CURVATURE, GEODESICS AND THE BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD II

EXPLOSION PROPERTIES

KANJI ICHIHARA

§1. Introduction

Let M be an n-dimensional, complete, connected and non compact Riemannian manifold and g be its metric. Δ_{M} denotes the Laplacian on M.

The Brownian motion on the Riemannian manifold M is defined to be the unique minimal diffusion process ($X_{t}, \zeta, P_{x}, x \in M$) associated with the Laplacian Δ_{n} where $\zeta(\omega)$ is the explosion time of $X_{t}(\omega)$ i.e. if $\zeta(\omega)<$ $+\infty$, then $\lim _{t \rightarrow \zeta(\omega)} X_{t}(\omega)=\infty$.

In the previous paper [3], the author has discussed recurrence and transience of the Brownian motion X on M. This paper may be considered to be a continuation, in which the relation between explosions of the Brownian motion X and geodesics, curvature of the Riemannian manifold M will be investigated. It should be remarked that Yau [7] has given a sufficient condition for no explosion of the Brownian motion in terms of the Ricci curvature.

Let us begin with the Brownian motion $X^{0}=\left(X_{t}^{0}, \zeta^{0}, P_{x}^{0}, x \in M_{0}\right)$ on a model (M_{0}, g_{0}) where the model (M_{0}, g_{0}) is defined to be a Riemannian manifold $R^{n}=[0,+\infty) \times S^{n-1}$ given a metric $d r^{2}+g_{0}(r)^{2} d \theta^{2},(r, \theta) \in(0,+\infty) \times$ S^{n-1}. See Ichihara [3] for the precise definition. Then by the same reasoning as in Ichihara [3] Section 1, we obtain from Fellers tests for explosions, Mckean [5],

Proposition 1.1. It holds whether
or

$$
P_{x}^{0}\left\{\zeta^{0}=+\infty\right\}=1 \quad \text { on } M
$$

according as
Received July 23, 1980.

$$
\int^{+\infty} g_{0}(r)^{-n+1} d r \int^{r} g_{0}(s)^{n-1} d s=+\infty \quad \text { or } \quad<+\infty
$$

§ 2. Tests for explosions of the Brownian motion on a Riemannian manifold M

Let normal, minimal geodesics be defined as in Ichihara [3]. Ric ${ }_{m}$ and K_{M} denote the Ricci, and sectional curvatures respectively. $K_{0}(r)$, $r \geqq 0$ is the radial sectional curvature of a model $\left(M_{0}, g_{0}\right)$ defined in Ichihara [3].

Our main theorems are stated as follows.
Theorem 2.1. If for some $p \in M$ there exists a model (M_{0}, g_{0}) satisfying the following two conditions (i) and (ii), then no explosion for the Brownian motion X is possible. i.e.

$$
P_{x}\{\zeta=+\infty\}=1 \quad \text { on } M
$$

(i) For every minimal geodesic $m(r):[0, \ell(m)) \rightarrow M, m(0)=p$,

$$
\operatorname{Ric}_{M}(\dot{m}(r)) \geqq(n-1) K_{0}(r) \quad \text { on }[0, \ell(m))
$$

(ii) $\int^{+\infty} g_{0}(r)^{-n+1} d r \int^{r} g_{0}(s)^{n-1} d s=+\infty$.

Theorem 2.2. Let M be simply connected. If for some $p \in M$ there exists a model (M_{0}, g_{0}) satisfying the following two conditions (i) and (ii), then explosion for the Brownian motion X is sure. i.e.

$$
P_{x}\{\zeta<+\infty\}=1 \quad \text { on } M
$$

(i) For every normal geodesic $m(r):[0,+\infty) \rightarrow M, m(0)=p$,

$$
K_{M}(\dot{m}(r), X) \leqq K_{0}(r) \text { for every unit vector } X \in N(\dot{m}(r)) \text { on }[0,+\infty)
$$

(ii) $\int^{+\infty} g_{0}(r)^{-n+1} d r \int^{r} g_{0}(s)^{n-1} d s<+\infty$.

