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A VOLUME ESTIMATE FOR STRONG
SUBHARMONICITY AND MAXIMUM PRINCIPLE

ON COMPLETE RIEMANNIAN MANIFOLDS

KENSHO TAKEGOSHI

Abstract. A generalized maximum principle on a complete Riemannian man-
ifold (M, g) is shown under a certain volume growth condition of (M, g) and its
geometric applications are given.

Introduction

Let (M, g) be a complete and connected Riemannian manifold of di-

mension m > 1. In this article we study the following problem:

PROBLEM. For any ε > 0 and a smooth function f bounded from

above on M does there exist xε £ M such that (i) s u p ^ / — ε < f{xε)

(ii) |grad/|(a: e) < ε and (iii) Δf(xε) <ε?

Omori first formulated such a maximum principle on a complete Rie-

mannian manifold with sectional curvature bounded from below (cf. [Om]).

Since then, the maximum principle has been generalized by several authors

and applied to the study of value distribution of maps between manifolds

as first observed by Omori, [Om]. Especially Yau generalized Omori's re-

sult to a complete Riemannian manifold with Ricci curvature bounded from

below (cf. [C-Y], [Y-l]). Recently Chen & Xin [C-X] and Ratto, Rigoli h

Setti [R-R-S] have extended the principle to a complete Riemannian mani-

fold whose Ricci curvature decays slower than a certain decreasing function

tending to minus infinity. Their curvature condition is optimal in a sense,

and the idea of the proof heavily depends on an upper estimate for the

Laplacian of the distance function by the curvature condition.

On the other hand it is known that the maximum principle no longer

holds on a general complete non-compact Riemannian manifold and the

problem is deeply related to the volume growth property of (M, #). Here

for any x 6 M and r > 0 we define a function hx by hx(r) := logVx(r)/r2,
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26 K. TAKEGOSHI

where Vx(r) is the volume of the geodesic ball Bx(r) centered at x £ M

of radius r > 0. Every complete Riemannian manifold (M, g) in the

articles [Om], [C-Y], [C-X], [R-R-S], [Y-l] admits a point x <E M with

Jλ °° dr/rhx(r) = +00 in view of their curvature condition. Furthermore for

a given smooth monotone increasing function h{r) satisfying Jλ °° dr/rh(r)

< +00, we can construct a two dimensional complete Riemannian manifold

(N,gh) admitting a bounded strongly subharmonic function u > 0; i.e.,

Au > c > 0 on N and sup^ u < +00, and a point x such that hx(r) ~ /ι(r)

for sufficiently large r (cf. §2, Remark 2.4). From this observation we would

like to propose the following conjecture:

CONJECTURE. Suppose a complete Riemannian manifold (M, g) of di-

mension m > 1 admits a point x £ M such that j λ °° dr/rhx(r) = +00.

Then the maximum principle holds on (M,g).

In this article we show the following theorem which is weaker than the

above conjecture.

THEOREM. Let (M, g) be a complete Riemannian manifold of dimen-

1 m > 1. Suppose M admits a point x su(

Then the maximum principle holds on (M,g).

sion m > 1. Suppose M admits a point x such that liminf hx(r) < +00.
r—>+oo

As far as we know, this result is the first one for the maximum principle

on complete Riemannian manifolds without any curvature condition and it

generalizes the maximum principle obtained in [C-Y], [Om], [Kr], [Y-l].

Our method is based on a volume estimate for strong subharmonicity on

complete Riemannian manifolds. Furthermore there exists a two dimen-

sional complete Riemannian manifold with finite volume whose Gaussian

curvature decays faster than the curvature condition assumed by [C-X] or

[R-R-S] (cf. [L-S], §3, Example 1).

The author would like to express his thanks to Prof. A. Atsuji during

the development of this article.

