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1. Introduction

A variety of groups is an equationally defined class of groups: equiv-
alently, it is a class of groups closed under the operations of taking cartesian
products, subgroups, and quotient groups. If U and 33 are varieties, then
1193 is the class of all groups G with a normal subgroup N in 11 such that
G/N is in 33; 1133 is a variety, called the product of 11 and 93. We denote by
(£ the variety generated by the unit group, and by £) the variety of all
groups. We say that a variety 93 is indecomposable if 93 ̂  (S, 33 ̂  £>, and
93 cannot be written as a product 36?), with both •£ ̂  @ and S) ^ @. One of
the basic results in the theory of varieties of groups is that the set of varieties,
excluding £), and with multiplication of varieties as above, is a free semi-
group, freely generated by the indecomposable varieties. Thus one would
like to be able to decide whether a given variety is indecomposable or not.
In connection with this question, Hanna Neumann raises the following
problem (as part of Problem 7 in her book [7]):

PROBLEM 1. If 11 sg 33, and 93 =g II, prove that [U, 33] is indecomposable
unless both 11 and 93 have a common non-trivial right hand factor.

(If G is an arbitrary group, and II any variety, denote by U(G) the
intersection of all normal subgroups of G whose quotient group is in II:
clearly G/U(G) e 11, and U(G) is the smallest normal subgroup of G with this
property. Then [11, 93] is the variety of all groups G for which U(G) and
V(G) centralize each other.)

In this paper, we solve Problem 1 for a class of varieties which includes
many of the well known varieties. To state our theorem, we need some
notation. Following Philip Hall, we denote by ZF the class of all finite
groups, and by JV the class of all nilpotent groups: then ^FJV denotes the
class of all groups which have a finite normal subgroup whose quotient
group is nilpotent. The main result of this paper is then

THEOREM 1. Suppose that 11 and 93 are varieties each of which can be

1 The author is a Fulbright-Hays scholar.
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generated by a group in JF^V. Then if 11 ^ 23, [II, 23] is indecomposable
unless both 11 and 23 have a common non-trivial right hand factor.

Theorem 1 has a couple of special cases that are worth noting. Firstly,
if both It and 23 are nilpotent, then they are indecomposable ([7] Theorem
24.34), and hence we have

COROLLARY 1. / / both 11 and 23 are nilpotent, and 11 ^ 23, then [U, 23]
is indecomposable.

Another special case, which is a partial result on the way to Theorem 1,
is

THEOREM 2. / / either 11 or 23 cannot be generated by a finite group {but
each can be generated by a group in ^^V), then [U, 23] is indecomposable.

2. Notation and preliminaries

The main tool used in the proof of Theorem 1 is the (standard) wreath
product of groups, and we will assume familiarity with the construction
and basic properties of this wreath product: for a detailed description,
see [7] Section 2.2. We will also adopt the notation used there.

Other notation is in general standard. We denote the fact that H is a
subgroup of G by H f^. G: if H is a proper subgroup, by H < G. When H
is normal in G, we put H^G. As usual, [x, y] = x~xy~^xy: if H fg G,
K^G, then [H, K] is the subgroup of G generated by all [h, k],heH,ke K.
If S is a subset of G, the centraliser of S in G is denoted by CG(S). If 5 is a
subset of G, the subgroup of G generated by S is denoted by <S>: if
S = {x1, • • •, xn}, <S> = (xlt • • •, xn~). The centre of a group G is denoted
by C(G).

If It, 23 are varieties, then U ^ 23 means that U is a subvariety of
23 : It < 23 means that It is a proper subvariety of 23. The union U u 23 of
two varieties is the variety generated by the union of the classes 11 and 23:
the intersection It n 23 is just the class of all groups G such that GeU and
G e 23. If © is a class of groups, then var (£ denotes the variety generated by
(5: if 6 consists of a single group G, var G = var ©. If G is finite, we call
var G a Cross variety. If 11 is locally finite, there is a smallest integer e
such that the exponent of any group in 11 divides e: we call e the exponent
of U. 5lM will denote the variety of all abelian groups of exponent dividing
n: 21 denotes the variety of all abelian groups. If p is a prime, OP denotes
the variety of all groups which are central extensions of elementary abelian
^•-groups by elementary abelian ^-groups and are of exponent dividing p2.