In order to prove the above theorems, we shall introduce the following notations.

$$
\begin{aligned}
& \sigma_{\rho}(\omega)=\inf \left\{t>0 \mid d\left(p, X_{t}(\omega)\right) \geqq \rho\right\}, \quad \rho>0 \\
& u_{\rho}(x)=E_{x}\left\{e^{-\sigma_{\rho}}\right\}, \quad \Sigma_{\rho}=\{x \in M \mid d(p, x)<\rho\}
\end{aligned}
$$

where $d(x, y)$ is the distance induced by the Riemannian metric. $\sigma_{\rho}^{0}, u_{\rho}^{0}$ and Σ_{ρ}^{0} denote the corresponding ones of the Brownian motion on a model
(M_{0}, g_{0}) centered at $p=$ the origin 0 .
The following proposition will be proved in a similar way to that of Ichihara [2].

Proposition 2.1. For each $\rho \in(0,+\infty), u_{\rho} \in C^{\infty}\left(\Sigma_{\rho}\right)$ and $\Delta_{M} u_{\rho}-u_{\rho}=0$ in Σ_{ρ}. Furthermore in case of a model (M_{0}, g_{0})

$$
\lim _{\substack{y \rightarrow x^{0} \\ y \in \Sigma_{\rho}^{0}}} u_{\rho}^{0}(y)=1
$$

for each $x \in \partial\left(\Sigma_{\rho}^{0}\right)$, the boundary of Σ_{ρ}^{0}.
Proof of Theorem 2.1. Since M_{0} is rotationally symmetric about 0 , $u_{\rho}^{0}(x)$ is a radial function. i.e.

$$
u_{\rho}^{0}(x)=u_{\rho}^{0}(r) \quad \text { for } x=(r, \theta) \in M_{0}
$$

Thus $u_{\rho}^{0} \in C^{\infty}([0, \rho))$ satisfies

$$
\frac{d^{2} u_{\rho}^{0}(r)}{d r^{2}}+\frac{(n-1)}{g_{0}(r)} \frac{d g_{0}(r)}{d r} \frac{d u_{\rho}^{0}(r)}{d r}=u_{\rho}^{0}(r)
$$

on $(0, \rho)$. Note that $u_{\rho}^{0}(r)$ is, by definition, an increasing function of r. Set $\tilde{u}_{\rho}(x)=u_{\rho}^{0}(d(p, x))$. Therefore following an argument similar to Yau [6], Appendix, we can obtain under the assumption (i) that

$$
\Delta_{M} \tilde{u}_{\rho}(x) \leqq \Delta_{M_{0}} u_{\rho}^{0}(r)
$$

for $r=d(p, x)<\rho$, in the distribution sense. Consequently

$$
\Delta_{M} \tilde{u}_{\rho}-\tilde{u}_{\rho} \leqq \Delta_{M_{0}} u_{\rho}^{0}-u_{\rho}^{0}=0 \quad \text { in } \Sigma_{\rho} .
$$

Set

$$
\Phi_{\rho}(x)=u_{\rho}(x)-\tilde{u}_{\rho}(x),
$$

then it holds that

$$
\Delta_{M} \Phi_{\rho}-\Phi_{\rho}=\left(\Delta_{M} u_{\rho}-u_{\rho}\right)-\left(\Delta_{M} \tilde{u}_{\rho}-\tilde{u}_{\rho}\right) \geqq 0 .
$$

i.e.

$$
\Delta_{M} \Phi_{\rho} \geqq \Phi_{\rho} \quad \text { in } \Sigma_{\rho}
$$

in the distribution sense.
We shall show that for each $\rho>0$

$$
\Phi_{\rho}(x) \leqq 0 \quad \text { in } \Sigma_{\rho} .
$$

Suppose on the contrary that with some $\rho_{0}>0$

$$
\sup _{x \in \Sigma_{\rho_{0}}} \Phi_{\rho_{0}}(x)>0
$$

Since (*) $\Phi_{\rho_{0}}$ is continuous in $\Sigma_{\rho_{0}}$ and

$$
\begin{equation*}
\varlimsup_{\substack{y \rightarrow x \\ y \in \Sigma_{\rho_{0}}}} \Phi_{\rho_{0}}(y) \leqq 0 \text { for each } x \in \partial \Sigma_{\rho_{0}} \tag{**}
\end{equation*}
$$

from Proposition 2.1, there exists a point $x_{0} \in \Sigma_{\rho_{0}}$ such that

$$
\Phi_{\rho_{0}}\left(x_{0}\right)=\sup _{x \in \Sigma_{\rho_{0}}} \Phi_{\rho_{0}}(x)>0 .
$$