§1. A volume estimate for strong subharmonicity on complete
Riemannian manifolds

Let (M, g) be a complete non-compact Riemannian manifold of dimen-

sion m > 1 and let Vx(r) denote the volume of the geodesic ball Bx(r)
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A VOLUME ESTIMATE FOR STRONG SUBHARMONICITY 2 7

centered at x £ M of radius r > 0. Let u (resp. K) be a smooth (resp. non-

negative continuous) function on M. We define subsets of M as follows: for

given constants a > — 1, β > 0, we set

Ω(u,a,β) := {x £ M u(x) > 0 and Au(x) > βK(x)u{x)a+ι},

where Δu := Trace^V2^, and for a given constant 7 > 0, we set

M(u,η) := {x £ M iz(x) > 7}.

The following theorem plays a crucial role in this article.

THEOREM 1.1. Suppose Λf(ifc, 7) is a non-empty subset ofΩ(u,a,β)

for some a > 1.

(i) If K(x) Ξ I on M, then for any point x £ M there exist a positive

constant 7 (x, 7) such that

\ogYo\(Bx{r)ΠM(u,j)) ^ //31og2\ a

5 > I —7 I 7 /or any r > r(x,7J,
1 \ * L* /

where c* is α positive constant independent of a,β,Ί and x £ M. In pαr-

ticular, it holds

log V^(r)
liminf r-̂ — = -hoo /or any x £ M.
r—>+oo rz

(ii) // ^Λere exist a point x\ £ M, positive constants c\ and r* such

that K(x) > ci/of(xi,x) /or any x £ M \ BXl(r*) and 7 > sup u{y),

then there exists a positive constant r(xi,7) such that

logVol(ffXl(r)nMK7)) . f βc1log2\
i > —-= 7 a for any r>r(xι,-y).

r \ 2(c* )
In particular, it holds

. lo 8 y g l ( r )
hmmf ^ - ^ = +00.
r—>+oo r

(ίii) // tftere exiθί α p o m t X2 £ M ; positive constants c<ι and r*

that K{x) > C2/d(x2,x)2 for any x £ M\J3:C2(r5tί*) and 7 > sup u(y),

2

then there exists a positive constant r(x25τ) such that

\ ^ > ^g— 7 for any r > r(s 2,7)
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28 K. TAKEGOSHI

In particular, it holds

. logVX2(r)
hmmf — - — L l - L — +00.
r-»+oo log r

Remark 1.2. In Theorem 1.1 if it* := s u p ^ u < +00, then we have only

to consider an unbounded function v := l/(u* — u) such that M{y, l/(u* —

7)) is a non empty subset of Ω(v, 1, βja+1). The above volume growth

properties follow immediately from this observation.

To show Theorem 1.1 we need the following lemma, which can be proved

by a direct calculation.

LEMMA 1.3. Let v (resp. ω) be a smooth (resp. Lipschitz continuous)

function on M and let λ be a smooth function on a real line R. Then the

following holds

div(α; grad λ(v ))

= ω2{2λf(v2)(vAv + \dv\2) + λ ' V ) l ^ 2 | 2 } + 4ωv\'(v2)(dω,dυ)

where Δv = div(grad υ).

Proof of Theorem 1.1. Since M(u,η) = M(u/j,l) and ίl(u,a,β) —

0(16/7,0^5/37"), we replace u by u/j and set δ := βja. Hence we have

M(ϋ, l)(τ^ φ) C Ω(ix, α, 6). For any positive number p > 1, setting vp — vPl2

we obtain the following on the subset M(u, 1) :

(1.4) vP(AvP) + \dυη2 >v(Av) + \dυη > (ψλ u + | ^ | .

For a fixed positive number p > 1 with M(i6,p) φ φ, let λ be a smooth

function defined on real line such that λ(t) = 0 if t < 1, λ(t) > O,λf(t) >

O,λ"(t) > 0 if t > 1 and λ(t) = t if t > p > 1. Since the Riemannian

manifold (M,g) is complete, for any fixed point x G M and r > 0 there

exists a Lipschitz continuous function ωr with 0 < ωr < 1 on M such that

ωr = 1 on jBχ(r), supp u;r C jBx(2r) and |dα; r |
2 < c*/r2, where c* > 0 does

not depend on x and r. We apply Lemma 1.3 to ω = α;r+α and u = i;p.

