_{ji}^{(n)}, i = 1, 2, \cdots, n_{j}) > \frac{c}{2} \right\}^{9},$$
$$D_{j}^{(n)} = [t_{j0}^{(n)}, t_{j1}^{(n)}) \times B_{j0}^{(n)} - C_{j}^{(n)}.$$

Then we can see

$$\sum_{j=1}^{k_n} C_j^{(n)} \downarrow$$

and

$$\Psi_r(x; \sum_{j=1}^{k_n} C_j^{(n)}) > \frac{c}{2} > 0.$$

Accordingly there exist (t_0, y_0) and j_n such that

(22)
$$(t_0, y_0) \in C_{j_n}^{(n)}, n = 1, 2, 3, \cdots,$$

which means

⁸⁾ For the set {ŵ; β_r(ŵ)≤t}, we used the notation {ŵ; 0≤α_r(ŵ)<t, ŵ₁(α_r(ŵ))∈E, ŵ₁(t)∈φ}. The last funny expression ŵ₁(t)∈φ means ŵ₁(t) is not defined at t.
9) If B=φ, P⁰_x(X_t∈B) is regarded as 1-P⁰_x(X_t∈E).

TUNEKITI SIRAO

$$P_{y_0}^{(0)}(X_{t_{j_ni}-t_0}^{(0)} \in B_{j_ni}^{(n)}, i = 1, 2, \cdots, n_{j_n}) > \frac{c}{2} > 0$$

By the monotonicity of \hat{B}_n , the events in the above parentheses are monotone non-increasing. So we can take ω^0 such that for all $n \ge 1$

(23) $X^{0}_{t_{j,i}-t_{0}}(\omega^{0}) \in B^{(n)}_{j_{n}i}, i = 1, 2, 3, \cdots, n_{j_{n}}.$

If we put

$$\alpha_r(\hat{\omega}) = t_0, \ \beta_r(\hat{\omega}) = t_0 + \zeta^0(\omega^0), \ \hat{\omega}_1(t_0) = y_0$$

and

$$\hat{\omega}(t + t_0) = (\omega^0(t), r), \quad 0 \leq t < \zeta^0(\omega^0),$$

then (21), (22) and (23) show

$$\bigcap_{n=1}^{\infty} \hat{B}_n \ni \hat{\omega},$$

as was to be proved.

Now we return to the process $Y = \{Y_t = (X_t, N_t), \zeta, \mathscr{B}_t, P_{(x,p)}; (x, p) \in S\}$. Since N_t is right continuous, τ_r defined by

Q.E.D.

$$\tau_r(\omega) = \inf \{t; N_t(\omega) = N_0(\omega) + r\},\$$

are \mathcal{B}_t -Markov times. Then we have

LEMMA 3. Let X° be a Markov process on E corresponding to the transition function $\chi_{\circ}(t, x, \cdot)$. If X° is right continuous, Y has a right continuous version and, for this version, we have

(24)
$$P_{(x,p)}(Y_t \in (B, p+r)) = \chi_r(t, x, B),$$

(25)
$$P_{(x,p)}(Y_{\tau_{r+1}} \in (B, p+r+1), \tau_{r+1} \in dt) = \Psi_{r+1}(x; dt, B)$$

 $B \in \mathscr{B}(E), r \ge 0.$

Proof. By (5), (18) and (20), we can see that for $r \ge 1$,

(26)
$$P_{(x,p)}(Y_{t_i} \in (B_i, p+r), i = 1, 2, \cdots, n) = \nu_x(\{\hat{\omega}; 0 \le \alpha_r(\hat{\omega}) < t_1, \hat{\omega}_1(t_i) \in B_i, i = 1, 2, \cdots, n\}).$$

Hence $P_{(x,p)}$ defines a measure on the space of sub-trajectories of Y_t in the time interval $[\tau_r, \tau_{r+1})$ which is equivalent to ν_x . On the other hand,

98

MARKOV PROCESSES

 $\nu_x(\cdot)$ is a measure on $\hat{\mathscr{B}}_r$ which is obtained from the sample space of X^0 by shift of starting time point. So we may consider that on the time interval $[\tau_r, \tau_{r+1})$, Y_t has the same continuity property with X^0 . Since $r \ge 1$ is arbitrary, we may regard that the right continuity of X^0 implies the right continuity of Y_t on $[\tau_1, \zeta)$. Evidently Y_t restricted on $[0, \tau_1)$ is equivalent to X^0 , and hence we can have a right continuous version of Y_t . Furthermore, the event in parentheses of left hand side of (25) is measurable if Y_t is right continuous. Then the definition of ν_x and (26) implies

$$P_{(x,p)}(\tau_r(\omega) \in dt, X_{\tau_r}(\omega) \in (B, p+r)) = \nu_x(\{\hat{\omega}; \alpha_r(\hat{\omega}) \in dt, \hat{\omega}(\alpha_r) \in B\})$$
$$= \Psi_r(z; dt, B),$$

which proves (25). Since (24) is obtained from (18) we have proved the lemma. Q.E.D.