Set

$$
C=\left\{x \in \Sigma_{\rho_{0}} \mid \Phi_{\rho_{0}}(x)>0\right\} .
$$

Denote by $C_{x_{0}}$ the connected component containing the point x_{0} of the set C. Then from the facts ($*$) and ($* *$),

$$
\varlimsup_{\substack{y \rightarrow x \\ y \in C_{x_{0}}}} \Phi_{\rho_{0}}(y) \leqq 0 \quad \text { for each } x \in \partial C_{x_{0}}
$$

Since $\Phi_{\rho_{0}}$ is weakly Δ_{M}-subharmonic in $C_{x_{0}}$, applying the strong maximum principle in Littman [4] we obtain

$$
\Phi_{\rho_{0}}(x)=\Phi_{\rho_{0}}\left(x_{0}\right) \quad \text { for each } x \in C_{x_{0}}
$$

which is a contradiction. Thus we have shown that for each $\rho>0$,

$$
\Phi_{\rho}(x) \leqq 0 \quad \text { in } \Sigma_{\rho}
$$

i.e.

$$
u_{\rho}(x) \leqq \tilde{u}_{\rho}(x) \quad \text { for every } x \in \Sigma_{\rho}
$$

Under the assumption (ii) in Theorem 2.1, the Brownian motion X^{0} on the model $\left(M_{0}, g_{0}\right)$ is conservative. (See Proposition 1.1.)
i.e.

$$
P_{x}^{0}\left\{\zeta^{0}=+\infty\right\}=1 \quad \text { on } M_{0}
$$

Moreover

$$
u_{\rho}^{0}(r)=u_{\rho}^{0}(x)=E_{x}^{0}\left\{e^{-\sigma_{\rho}^{0}}\right\}
$$

converges to

$$
E_{x}^{0}\left\{e^{-\sigma^{0}}\right\}
$$

for each $x=(r, \theta) \in M_{0}$ because $\sigma_{\rho}^{0} \rightarrow \zeta^{0}$ as $\rho \rightarrow+\infty$. Thus we see that

$$
\lim _{\rho \rightarrow+\infty} u_{\rho}^{0}(r)=0 \quad \text { for every } r \geqq 0
$$

Hence it follows from the inequality proved above that

$$
\lim _{\rho \rightarrow+\infty} u_{\rho}(x)=0 \quad \text { for every } x \in M
$$

Since $\sigma_{\rho} \rightarrow \zeta$ as $\rho \rightarrow+\infty$, we see that

$$
0=\lim _{\rho \rightarrow+\infty} u_{\rho}(x)=E_{x}\left\{e^{-\zeta}\right\} \quad \text { for every } x \in M
$$

Thus we can conclude

$$
P_{x}\{\zeta=+\infty\}=1
$$

on M. q.e.d.

Proof of Theorem 2.2. We first note that under the assumptions $\exp _{p}$ maps $T_{p}(M)$ diffeomorphically onto M as shown in Ichihara [3]. Thus we have geodesic polar coordinates $(r, \theta) \in(0,+\infty) \times S^{n-1}$ centered at p.

Now define $v=v(r), r \geqq 1$ to be the positive increasing solution:
of

$$
\begin{gathered}
v=\sum_{m=0}^{\infty} v_{m} \quad v_{0}=1 \\
v_{m}(r)=\int_{1}^{r} g_{0}(s)^{-n+1} d s \int_{0}^{s} g_{0}(t)^{n-1} v_{m-1}(t) d t, \\
\frac{1}{g_{0}(r)^{n-1}} \frac{d}{d r}\left(g_{0}(r)^{n-1} \frac{d v(r)}{d r}\right)=v(r), \quad r \geqq 1
\end{gathered}
$$

Then it can be easily seen that

$$
v(r) \leqq \exp \left\{v_{1}(r)\right\}
$$

for every $r \geqq 1$ and so $v(r)$ is bounded above from the assumption (ii) of Theorem 2.2.