Integrating the left hand side of Lemma 1.3 and using (1.4), we obtain for

any ε > 0 and Bx(2r,r) := Bx(2r) \ Bx{r) the following:

~l) fu*to+ah'(v?)\dvP\2 + δp f
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A VOLUME ESTIMATE FOR STRONG SUBHARMONICITY 29

< -4(p + α) f

<2ε fω2

r(p+ah
J

/
Bx(2r,r)

Taking ε = (p — l)/p we obtain the following:

J δ(p - l)r2 JB

/

Bχ(2r,r)

On the other hand since a > 1 and λ'(up) > 0 if and only if u > 1, we
obtain

/
Bx(2r,r)

X ( p + Q _ l ) / ( p + Q )

O
x l/(p+α)

ί /jτ-(p+«-i)y(up))

< / Kω^p+ah'(up)up+

Hence we obtain the following:

(1.5) ί Kω^p+ah'(up)up+a

for any p > 1 and r > VQ = ro(x^j) with J3x(r0) Π M(IΛ, 1) / (/>. If
i n f ^ ^ r ) -RΓ(y) > cσ/(2r)σ for any r > r 0 and cσ > 0 with σ G {0,1, 2},
then setting F(p,r) := J β / x λ'(wp) and taking p > max{2,Qί} we obtain
the following from (1.5) :
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for any r > ro

We first show (i). For σ = 0 , put CQ = 1 and set p(r) = <5r2/25c* >

max{2,α} with δ = βηa. We define F(r) := F(p(r),r). Then putting

σ = 0 in (1.6) , we have the following:

/iΛP(r)+α

(1.7) F(r) < (-J F(2r)

for any r > ro We fix r such that r > 2TQ. Since there exists fc > 1 such

that 2~(fc+1) < r o / r < 2~k, by putting r, = 2V0 and by (1.7) we obtain

for any r > r i . Therefore there exists r(x,j) > 0 such that

for any r > r(x, 7). Since 16 was replaced by u/j in the beginning and it may

be assumed that supj^ λ ;(ί) = 1, it holds that F(r) < Vo\(Bx(r) Π M(u, 7))

for any r ^> 0. Therefore we can obtain the desired estimate in (i) from

(1.8). To show (ii) (resp. (iii)) we have only to put x = x\ (resp. x = #2)5

σ = 1 (resp. σ = 2) in (1.6) and set p(r) = δcιr/26c* (resp. p(r) = δc2/27c*)

in (1.7). The desired estimate follows from the same argument as above

respectively. This completes the proof of Theorem 1.1.

§2. Maximum principle on a complete Riemannian manifold
satisfying a certain volume growth condition

Let u be a smooth function on a Riemannian manifold M. For given

constants a and /?, we set

Γ(u,a,β) := {x e M ] u(x) > 0 and Au(x) < βu(x)a+1 }.

First we show the following maximum principle:

THEOREM 2.1. Let (M,g) be a complete Riemannian manifold of

dimension m > 1. Suppose M admits a point x such that the following

volume growth condition holds

(*) liminf l θ g V * ( r ) < +oo.
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For a given smooth function u on M such that 0 < s u p ^ u < +00, and for

a > 0, β > 0, the following holds by setting u* = s u p ^ u :

(i) Γ(u,a,β) is non-empty. In particular, M admits no non-zero smooth

solution w > 0 (resp. υ > 0) satisfying Aw > βwa~^1 (resp. A log υ > βva)

on M (cf.[Os\).

(ii) If u* < +oo and σ > — 1, then Γ(u,σ,β) is non-empty. In par-

ticular, M admits no non-zero smooth solution v > 0 with s u p ^ v < -f-oo
satisfying Av > βvσJrl on M.

(iii) u(x) < u*(a,β) := snpyeΓ^uaβ^ u{y) for any x £ M. Especially

if u*(a, β) is finite for a certain pair (a,β), then u*(a,β) is independent

of a and β and hence u* = u*(a,β).