Now Theorem 1 is proved easily as follows.

Proof of Theorem 1. Since $T_t^{(0)}$ is strongly continuous on $C_0(E)$, by the general theory of Markov processes¹⁰, a Markov process $X^0 = \{X_t^0, \zeta^0, \mathscr{G}_t^0, P_x^0; x \in E\}$ corresponding to $T_t^{(0)}$ can be considered to be right continuous. Accordingly, by Lemma 3, we may regard Y_t is right continuous.

Now let V_t be the semi-group on $C_0(S)$ induced by Y_t and $g \in C_0(S)^{11}$. Then we have

$$V_{t}g(x,p) - g(x,p) = \sum_{r=0}^{\infty} \int_{E} P(t,(x,p),(dy,p+r))g(y,p+r) - g(x,p)$$

$$(27) \qquad \qquad = \int_{E} \chi_{0}(t,x,dy)g(y,p) - g(x,p) + \sum_{r=1}^{\infty} \int_{E} \chi_{r}(t,x,dy)g(y,p+r).$$

Since g(x, p) belongs to $C_0(S), g(x, p)$ tends to zero uniformly in x as p tends to infinity. Furthermore the assumption on $T_t^{(r)}$ implies

$$\|\sum_{r=1}^{\infty}\int_{E}\chi_{r}(t,x,dy)g(y,p+r)\|\longrightarrow 0 \text{ as } t\longrightarrow 0.$$

Then we can see from (27) and the assumption on $T_t^{(0)}$ that V_t is strongly

¹⁰⁾ cf. [1] Theorem 3.14, p. 104.

¹¹⁾ g(x, n) belongs to $C_0(S)$ if it holds that $g(\cdot, n) \in C_0(E)$ for any fixed $n \in N$ and g(x, n) tends to zero, uniformly in x, when n tends to infinity.

continuous on $C_0(S)$. Therefore we may consider that Y is a right continuous and quasi-left continuous¹² strong Markov process.

Now let Ω^0 be a sample space of the process X_i^0 , and Ω^i $(i = 1, 2, 3, \cdots)$ be infinitely many copies of Ω^0 . Let us set

$$\widetilde{\varOmega} = \prod_{i=0}^{\infty} \Omega^i,$$

and, for any $\tilde{\omega} = (\omega^0, \omega^1, \cdots, \omega^i, \cdots) \in \tilde{\Omega}$, set

$$\begin{split} \sigma_0(\tilde{\omega}) &= 0, \ \sigma_r(\tilde{\omega}) = \sum_{i=0}^{r-1} \zeta^0(\omega^i), \qquad r \ge 1, \\ \tilde{X}_t(\tilde{\omega}) &= \tilde{\omega}(t) = \omega^r(t - \sum_{i=0}^{r-1} \zeta^0(\omega^i)) \ \text{if} \ \sigma_r(\tilde{\omega}) \le t < \sigma_{r+1}(\tilde{\omega})^{13}, \\ \tilde{\zeta}(\tilde{\omega}) &= \lim_{r \to \infty} \sigma_r(\tilde{\omega}). \end{split}$$

Further set

$$\theta_t \tilde{\omega} = (\theta_{t-\sigma_r(\tilde{\omega})}\omega^r, \omega^{r+1}, \cdots) \text{ if } \sigma_r(\tilde{\omega}) \leq t < \sigma_{r+1}(\tilde{\omega})$$

Then we consider the σ -algebra $\widetilde{\mathscr{B}}_t$ generated by the cylinder sets of the form of

$$\{\tilde{\omega}\in \tilde{\Omega}\,;\,\tilde{\omega}(t)\in B,\sigma_r(\tilde{\omega})\leq t\},\ B\in\mathscr{B}(E),\ r\geq 0,$$

and set

$$\widetilde{\mathscr{B}} = \bigvee_{t\geq 0} \widetilde{\mathscr{B}}_t.$$

If we consider the correspondence of

$$\{\tilde{\omega} \in \tilde{\Omega}; \, \tilde{\omega}(t) \in B, \sigma_r(\tilde{\omega}) \leq t < \sigma_{r+1}(\tilde{\omega})\}$$

and

$$\{\omega \in \Omega; Y_t(\omega) = (\omega_1(t), \omega_2(t)) \in (B, r), \omega_2(0) = 0\},\$$

then it induces the correspondence between $\widetilde{\mathscr{B}}_t$ and \mathscr{F}_t defined by

$$\mathscr{F}_t = \mathscr{B}_t \cap \{ \omega \in \Omega; N_0(\omega) = 0 \}.$$

So, $\tilde{P}_x(\cdot)$ defined by

$$\tilde{P}_x(\bar{A}) = P_{(x,0)}(A),$$

100

¹²⁾ cf. [1] Theorem 3.14, p. 104.