If G is a finite group, and 1 ^ N <^H ^ G, we say that H/N is a
factor of G: if either 1 ^ N or H ^ G, we say that H/N is a proper factor.
If G is not in the variety generated by its proper factors, we say that G
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is critical. If G is critical, then G has a unique minimal normal subgroup,
called the monolith of G, and denoted by oG.

Next, some observations about varieties which can be generated by
a group in ^JV. In [4], Philip Hall showed that JOT was also the class
of all groups in which some finite term of the upper central series was of
finite index: it is this characterisation of the class !FJf that seems more
useful from the viewpoint of varieties. Groups in fFJ/" are closely related
to both finite and nilpotent groups, and in fact the varieties they generate
enjoy many of the pleasant properties of nilpotent and Cross varieties.

LEMMA 2.1. Suppose that 11 and 33 are varieties which can be generated
by a group in fF^Y'. Then we have

(a) U u S3 can also be generated by a group in ^^V.
(b) U and all its subvarieties are generated by finitely generated groups.
(c) Every finitely generated group in U is in #"«/K'.
(d) U is generated by its finite groups.
(e) There is a bound on the class of nilpotent groups in U.
(f) There is a bound on the minimal number of generators of chief factors

of finite groups in U.

These results are either easy to prove or are contained in [2].
We often need the following fact that, though well known, does not

seem to be readily available in the literature. Denote by C(p, q) the critical
group with an elementary abelian normal ^-subgroup, with quotient group
of order q, p, q distinct primes: we have var C(p, q) = 2lB9l8.

LEMMA 2.2. If VI is a variety which contains non-abelian finite groups,
then it contains either a non-abelian group of order ps for some prime p,
or a non-nilpotent group C(p, q), p, q distinct primes. If U contains non-
nilpotent finite groups, it contains a C (p, q) for distinct primes p, q.

PROOF. We give a sketch of the proof. There are two cases to consider.
If every non-abelian finite group in II is nilpotent, U contains finite

non-abelian groups which are nilpotent of class two. Let G be a non-abelian
nilpotent finite group in U such that every proper factor of G is abelian.
Firstly, G will be a ^>-group for some prime p, and if x, y e G are such that
[x, y] ^ 1, then we must have (x, yy = G. Also, every proper homomorphic
image of G is abelian, and so, by Theorem 5 of M. F. Newman [9], G is
either non-abelian of order p3 and exponent p, in which case we are finished,
or G is isomorphic to a group of the form

{a, b, z : av = b" = z, z^'1 = [a, b], [a, b]p = 1}, n ^ 1.

In this case, var G is defined by the laws xv"+l — 1, [x, y]p = 1, [*, y, t] = 1,
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and any non-abelian group of order pz satisfies these laws, and so is
contained in var G and hence in tl.

Now, suppose that U contains a non-nilpotent finite group. Let G be
a non-nilpotent finite group of minimal order in XL. Then every subgroup
of G is nilpotent, and so G is soluble (L. Redei [11]). Let N be a minimal
normal subgroup of G : N is an elementary abelian ^-group for some prime
p. Also, N cannot be in the centre of G, for G/2V is nilpotent. It follows that
there is an element x e G of prime order q such that x $ CG(N). But then
(N, x} = N(xy is non-nilpotent, and so G = iV<a;>. It now follows that
G S C(P, q) ([10] p. 364).

Another trivial but important fact is

LEMMA 2.3. For any varieties U, SB, we have

[U, ®] ^ [U u », U u «] = 3t(U u »).