Set $\tilde{v}(x)=v(d(p, x))$. Then with the geodesic polar coordinates (r, θ) and $G(r, \theta)=\sqrt{\operatorname{det}\left(g_{i j}\right)}(r, \theta)$ where $g=g_{i j} d x_{i} d x_{j}$, we have

$$
\Delta_{M} \tilde{v}(x)=\frac{d^{2} v(r)}{d r^{2}}+\left.\frac{1}{G(r, \theta)} \frac{\partial G(r, \theta)}{\partial r} \frac{d v(r)}{d r}\right|_{r=d(p, x)} .
$$

By virtue of Hessian comparison theorem, Greene and Wu [1]

$$
\geqq \frac{d^{2} v(r)}{d r^{2}}+\left.\frac{(n-1)}{g_{0}(r)} \frac{d g_{0}(r)}{d r} \frac{d v(r)}{d r}\right|_{r=d(p, x)}=v(d(p, x))=\tilde{v}(x) .
$$

Now applying Itô's formula to the function $e^{-t} \tilde{v}(x)$, we obtain from the above inequality that

$$
v(\rho) E_{x}\left\{e^{-\sigma_{\rho}}, \rho_{\rho} \leqq \tau_{1}\right\}+E_{x}\left\{e^{-\tau_{1}}, \sigma_{\rho}>\tau_{1}\right\} \geqq \tilde{v}(x)
$$

for each $x \in \Sigma_{\rho}-\Sigma_{1}$ where $\tau_{1}(\omega)=\inf \left\{t>0 \mid d\left(p, X_{t}(\omega)\right) \leqq 1\right\}$. Letting $\rho \rightarrow$ $+\infty$, we have

$$
v(\infty) E_{x}\left\{e^{-\zeta}, \zeta<\tau_{1}\right\}+E_{x}\left\{e^{-\tau_{1}}, \zeta>\tau_{1}\right\} \geqq \tilde{v}(x) .
$$

because $\sigma_{\rho} \rightarrow \zeta$ as $\rho \rightarrow+\infty$.
We shall show
(*) $\quad E_{x}\left\{e^{-\tau_{1}}, \tau_{1}<\zeta\right\} \leqq P_{x}\left\{\tau_{1}<\zeta\right\} \longrightarrow 0 \quad$ as $d(p, x) \rightarrow+\infty$.
Set

$$
\psi_{\rho}(r)=\frac{\int_{r}^{\rho} g_{0}(s)^{-n+1} d s}{\int_{1}^{\rho} g_{0}(s)^{-n+1} d s}, \quad \Psi_{\rho}(x)=\psi_{\rho}(d(p, x))
$$

and

$$
\phi_{\rho}(x)=P_{x}\left\{\tau_{1}<\sigma_{\rho}\right\} \quad \text { for each } \rho>1 .
$$

Then it is easy to see that

$$
\begin{aligned}
& \Delta_{M} \phi_{\rho}=0 \quad \text { in } \Sigma_{\rho}-\bar{\Sigma}_{1} \\
& \phi_{\rho}(x)= \begin{cases}1 & \text { if } d(p, x)=1 \\
0 & \text { if } d(p, x)=\rho\end{cases}
\end{aligned}
$$

and

$$
\Psi_{\rho}(x)= \begin{cases}1 & \text { if } d(p, x)=1 \\ 0 & \text { if } d(p, x)=\rho\end{cases}
$$

Furthermore Hessian comparison theorem [1] gives that

$$
\Delta_{M} \Psi_{\rho} \leqq 0 \quad \text { in } \Sigma_{\rho}-\bar{\Sigma}_{1} .
$$

Consequently we can deduce by virtue of the maximum principle,
i.e.

$$
\phi_{\rho}(x) \leqq \Psi_{\rho}(x) \quad x \in \Sigma_{\rho}-\bar{\Sigma}_{1}
$$