(iv) If u* < -f-oo and Γ(u) ~ {x G M u(x) > 0 and Au(x) < 0} is

non-empty, then u* = ^^-Py£Γ(u) u

Proof for the case a > 1. K M is compact, then the above assertions
are obvious. We may assume that M is non-compact. First remark that
the hypothesis (*) implies (i) by Theorem 1.1, (i). (ii) follows from Remark
1.2 and (i). To see (iii) if u*(a,β) = +oo, then the assertion is trivial. If
u*(a, β) is finite and there exists a point z € M with u*(a, β) < u(z), then
it is clear that M(u,u*(a, β)) is a non-empty subset of Ω(u, α,/?), which
contradicts to the assumed growth condition (*) by Theorem 1.1, (i). By
the same argument, we can see the latter half of (iii). (iv) follows from (iii)
immediately. •

PROPOSITION 2.2. Let (X^gx) be a complete Riemannian manifold of

dimension n > 1 and let f be a smooth function bounded from above on X.

For any ε > 0 take a point yε G X with sup^- / — ε2 < f(yε)- Then there

exists a point xε £ X such that (i) f(yε) < f(xε), (ii) dχ(xε,yε) < ε and

(iii) |grad f\(xε) < ε, where dx is the distance function relative to gx.

Proof. This was proved in [H] in the case X — R n . In this general

case the proof is essentially the same and therefore omitted. Q

Now we are in a position to show the following our main result.

THEOREM 2.3. Under the volume growth condition (*) of Theorem 2.1

let f be a smooth function bounded from above on M. Then for any given

point x G M and ε > 0 there exists a point xε G M depending on x such

that (i) f(x) < /(xε), (ii) |grad /|(xe) < ε and (iii) Af(xε) < ε.
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Proof. Since the assertion is trivial, if / attains /* := supMf,

we suppose that / does not attain /* on M. We put ε* := min{ε, /* —

f(x)}/{l + min{ε,/* - f(x)}) > 0. Set w := 1/(1 + / * - / ) > 0 and

Mp := M(wp, 1 — εl) for any positive integer p. Then clearly Mp C Mq

and dMp Π dMq = φ if p > q > 1. On the other hand Γp := Γ ^ , 1, ε*) is

non-empty by Theorem 2.1, (i). By the fact (p — l)Δiί;p > pwAwp~1 for

any p > 2 and 0 < to < 1 on M, we obtain Γp C /^ and dΓp Π 9/^ = </> if

p > q > 1. Setting JCp := I")? Π M p, Σ p is also non-empty and sup^ wp = 1

by Theorem 2.1, (iii). In particular Z*p C 27g and dΣpΠdΣq = φ if p > q > 1.

Suppose JCp converges to a non-empty subset ΣΌo C M containing a point

Xoo as p tends to infinity. Then w should attain 1 at XQQ. This is a con-

tradiction. Hence M \ Σp converges to the whole space M as p tends

to infinity. This implies that dM(x^^Σp) is unbounded for a fixed point

x* e M. Set Xp := s u p ^ ^ dM{y, dΣ\) for any p > 1. Then λp G (0, +oo]

and λp is non-decreasing in p. We claim that limp-̂ -j-oo λp — +oo. Oth-

erwise there exists a constant c > 0 with limp-^+oo λp < c < +oo. Then

we obtain dΣp C {y E M]dM{y-,dΣι) < c] for any p > 1. This implies

^ M ( ^ * J ^ P ) ^ ^ ( ^ 5 ^ 1 ) + c < +00, which is a contradiction. There-

fore there exists a large positive integer p* such that ε* < \p < -foo

for any integer p with p > p* For a fixed p > p*i there exists a point

y* G dΣ*p with dM{y* >dΣ\) > ε*. Clearly such a point admits a small

positive constant δ* such that i?z(ε*) C Σ\ if ^ G By^{6*) Π JCp. Now we

take a point ze G By^(δ*) Π i7p. By Proposition 2.2, there exists a point

%ε £ BZe(ε*) Π M p C 2?i such that |dtί;p |(xε) < ε*. If p is large enough,

then x ε is the desired point. This completes the proof of Theorem 2.3.

Using Theorem 2.3 we complete the proof of Theorem 2.1.

Proof of Theorem 2.1, (i) and (iii) for the case 0 < a < 1. To show (i)

suppose Γ(u, α, β) is empty. Let λ be a smooth function defined on the

real line such that' λ(ί) = 0 for t < 0, λ'(t) > 0, λ"(t) > 0 for t > 0

and λ(t) = t for t > c > 0. Taking c arbitrarily we may assume that

v := λ(^) satisfies Δv > /?vα+1 on {υ > 6} φ φ with δ := λ(c) > 0. Set

w \— —1/(1 + v)p with p = α/2 > 0 and ε* := min{sup^ w — w(δ), 1} > 0.