77ms, /or G e [tl, 23], ^Aere is aw abelian normal subgroup N of G such that
G/N e U u SB.

LEMMA 2.4. / / G is a non-abelian finite group, H a finite group, and if
A is a maximal abelian normal subgroup of G wr H, then there is a maximal
abelian normal subgroup Ao of G such that if B{= GH) is the base group of
G wr H,

A = {feB : f{h) e Ao, for all h e H}.

PROOF. We claim firstly that A ^ B. For suppose that fheA, feB,
heH, and h^-l. Let Ax = AnB, and for keH the epimorphism
7ik : B -> G be defined by

K = f(k).

Then A17ik is abelian: in particular Axnx is abelian. Since G is non-abelian,
there is an x e G, such that x $ AXTIX. Define g e B by g(l) = x^1, g(k) = 1,
k =£ 1. Now since both A and B are normal, [g, fh] e A n B = Ax. Since
h^l, (/-1^/)"(1) = f^gfQi-1) = 1, from the definition of g, and so
[g, fh](l) = x: i.e. x e A1n1, a contradiction. Thus A ^ B.

Now, it is easy to check that Ann = ^4^ for all heH. Thus if 4̂ 0 is a
maximal abelian normal subgroup of G containing Anlt

A ^{feB :f{h) eA0,heH}.
But clearly

{feB:f(h)eA0,heH}

is an abelian normal subgroup of G wr H, and hence the result follows.
Then we have as a consequence of Lemma 2.4 and Theorems 22.11 and

22.12 of [7] the following lemma.
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LEMMA 2.5. If G is a non-abelian finite group, H a finite group, A a
maximal abelian normal subgroup of W = Gwr H, B the base group of W,
then WjA contains a factor isomorphic to Cvwr H, where Cpis a cyclic group
of order p, for all primes p dividing \BjA\.

Finally in this section we prove:

LEMMA 2.6. / / U and 23 are varieties, such that It ^ 33, and both II and 33
are generated by their finite groups, then

8I(U n 33) ^ [U, 33].

PROOF. First, we show that it is sufficient to prove the lemma for
U < 23, and 33 generated by its finite groups. For suppose 11 < 33, 33 •< U,
and [U, 33] = 21 (U n 33). Then

2l(Un33) = [Un33,Un33]
^ [U n 23, 33]
^ [U, 33]
= A (U n 23)

and so [U n 33, 33] = 8T((U n 33) n 33).
Now, if U < 33, and 93 is generated by its finite groups, then there is a

finite group G of minimal order such that G e 33, G $ U. Then we have that
G is critical and GjaG eU. If <TG is non-abelian, then clearly G^ [II, U].
Hence oG is abelian: and so — as a minimal normal subgroup of G —
elementary abelian of exponent p for some prime p: hence G e 2tj,U. Let
33i be the variety generated by G. Then for some positive integer n, if H
is the relatively free group of rank n of 33!, U(H) is a non-cyclic elementary
abelian p-gvoup. Let F be the absolutely free group of rank n,

UIV1(F) = U(FIV1(F)).

Then F/V^F) is a finite group ([8] Theorem 14.2), and so by Schreier's
theorem U is an absolutely free group of finite rank. To complete the proof
of Lemma 2.6, it is now sufficient to prove:

LEMMA 2.7. Let F be an absolutely free group of finite rank, N a normal
subgroup of F such that FjN is a non-cyclic elementary abelian p-group for
some prime p. Then F/[F, N] is non-abelian.