Since $\sigma_{\rho} \rightarrow \zeta$ as $\rho \rightarrow+\infty$, we get

$$
P_{x}\left\{\tau_{1}<\zeta\right\} \leqq \frac{\int_{d(p, x)}^{\infty} g_{0}(r)^{-n+1} d r}{\int_{1}^{\infty} g_{0}(r)^{-n+1} d r} \quad \text { for } d(p, x)>1
$$

which gives the desired result (*). Thus we obtain from (*)

$$
\varliminf_{x \rightarrow \infty} E_{x}\left\{e^{-\zeta}, \zeta<\tau_{1}\right\} \geqq 1
$$

and so

$$
\varliminf_{x \rightarrow \infty} P_{x}\{\zeta<\infty\} \geqq \underline{\lim }_{x \rightarrow \infty} E_{x}\left\{e^{-\zeta}\right\} \geqq 1 .
$$

By the strong Markov property

$$
P_{x}\{\zeta<+\infty\}=E_{x}\left\{P_{X_{\sigma} \rho}\{\zeta<\infty\}\right\}
$$

for every $\rho>d(p, x)$ and hence

$$
=\lim _{\rho \rightarrow+\infty} E_{x}\left\{P_{X_{o \rho}}\{\zeta<+\infty\}\right\} \geqq E_{x}\left\{\lim _{\rho \rightarrow+\infty} P_{X_{o \rho}}\{\zeta<+\infty\}\right\} \geqq 1 .
$$

This completes the proof.
q.e.d.

§ 3. Some examples

In [7], Yau has shown that no explosion for the Brownian motion is possible if the Ricci curvature of M is bounded from below by a constant. We shall extend this result as follows.

1. If for a fixed $p \in M$ and every minimal geodesic $m(r):[0, \ell(m)) \rightarrow$ $M, m(0)=p$,

$$
\operatorname{Ric}_{M}(\dot{m}(r)) \geqq-C_{1} r^{2}-C_{?} \quad \text { on }[0, \ell(m))
$$

with positive constants $C_{i} i=1,2$, then no explosion for the Brownian motion X is possible.

Proof. In order to prove this, it is enough to show the existence of a model (M_{0}, g_{0}) which satisfies the conditions (i) and (ii) in Theorem 2.1.

Set $K_{0}(r)=-C_{1} r^{2}-C_{2}, r \in[0,+\infty)$ and let $g_{0}(r) \in C([0,+\infty))$ be the unique solution of the following Jacobi equation.

$$
\frac{d^{2} g_{0}(r)}{d r^{2}}=-K_{0}(r) g_{0}(r) \quad g_{0}(0)=0, \quad \frac{d g_{0}}{d r}(0)=1
$$

Then the Sturm comparison theorem asserts that $g_{0}(r)>r$ for every $r>0$.

Thus we have obtained a model $\left(M_{0}, g_{0}\right)$ satisfying (i) in Theorem 2.1.
It remains to verify the condition (ii). In order to do it, we shall introduce the function

$$
g_{1}(r)=\exp \left\{k r^{2}\right\}
$$

with a positive constant k. Define

$$
K_{1}(r)=-\frac{1}{g_{1}(r)} \frac{d^{2} g_{1}(r)}{d r^{2}}=-4 k^{2} r^{2}-2 k
$$

For a fixed positive number r_{0}, it is easily seen that with a sufficiently large k
(*)

$$
K_{1}(r) \leqq K_{0}(r) \quad \text { for every } r \geqq r_{0}
$$

and

$$
\begin{equation*}
\frac{1}{g_{1}\left(r_{0}\right)} \frac{d g_{1}}{d r}\left(r_{0}\right) \geqq \frac{1}{g_{0}\left(r_{0}\right)} \frac{d g_{0}}{d r}\left(r_{0}\right) \tag{**}
\end{equation*}
$$

From the equations $\left(d^{2} g_{i}(r) / d r^{2}\right)=-K_{i}(r) g_{i}(r), i=0$, 1 , we have, for every $r \geqq r_{0}$,

$$
\begin{aligned}
0 & =g_{1}(r) \frac{d^{2} g_{0}(r)}{d r^{2}}-\frac{d^{2} g_{1}(r)}{d r^{2}} g_{0}(r)+\left(K_{0}(r)-K_{1}(r)\right) g_{1}(r) g_{0}(r) \\
& =\frac{d}{d r}\left(g_{1}(r) \frac{d g_{0}(r)}{d r}\right)-\frac{d}{d r}\left(g_{0}(r) \frac{d g_{1}(r)}{d r}\right)+\left(K_{0}(r)-K_{1}(r)\right) g_{1}(r) g_{0}(r)
\end{aligned}
$$