By Theorem 2.3 for any ε > 0 with 0 < ε < ε*, there exists a point

xε G M such that (1) supM it; - ε < w(xε), (2) |grad w\(xε) < ε, (3)

Aw(xε) < ε. Since Aw = pAv/(l + v)p+1- p(p + l)|grad v\2/(l + v)p+2
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and Av(xε) > βva^'1(xε)1 we get the following :

+ v(xε)

This implies v* := supMi> < +00 and so there exists C > 0 independent
of ε such that v(xε)

2p~^1 < Cε. Letting ε —> 0 we obtain υ* = 0, which
implies u = 0 on {ix > 0} φ φ. This is a contradiction. To show (iii)
suppose i6*(α,/3) is finite and there exists a point z £ M with i6*(α,/?) <
u(z). Then u satisfies that Δu > βua+1 on {u > u*(a,β)} φ φ. By the
similar argument as in the proof of (i) we can conclude u = u*(a,β) on
{u > u*(a, β)} φ φ, which is a contradiction. This completes the proof of
Theorem 2.1.

Remark 2.4. For a given smooth monotone increasing function h(r)
satisfying c\ = Ĵ  °° dr/rh(r) < +00, the example stated in the introduc-
tion is constructed as follows: Take a function f(r) such that (1) /(0) = 0,
f (0) = 1, /(r) > 0, /'(r) > 0, //;(r) > 0 if r > 0, and (2) /(r) =
C2(exp(r2/ι(r)))/ with C2 > 0 (is determined later) if r > 1. We de-
fine a complete metric g on ([0,+00) x 51,(r, 0)) by g — dr2 .+ f{r)2dθ2.
Since Δτx(r) = {f{r)ur(r))r/f(r), Au = 1 and supiέ < ci if n(r) :=
/or{(/o f{s)ds/f{t)}dt. Setting v(r) = the volume of S1 = 5 1 x {r} rela-
tive to ^, (log(/(r)/v(r)))r. = 0 for any r > 0 (cf. [G-W]). Put c2 =
f(r)/v(r) > 0. Since VQ(r) = fi υ(t)dt, setting Λ0(r) = (log Vb(r))/r2, it
can be easily verified that h(r)/2 < ho(τ) < 2h(r) for any r >̂ 0.

§3. Applications

The maximum principle is closely related to several problems in differ-
ential geometry and geometric function theory; i.e., Liouville type theorem
and Ahlfors-Schwarz type lemma for maps, minimal submanifolds in Rn,
conformal deformation of Riemann structure, etc. By replacing curvature
condition by volume growth condition to assure the maximum principle, a
few results related to those problems can be stated without proof. With
respect to the details of the proof and the related topics the reader should
see the references cited in the end of each statement.

THEOREM 3.1. Let (M,g) be a complete Riemannian manifold of di-
mension m > 1. Suppose (M,g) admits a point x\ (resp. X2) such that

n f < + o o l i m n f

-f-oo r \ r-++oo logr
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Then for a non-negative continuous function K\ (resp. K2) on M satisfying

Kι(x) > c*/d(xι,x), x e M \ BXl(r*) (resp. K2(x) > c*/d(x2,x)2, x .G

M \ BX2(r*)) for r* >> 0 and c* > 0 ; there exists no non-zero smooth

solution u > 0 satisfying Au > K\uσ (resp. Au > K2Uσ) on M if σ > 2.

In particular, there exists no non-zero smooth solution u > 0 with s\ipM u <

+00 satisfying Au > K\uσ (resp. Au > K2Uσ) on M if σ > 0. Furthermore

there exists no non-zero smooth solution v > 0 satisfying Δlogf > K\v

(resp. Δlogi; > K2v) on M (cf. [C-L], Theorems 2.1 and 5.1, [L], [N], §3,

[R-R-S], Theorems 3.1, 4.1 and 4.2, and [Y-2], Theorems 1 and 5).