PROOF.2 With p as in the statement of the lemma, we have N > QP(F).
Put H = FjQv{F), M =NjQv(F): then it is sufficient to prove that
Hj[H, M] is non-abelian. Observe that since F is of finite rank, n say, H
is finite. Now H/0(H) = M/0(H)xLI0(H), where &(H) is the Frattini

2 This proof was suggested to me by Professor G. Baumslag.
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subgroup of H. Let x^ft), • • •, xk0(H) be a minimal set of generators
for L/0(H), and y^{R), • • •, yn-ic^>{H) be a minimal set of generators for
Mj0{H). Since H is a finite relatively free group of rank n, and H is gener-
ated by {x^ • • •, xk, yx, • • •, yn_k) = S, it is freely generated by S. Thus the
commutators [xt, x3], i # /, 1 5S i, j 5S k, [xt, yf], 1 ^ i ^ k, 1 ^ / ^ w—A,
[2/i. 2/j]> * ^ ]> 1 = ?» / = w— ,̂ are all independent. But [H, M] is generated
b y lxi> Vil' 1 < i ^ k, I ^ j <: n — k , [yt, y , ] , i ^ j , l <Z i, j ^ n — k , a n d
since HjM was non-cyclic, k 2: 2. Hence [x1, a;2] ^ [#, Af], and Lemma 2.7
is proved.

3. The proof of Theorem 1

Suppose that U and SB are varieties which can be generated by a group
in ^J/~ and U 7̂  33. Then, using Lemmas 2.1 and 2.3, finitely generated
groups in [U, SS] are abelian-by-nilpotent-by-finite, and so, as a consequence
of Theorem 1 of P. Hall [5], are residually finite. Hence [U, SB] is generated
by its finite groups.

The proof is broken up into several steps, which we number consec-
utively. The first step gives some necessary conditions which varieties
X, 2) must satisfy if [U, SB] is to equal 3E$.

3.1 Suppose thai •£ and, 3) are varieties: then [It, SB] ^ 3£3) if any of the
following conditions hold:

(a) 36 is abelian,
(b) •£ contains a non-abelian group of order p 3 for some prime p , and

(c) %v% ^ X, % ^ $, /o
(d) 36 contains a non-abelian finite simple group G, and for some prime

p dividing \G\, %v ^ %

PROOF, (a) Suppose that X is abelian and [II, SB] = £$ . Then
?) ^ 11 n SB ([7] Theorem 24.31), and so

[U, SB] = £?)

^ 8t(U n SB)

^ [U, SB],

giving [U, SB] == 9t(U n S3), contradicting Lemma 2.6.

(b) Suppose [It, SB] = 3£2), and that G e 3E is a non-abelian group of
order jf>3, and Cj, is a cyclic group of order p. Then the set

{GwrC p " :»= . l ,2 , • • •} C X?).

But then, applying Lemma 2.5,
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{C,wrCJ :n = 1, 2, • • •} g l l u S3.

But Cj,wrC^ is nilpotent of class »(/>—1) + 1 ([6] Theorem 5.1), and so
II u S3 contains nilpotent groups of arbitrarily large class, contradicting
Lemma 2.1 (e).

(c) Again, suppose [U, S3] = £$ , and let C(p,q)eX, CQ e % for
distinct primes p, q. Then the set {C(p, q) wr C" : n = 1, 2, • • •} Q X2). Now
C(p, q) has a unique maximal abelian normal subgroup, which has index q:
hence we may conclude from Lemma 2.5 that

{Ca wr CJ : n = 1, 2, • • •} C U u S3,

again giving a contradiction.

(d) If G e X is a non-abelian finite simple group, p a prime dividing
\G\ such that Cve% then {G wr C£ : n = 1, 2, • • •} Q 36̂ ). But G wr Q
has no non-unit abelian normal subgroups, and so, using Lemma 2.5 again,

{CP wr q : n = 1, 2, • • •} Q U u S3

if [II, S3] = 3£?): again giving a contradiction.
Now suppose that [U, S3] is decomposable: that is [U, S3] = X9!) for

some X, 3). Then we have that X is non-abelian, and 3) 2£ U n S3. If 9) is not
locally finite, then 91 ^ 2J, and we see from Lemma 2.2 that X and "2) must
satisfy either (b) or (c) of Lemma 3.1, giving a contradiction. Thus 2J is
locally finite: let the exponent of 9) be e.