Hence we see from (*)

$$
\left[g_{1}(s) \frac{d g_{0}(s)}{d s}-g_{0}(s) \frac{d g_{1}(s)}{d s}\right]_{r_{0}}^{r}=\int_{r_{0}}^{r}\left(K_{1}(s)-K_{0}(s)\right) g_{0}(s) g_{1}(s) d s \leqq 0
$$

Therefore it follows from (**) that
i.e.

$$
g_{1}(r) \frac{d g_{0}(r)}{d r}-g_{0}(r) \frac{d g_{1}(r)}{d r} \leqq 0
$$

$$
\frac{1}{g_{1}(r)} \frac{d g_{1}(r)}{d r} \geqq \frac{1}{g_{0}(r)} \frac{d g_{0}(r)}{d r}
$$

for every $r \geqq r_{0}$.
Set

$$
G_{i}(r)=\int_{r_{0}}^{r} g_{i}(u)^{-n+1} d u \int_{r_{0}}^{u} g_{i}(v)^{n-1} d v \quad i=0,1
$$

Then these functions satisfy
where

$$
\left\{\begin{array}{l}
\frac{d^{2} G_{i}(r)}{d r^{2}}+B_{i}(r) \frac{d G_{i}(r)}{d r}=1 \quad \text { on }\left[r_{0},+\infty\right) \\
G_{i}\left(r_{0}\right)=\frac{d G_{i}}{d r}\left(r_{0}\right)=0
\end{array}\right.
$$

$$
B_{i}(r)=\frac{1}{g_{i}(r)} \frac{d g_{i}(r)}{d r}
$$

Since $B_{1}(r) \geqq B_{0}(r)$ on $\left[r_{0},+\infty\right)$ and G_{1} is an increasing function, we have

$$
1=\frac{d^{2} G_{1}(r)}{d r}+B_{1}(r) \frac{d G_{1}(r)}{d r} \geqq \frac{d^{2} G_{1}(r)}{d r^{2}}+B_{0}(r) \frac{d G_{1}(r)}{d r}
$$

Solving this differential inequality, we can easily see that

$$
G_{0}(r) \geqq G_{1}(r)
$$

for every $r \geqq r_{0}$.
Thus in order to verify the condition (ii), it suffices to show

$$
G_{1}(+\infty)=+\infty
$$

We now compute

$$
\begin{aligned}
G_{1}(+\infty) & =\int_{r_{0}}^{+\infty} d r \int_{r_{0}}^{r} \exp \left\{-(n-1) k r^{2}+(n-1) k t^{2}\right\} d t \\
& =\int_{r_{0}}^{+\infty} d r \int_{r}^{+\infty} \exp \left\{(n-1) k r^{2}\right\} \cdot \exp \left\{-(n-1) k t^{2}\right\} d t
\end{aligned}
$$

Using the following inequality

$$
\begin{aligned}
& \int_{r}^{+\infty} \exp \left\{-(n-1) k t^{2}\right\} d t \\
& \quad \geqq \frac{1}{\sqrt{(n-1) k}}\left(\sqrt{(n-1) k} r+\frac{1}{\sqrt{(n-1) k} r}\right)^{-1} \exp \left\{-(n-1) k r^{2}\right\}
\end{aligned}
$$

we have

$$
\geqq \int_{r_{0}}^{+\infty}((n-1) k r+1)^{-1} d r=+\infty
$$

This completes the proof. q.e.d.