Remark 3.2. In Theorem 3.1 if m > 3, then the non-negativity con-

dition of l^i (resp. K2) can be weakened in the following way: Under the

hypothesis of Theorem 3.1 there exists a constant ε > 0 such that there is no

positive smooth solution satisfying Au > K\uσ (resp. Au > K2Uσ) provided

that σ > 2 and K\ > —ε (resp. K2 > —ε) on M (cf. § 1, Theorem 1.1 and

[R-R-S], Proposition 3.5).

THEOREM 3.3. Under the volume growth condition (*) of Theorem 2.1

the following holds :

(i) Suppose h : (M, g) —> (iV, g^) is an isometric immersion into an

Hadamard manifold (iV, <7N) of dimension n > m such that the mean curva-

ture H of h satisfies H* ~ s u p M \H\ < +00, and h(M) C By^(R), y* G iV.

ΓAen R > ^ (cf. [Kr], Theorem 3.1).

(ii) Suppose f : M —> R n is α smooth map whose energy density e(f)

satisfies e(f) > c > 0 on M, and there exists a unit vector ξ at the origin of

R n such that (ξ, f(x)/\\f(x)\\) > δ > 0 for any x G M; i.e., /(Λf) /ie5 msicίe

0/ α non-degenerate cone o/R n . Ϊ7&en ί/iere e:ris£s α pomί y G M such that

the tension field τ(f)(of f does not vanish at y (cf [B-K], Theorem 3 and

[Om], Theorem B).

COROLLARY 3.4. Under the volume growth condition (*) 0/ Theorem

2.1, M can noί 6e isometrically immersed as a minimal submanifold into a

bounded set of a Riemannian manifold admitting a smooth strictly convex

function. In particular, if f : M —» R71 is a minimal isometric immersion,

then f(M) does not lie inside of any non-degenerate cone o / R n (cf. [Ks],

Proposition 2 and Remarks).

THEOREM 3.5. Let (N,gw) be a Riemannian manifold with sectional

curvature bounded above by a constant K and let Bn(y^) be inside the cut
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A VOLUME ESTIMATE FOR STRONG SUBHARMONICITY 35

locus ofy*ζN (i? < τv/2yK if K > 0). Under the volume growth condition

(*) of Theorem 2.1 suppose h : M —> N is a smooth map with \τ(h)\ <

τ*5 T* G [0,-foo), and h(M) C BR(V.*). Then setting e* :— inf^ e(/ι) /or

Λe energy density e(h) of h, the following holds (cf. [C-X], Theorem 3.1

and [R-R], Theorem 2.17) :

(i) R>y/Kta.n-1(2VKe*/τ*) wften K > 0

(ii) i? > 2e*/τ* wften if = 0

(iii) R > v /-ίίtanh~ 1(2 λ/-jFίe J t c/r*) wΛen ΛΓ < 0

COROLLARY 3.6. Under the volume growth condition (*) o/ Theorem

2.1, suppose M is a submanifold in Έtn with parallel mean curvature and

the image of M of the Gauss map Q : M —> G m n _ m /ies in £/ιe geodesic ball

Bκ(y*) C G m ? n _ m , R<π/2y/K andy+eGm^-rή, (K = lifGm,n-m

is the sphere, otherwise K = 2), tΛen M should be minimal {cf. [C-X],

Theorem 3.3, [H-J-K], §4, Theorems 5 and 7, and [R-R], Corollary 2.24).

THEOREM 3.7. Lei (M, LJM) be a complete Hermitian manifold of

dimension m whose scalar curvature bounded from below by — K\ and let N

be a complex manifold of the same dimension with a volume form Vjγ whose

Ricci form is negative definite and satisfies Λm(\/—T/2)991og VN > K.2Vjq.

Suppose (MJLJM) satisfies the volume growth condition (*) of Theorem 2.1

and f : M -^ N is a holomorphic map whose Jacobian does not vanish at

some point. Then K\ > 0 and sup /*V/V/VM ^ Kψ/m™'K2, where

is the volume form relative to COM (cf- [M-Y], §1, [Ry], [Y-3]).
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