3.2 Suppose that G is a finite group in H. Then G has an abelian normal
subgroup N such that (e, \G/N\) = 1, and for some integer k, \N\ divides ek.

PROOF. If H is any subgroup of G for which there is an integer k such
that \H\ divides ek, then H is abelian: for otherwise, we may conclude from
Lemma 2.2 that 36 and ?) satisfy either (b) or (c) of 3.1, a contradiction.

We now use induction on the length of a chief series of G. If the length
is one, the result is trivial. Suppose now G has a chief series of length n,
and the result is true for groups in X with a chief series of length w— 1. Let
M be a minimal normal subgroup of G: then G\M has a chief series of length
n—1. Hence G\M has an abelian normal subgroup NjM satisfying the
requirements of the lemma. Now, either \M\ = pl for some prime p dividing
e, or \M\ is prime to e. In the first case, N is abelian, from the first paragraph
of the proof, and we are finished. For the second case, M is complemented
in N, by L say, using the Schur-Zassenhaus theorem: let C = CL(M). If
C ^ L, then N is not nilpotent, and so by Lemma 2.2 and the assumption
on L contains a factor isomorphic to C(p, q), for p, q distinct primes, with
q dividing e. But then 2^91, ^ X, % ^ D, a contradiction. Hence C = L,

https://doi.org/10.1017/S1446788700007308 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007308


394 John Cossey [8]

and so N = Mxl, and now L has the properties required of 'N' in the
statement 3.2.

We now prove:

3.3 %) is abelian.

PROOF. Since X is non-abelian it contains a group G isomorphic to either
a non-abelian group of order pz or a C(q, p), p, q distinct primes: it is an
immediate consequence of 3.2 that p does not divide e. If ?) is non-abelian
it contains a non-abelian group H. Then the set

{G wr H» : n = 1, 2, • • •} Q 1%

But then, using Lemma 2.5, we have that

{Cp wr H» : n = 1, 2, • • •} g U u S.

Now the base group of Cp wr if™ may be regarded as a vector space over
GF(p), the field of p elements, on which Hn acts as a group of linear trans-
formations. Since p is prime to \H\, the base group is completely reducible,
and it contains irreducible components of degree at least 2". These irreducible
components may then be thought of as chief factors of Cp wr Hn, and so
the set {Cv wr Hn : n = 1, 2, • • •} contains groups with chief factors having
an arbitrarily large minimal number of generators, contradicting Lemma
2.1 (f). Hence ?) is abelian.

Now U and 23 can be generated by finitely generated groups, G and H
say. Now we can choose G and H such that <2) = var GjY{G) = var HjY{H).
Since )̂ is abelian of finite exponent, G/Y(G) and HjY{H) are finite. We
have further:

3.4 With G and H as above, Y(G) and Y(H) are finite, and

{\GjY{G)\, \Y(G)\) = {\HIY(H)\, \Y(H)\) = 1.

PROOF. By the symmetry of the situation, it is enough to prove 3.4
for G. Note that if Y(G) is of finite exponent, it is finite. Hence if Y(G) is
not finite, then 21 ̂  U. Let B be a free nilpotent group of class two and
rank 2, generated by x and y: then Be[U, S3]. Also Bx = <xe, ye} £ Y(B),
and by [1] Theorem 1, Bx is also a free nilpotent group of class 2 and rank 2.
If now p is any prime dividing e, Bx has non-abelian factors of ^-power
order. But Bx e X, and so 3£ and <2) satisfy condition (b) of 3.1, a contra-
diction. Thus Y(G) is finite.