The next example will be shown in a way similar to the proof of Example 1.
2. Suppose M is simply connected and negatively curved. If for a fixed $p \in M$ and every normal geodesic $m(r):[0,+\infty) \rightarrow M, m(0)=p$

$$
K_{M}(\dot{m}(r), \cdot) \leqq-C_{1} r^{2+\delta} \quad \text { for every } r \geqq C_{2}
$$

with positive constants $C_{i}, i=1,2$ and δ, then explosion for the Brownian motion X on M is sure.
3. Let S_{n} be an embeded hypersurface in R^{n+1} defined by

$$
x_{n+1}=f\left(x_{1}, \cdots, x_{n}\right) .
$$

Suppose f is a radial function, then the Brownian motion X on S_{n} is conservative
i.e.

$$
P_{x}\{\zeta=+\infty\}=1 \quad \text { on } S_{n}
$$

Proof. Since f is a radial function, using polar coordinates (r, θ) of R^{n}, we have

$$
\begin{aligned}
d x_{1}^{2}+\cdots+d x_{n}^{2}+d x_{n+1}^{2} & =d r^{2}+r^{2} d \theta^{2}+f_{r}^{2} d r^{2} \\
& =\left(1+f_{r}^{2}\right) d r^{2}+r^{2} d \theta^{2}
\end{aligned}
$$

As in Example 4 [3], we can obtain the geodesic polar coordinates (s, θ) with

$$
d x_{1}^{2}+\cdots+d x_{n}^{2}+d x_{n+1}^{2}=d s^{2}+g_{0}(s)^{2} d \theta^{2}
$$

where

$$
\begin{aligned}
& p(r)=\int_{0}^{r} \sqrt{1+f_{u}^{2}} d u, \quad r \geqq 0 \\
& s=p(r)
\end{aligned}
$$

and $g_{0}(r)$ is the inverse function of p. i.e. $s=p\left(g_{0}(s)\right)$.
Notice that

$$
B_{0}(s)=\frac{1}{g_{0}(s)} \frac{d g_{0}(s)}{d s}=\frac{1}{r} \frac{1}{\sqrt{1+f_{r}^{2}}}
$$

is convergent to zero as $s \rightarrow+\infty$. Set $g_{1}(s)=e^{s}$, then we have

$$
B_{1}(s)=\frac{1}{g_{1}(s)} \frac{d g_{1}(s)}{d s}=1
$$

Consequently it holds that for some $r_{0}>0$,

$$
B_{1}(s) \geqq B_{0}(s) \quad \text { on }\left[r_{0},+\infty\right) .
$$

Now applying the comparison argument in page 123 we get that $(* * *) \quad \int_{r_{0}}^{r} g_{0}(u)^{-n+1} d u \int_{r_{0}}^{u} g_{0}(v)^{n-1} d v \leqq \int_{r_{0}}^{r} g_{1}(u)^{-n+1} d u \int_{r_{0}}^{u} g_{1}(v)^{n-1} d v$.

It is easy to see that the right hand of the above inequality (***) is divergent to $+\infty$ when r tends to $+\infty$. Thus we have

$$
\int_{r_{0}}^{+\infty} g_{0}(r)^{-n+1} d r \int_{r_{0}}^{r} g_{0}(s)^{n-1} d s=+\infty
$$

which implies $P_{x}\{\zeta=+\infty\}=1$ on S_{n}.

References

[1] R. E. Greene and H. Wu, Function theory on manifolds which posses a pole, Lecture notes, Springer, no. 699.
[2] K. Ichihara, Some global properties of symmetric diffusion processes, Publ. R.I.M.S., Kyoto Univ., 14, no. 2, (1978), 441-486.
[3] - Curvature, Geodesics and the Brownian motion on a Riemannian manifold I, Nagoya Math. J., 87 (1982), 101-114.
[4] W. Littman, A. strong maximum principle for weakly L-subharmonic functions, J. Math. and Mech., 8, no. 5, (1959), 761-770.
[5] H. P. Mckean, Stochastic integrals, Academic press (1969).
[6] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their application to geometry, Indiana Univ. Math. J., 25, no. 7, (1976), 659-670.
[7] -, On the heat kernel of a complete Riemannian manifold, J. Math. pures et appl., 57 (1978), 191-201.

Department of Applied Science
Faculty of Engineering
Kyushu University
Fukuoka, Japan
Current address:
Department of Mathematics
Faculty of General Education
Nagoya University
Nagoya, Japan