¹³⁾ To define θ_t completely, we have to consider an extra point Δ as a grave of \widetilde{X} and an $\tilde{\omega}$ such that $\tilde{\omega}(t) = \Delta$, $t \ge 0$.

where $A \in \mathscr{F}_t$ corresponds to $\tilde{A} \in \widetilde{\mathscr{B}}_t$, defines a measure on $\widetilde{\mathscr{B}}$. Further, setting $f(x,p) = \tilde{f}(x)$ for any bounded continuous function \tilde{f} on E, we can see that

$$\begin{split} \tilde{E}_x[\tilde{f}(\tilde{X}_t)\,;\,t<\tilde{\zeta}] &= \int_{\mathcal{Q}} \tilde{f}(\tilde{X}_t(\bar{\omega})) d\tilde{P}_x \\ &= E_{(x,0)}[f(Y_t)\,;\,t<\zeta] \\ &= E_{(x,p)}[f(Y_t)\,;\,t<\zeta]. \end{split}$$

Since, for fixed $B \in \mathscr{B}(E)$, $r \ge 0$, $P_{(x,p)}((X_t, N_t) \in (B, p + r))$ is independent of p, we can see from the above equalities that

$$\begin{split} \tilde{P}_{x}(\{\tilde{\omega}\in\tilde{\varOmega}\,;\,\tilde{\omega}(t_{i})\in B_{i} \text{ and } \sigma_{r_{i}}(\tilde{\omega})\leq t_{i}<\sigma_{r_{i}+1}(\tilde{\omega})\,;\,i=1,2\}) \\ &=P_{(x,0)}(\{\omega\in\Omega\,;\,\omega(t_{i})\in (B_{i},r_{i}),\,i=1,2\}) \\ &=E_{(x,0)}[P_{(X_{t_{1}},N_{t_{1}})}((X_{t_{2}-t_{1}},N_{t_{2}-t_{1}})\in (B_{2},r_{2}))\,;\,(X_{t_{1}},N_{t_{1}})\in (B_{1},r_{1})] \\ &=E_{(x,0)}[P_{(X_{t_{1}},N_{t_{1}})}((X_{t_{2}-t_{1}},N_{t_{2}-t_{1}})\in (B_{2},r_{2}-r_{1}+N_{t_{1}}))\,;\,(X_{t_{1}},N_{t_{1}})\in (B_{1},r_{1})] \\ &=\tilde{E}_{x}[P_{\tilde{X}_{t_{1}}}(\tilde{X}_{t_{2}-t_{1}}\in B_{2},\sigma_{r_{2}-r_{1}}(\tilde{\omega})\leq t_{2}-t_{1}<\sigma_{r_{2}-r_{1}+1}(\tilde{\omega}))\,; \\ &\qquad \tilde{X}_{t_{1}}\in B_{1},\sigma_{r_{1}}(\tilde{\omega})\leq t_{1}<\sigma_{r_{1}+1}(\tilde{\omega})], \end{split}$$

which proves the Markov property of \tilde{P}_x . So we have a right continuous Markov Process $\tilde{X} = \{\tilde{X}_t, \tilde{\zeta}, \tilde{\mathscr{B}}_t, \tilde{P}_x; x \in E\}$ on E. Similarly, for a $\tilde{\mathscr{B}}_t$ -Markov time ρ , if we consider a \mathscr{B}_t -Markov time σ of Y defined by

$$\sigma(\omega) = \begin{cases} t, & \text{if } \omega \in A \text{ where } \tilde{A} = \{\tilde{\omega} \in \tilde{\Omega}; \rho(\tilde{\omega}) = t\}, t \ge 0 \\ \\ \infty, & \text{if } \omega \notin \{\omega \in \Omega; N_0(\omega) = 0\}, \end{cases}$$

then we can see that \tilde{X} is strong Markov and quasi-left continuous since Y is. Furthermore, by the definition of $\tilde{\mathcal{B}}_t, \sigma_\tau$ is a $\tilde{\mathcal{B}}_t$ -Markov time of \tilde{X} and (16), (17) are obtained from Lemma 3 and the definition of \tilde{P}_x . Thus taking \tilde{X} as X, we complete the proof. Q.E.D.

REFERENCES

- [1] E.B. Dynkin: Markov processes, vol. 1. Springer, 1965.
- [2] J.E. Moyal: Discontinuous Markov processes. Acta. Math., vol. 98 (1957), pp. 221-264.

Nagoya University

 ^[3] T. Sirao: On signed branching Markov processes with age. Nagoya Math. Jour., vol. 32 (1968), pp. 155–225.