Put Y(G) = A: by 3.2, there is an abelian normal subgroup N of A
such that {\AIN\, e) = 1, and |2V| divides ek for some integer k. Suppose
that N T^ 1. There are two cases to consider

(i) CA(N) ^ A. Then there is an element x of prime order such that
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x$CA(N). Then from Lemma 2.2, C(p, q) e var (iV<z» ^ £ n U for
primes /̂>, <?: from the choice of iV<£>, it follows that >̂ divides e, and <?
does not divide e. Now (i) divides into two subcases. Firstly, suppose
that V(C(p,q)) <C(p,q). Then, if Ge&p%, U(G) ̂ C(V(G)), and so
&,Aq ^ [U, 33] = X?). If \aC(p, q)\ = />', let F be the free group of C ,
of rank 2£ freely generated by x1; • • •, xt, ylt • • •, yt: let

H1=<x1C{F),---,xtC(F)>,

On each of H1, H2, define the action of CQ, the cyclic group of order q,
by the action of C(p, q)/aC(p, q) on aC(p, q), and extend this action to F.
Let G = FCQ: from its definition it follows that G has no quotient groups
of p-power order, and so we may conclude that G e 36. But G has a non-
abelian Sylow ^-subgroup, and so X, 3) satisfy (b) of 3.1, a contradiction.

Thus, suppose V(C(p, q)) = C(p, q): it follows that q does not divide
the exponent of S3. Further %Ji[q%v ^ 3£?), and SfpSIgSI,, cannot be generated
by a finite group ([7] Theorem 24.62). Since G is finite, U can be generated
by a finite group, and so there is a critical group F e Stj,9ta9tp such that
1 < M < K <\ F, with M, the unique minimal normal subgroup of F,
and F/K elementary abelian ^-groups, and KjM an elementary abelian
<7-group. Further, F has the property that [M,K] =fi 1, and U(F) ^
M, U(F) ^ K. Hence [U{F), V{F)] =£ 1, a contradiction.

(ii) C^(iV) = A. Then 4 = iVxiV*, where iV* ~ A/N.N* < G. Thus
GjA and G/2V* generate different varieties. We have var (G/A) = '$): put
var (GIN*) = ^ . If F is a free group of finite rank such that
is non-cyclic, we have, using Lemma 2.7, that

F > Y(F)

and Y(F)I[Y1(F), Y(F)] contains non-abelian factors of p-power order for
some prime p dividing e. But

FHY^F), Y(F)] e pi, ?)] <£ [U, S3] = X?),

and so Y(JP)/[Y1(F), y ( F ) ] 6 | , again giving that 36 and $ satisfy (b) of
3.1, a contradiction.

Thus iV = 1, and 3.4 is proved.
From 3.4 it follows immediately that if either of G or H is infinite,

[U, S3] is indecomposable, and so the proof of Theorem 2 is complete.
Now, with G and H as above, put t^ = var (Y(G)), SSX = var (Y(#)).

Then Ux and 83X are locally finite of exponents prime to e. The next step is
to prove

3.5 [Ux, S3,] ^ X.
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PROOF. Since [U1( 3SX] is generated by its finite groups, if \}X1, SSX] •< X,
there is a finite group A of minimal order such that A e [U^ S^], .4 £ X.
Observe that \U1, SSX] ^ [U, S3] = X?), and so A e X$. If A has order prime
to e, then 4 e $ .

Since .4 is critical, HU^A) nV^A) = 1, then A has order prime to e,
a contradiction. Now iV = C^^) n V^A) is an abelian normal subgroup
of A: since A is critical it must be a />-group for some prime p, and since
A $£, p must divide e. Further, if Nx is the subgroup of N generated by the
pth powers of the elements of N, A/N1 f X and N = a A. Also, N ^ A since
4 £ X. Since Y(4) ^ 1, Y(A) ^ iV. But then Y{A)/N = Y(A\N), and since
4/iV eUi u » l f Y(4/AT) = AjN. Hence Y(^) = A, and 4 e X, a contra-
diction.

3.6 M , Si?)] = [U, » ] .

PROOF. Using 3.5, [6] Theorem 21.23, and the fact that It ^ UX3),
SS ^ S8i3), we have

^ [U, S3],
and the result is proved.

We now want to show that in fact U = ltj^), 9S = SSjS). As a step in
this direction, we prove:

3.7 IXJ and 2SX are nilpotent.

PROOF. Suppose that VLX is not nilpotent. Then since Uj is generated by
its finite groups, we may conclude from Lemma 2.2 that ^.v% ^ 1^ for
some distinct primes p, q. Also, if r is any prime dividing e, we have that
(P> r) = (q, r) = 1, and WPWQ%. ^ U^. Put An = C(q, r)n: by a theorem
of Gaschutz [3], An has a faithful irreducible representation over GF(p).
Let Mn be a vector space over GF(p) on which An acts faithfully and
irreducibly as a group of linear transformations. Put Bn = MnAn, the split
extension of Mn by An: observe that Bn e 2tp2la2L. Then Mre is the unique
minimal normal subgroup of Bn, and the minimal number of generators of
Mn is at least 2". Hence, using Lemma 2.1 (f), there is an integer k such
that B , ^ U u 8 : t / (5J = Mk, V(Bk) ^ Mk, for BJ /MJ e U, Bk$ », and
Affc is the unique minimal normal subgroup of Bj..

Suppose that V(Bk) > Mk: then C(y, r) ^ SS, but % ^ SS, and so
7(Bt) = Mjili. But then [U{Bk), V{Bk)] ^ 1. However, C/^Y^)) = 1,
and so [t/^Y^B,.)), 7i(Y(Bt))] = 1, contradicting 3.6.

Hence 7(5^) = Mk. If |Mft| = />', then t ^ 2: let F be the free group
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of rank t of Qv. On F\£{F), which is elementary abelian of order p\ define
the action of Ak by its action on Mk, and extend this action to give an
automorphism group of F: put D = FAk.

Then V(D) = U{D) = F, and so [V(D), U(D)] =£ 1. But

£ £(F), and VX{Y{D)) < F,
giving

contradicting 3.6 again.
Thus llj and similarly 23X are nilpotent.

3.8 U = VLj.% S8 = «!?).

PROOF. Suppose that U < l^S). Then there is a group 4 of minimal
order such that A eU^, A $U: A is critical, and U(A) = oA. There are
two cases to consider.

(i) V (A) = 1. Then let p be a prime which does not divide the exponent
of II u $. By the theorem of Gaschutz [3], A has a faithful irreducible
representation over GF(p). Let Af be a vector space over GF(p) on which
A acts faithfully and irreducibly as a group of linear transformations, and
put B = MA, the split extension of M by A. Then

UX(Y{B)) = V^YiB)) = M,
and so

But C7(B) = M<r,4, and V(B) = M: since the centralizer of M in B is M,
[[7(5), F(5)] =£ 1, contradicting 3.6.

(ii) V(A) =£1. Observe that Y(A) is nilpotent and

since A is critical, Y(A) is a />-group for some prime p, and is the Fitting
subgroup of A (that is, the maximal normal nilpotent subgroup of A),
and so oA ^ Z(Y(A)). Also, since %} ^ », we have <*1 ^ F(4) g Y(A).

Now, let 4̂X be isomorphic to the direct product of two copies of A.
Let F be a free group of finite rank with a normal subgroup N such that
F/N ~ Ax. Then if Af/2V = U{F/N), MjN is a non-cyclic elementary
abelian />-group. Also, put YjN = Y(FIN). As in Lemma 2.7, consider
0,(M): let F1 = F/g,(M), N^N/Q^M), M1 = MIQ,{M), Y1 = Y\QV{M).
Then -Wj/fAf!,^] is non-abelian. Further, it is easy to deduce from the
fact that M1jN1 is central in Y1/N1, and Mxj[Mx, Nt] is nilpotent of class 2
that NJ[M1,N1] is central in Y1I[M1,2VJ. Then we have that

https://doi.org/10.1017/S1446788700007308 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007308


398 John Cossey [12]

but

again contradicting 3.6.
The proof of 3.8, and with it the proof of Theorem 1, is now finished.
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