Y. Abe

HOMOGENEOUS LINE BUNDLES OVER A TOROIDAL GROUP

YUKITAKA ABE

§0. Introduction

A connected complex Lie group without non-constant holomorphic functions is called a toroidal group ([5]) or an (H, C)-group ([9]). Let X be an n-dimensional toroidal group. Since a toroidal group is commutative ([5], [9] and [10]), X is isomorphic to the quotient group C^{n} / Γ by a lattice of C^{n}. A complex torus is a compact toroidal group. Cousin first studied a non-compact toroidal group ([2]).

Let L be a holomorphic line bundle over $X . L$ is said to be homogeneous if $T_{x}^{*} L$ is isomorphic to L for all $x \in X$, where T_{x} is the translation defined by $x \in X$. It is well-known that if X is a complex torus, then the following assertions are equivalent:
(1) L is topologically trivial.
(2) L is given by a representation of Γ.
(3) L is homogeneous.

But this is not always true for a toroidal group. Vogt showed in [11] that every topologically trivial holomorphic line bundle over X is homogeneous if and only if $\operatorname{dim} H^{1}(X, \mathcal{O})<\infty$ ([6]). The cohomology groups $H^{p}(X, \mathcal{O})$ were classified by Kazama [3] and Kazama-Umeno [4].

In this paper we shall show the equivalence of conditions (2) and (3). In the case that X is a complex torus, a similar equivalence was proved for a vector bundle ([7] and [8]). We state our theorem.

Theorem. Let $X=C^{n} \mid \Gamma$ be a toroidal group. Then every homogeneous line bundle over X is given by a 1-dimensional representation of Γ.

The converse of the above theorem is easily seen by the definitions ([11, Proposition 6]). We shall prove the theorem by virtue of the following proposition.

Proposition. Every homogeneous line bundle over a toroidal group is topologically trivial.

Received July 27, 1987.

§ 1. Preliminaries

We state some results concerning toroidal groups and fix the notations used in this paper.

If $X=\boldsymbol{C}^{n} / \Gamma$ is a toroidal group, then the rank of Γ is $n+m, 0<m$ $\leqq n, \quad$ Let $p^{1}=\left(p_{11}, \cdots, p_{n, 1}\right), \cdots, p^{n+m}=\left(p_{1, n+m}, \cdots, p_{n, n+m}\right) \in \boldsymbol{C}^{n}$ be generators of Γ. The $n \times(n+m)$ matrix

$$
P=\left({ }^{t} p^{1}, \cdots,{ }^{t} p^{n+m}\right)
$$

is called a period matrix of Γ. We may assume by Proposition 2 in [11] that I has a period matrix P as follows

$$
P=\left(\begin{array}{cc}
0 & T \tag{1.1}\\
I_{n-m} & R
\end{array}\right)
$$

where I_{n-m} is the $(n-m) \times(n-m)$ unit matrix, T is a period matrix of an m-dimensional complex torus and R is a real $(n-m) \times 2 m$ matrix with

$$
\begin{equation*}
\sigma R \not \equiv 0 \quad \bmod Z^{2 m} \quad \text { for all } \sigma \in Z^{n-m} \backslash\{0\} . \tag{1.2}
\end{equation*}
$$

Let R_{Γ}^{n+m} be the real-linear subspace of C^{n} spanned by Γ. We denote by C_{Γ}^{m} the maximal complex-linear subspace contained in R_{T}^{n+m}. When a period matrix P of Γ has the form as (1.1), C_{T}^{m} is the space of the first m variables. Then we take the coordinates of $C^{n}=C_{\Gamma}^{m} \times C^{n-m}$ as (z, w) with $z \in C_{\Gamma}^{m}, w \in C^{n-m}$.

We refer the reader to [11] for the definitions of factors of automorphy and summands of automorphy.

Lemma 1 ([11, Proposition 8]). Let $X=C^{n} / \Gamma$ be a toroidal group. Then every summand of automorphy $b: \Gamma \times C^{n} \rightarrow C$ is equivalent to a summand of automorphy $a: \Gamma \times C^{n} \rightarrow C$ with the following properties:
a) $a(\gamma ; z, w)=a(\gamma, w)$ for all $\gamma \in \Gamma$.
b) $a(\gamma ; z, w)=0$ for $\gamma \in\left(0 \quad Z^{n-m}\right)$.
c) For all $\gamma \in \Gamma$ the holomorphic function $a_{r}(w):=a(\gamma, w)$ is $Z^{n-m_{-}}$ periodic.

A homomorphism $\alpha: \Gamma \rightarrow C^{*}$ is called a (1-dimensional) representation of Γ. Two representations α and β of Γ are equivalent if there exists a holomorphic function $g: C^{n} \rightarrow C^{*}$ such that

$$
g(x+\gamma) \alpha(\gamma) g(x)^{-1}=\beta(\gamma)
$$

for all $\gamma \in \Gamma$ and $x=(z, w) \in C^{n}$.
Lemma 2. Let $X=C^{n} / \Gamma$ be a toroidal group and let $\alpha: \Gamma \rightarrow C_{1}^{\times}=$ $\{\zeta \in C ;|\zeta|=1\}$ be a homomorphism. If α is equivalent to the constant map 1, then there exists a C-linear form L on C^{n} depending only on w such that

$$
\alpha(\gamma)=\boldsymbol{e}(L(\gamma)) \quad \text { for all } \gamma \in \Gamma,
$$

where $\boldsymbol{e}(x)=\exp (2 \pi \sqrt{-1} x)$.
Proof. By the assumption, there exists a holomorphic function g : $C^{n} \rightarrow C^{*}$ such that

$$
\begin{equation*}
g(x+\gamma) \alpha(\gamma) g(x)^{-1}=1 \quad \text { for all } \gamma \in \Gamma \quad \text { and } \quad x \in C^{n} \tag{1.3}
\end{equation*}
$$

We have a holomorphic function $h: C^{n} \rightarrow \boldsymbol{C}$ with $g(x)=\boldsymbol{e}(h(x))$. All first order derivatives of h are Γ-periodic by (1.3). Then we can write $h(x)=$ - $\mathscr{L}(x)+c$, where $\mathscr{L}(x)$ is a C-linear form on C^{n} and c is a complex number. Using (1.3) again, we have $\alpha(\gamma)=\boldsymbol{e}(\mathscr{L}(\gamma))$. Since $|\alpha(\gamma)|=1$ for all $\gamma \in \Gamma, L$ is real-valued on $\boldsymbol{R}_{\Gamma}^{n+m}$. Then L is constant on C_{r}^{m}.

A factor of automorphy $\alpha(\gamma ; z, w)$ is called a theta factor if it is expressed by a linear polynomial $\ell_{r}(z, w)$ on (z, w) as $\alpha(\gamma ; z, w)=e\left(\ell_{r}(z, w)\right)$.

Lemma 3 ([5]). Let $\rho(\gamma ; z, w)$ be a theta factor for Γ on C^{n}. Then there exist a hermitian form \mathscr{H} on $C^{n} \times C^{n}$ with $\mathscr{A}:=\operatorname{Im} \mathscr{H}$ Z-valued on $\Gamma \times \Gamma, a C$-bilinear symmetric form $\mathscr{2}, a \operatorname{C}$-linear form \mathscr{L} and a semicharacter ψ of Γ associated with $\left.\mathscr{A}\right|_{\Gamma \times \Gamma}$ such that

$$
\rho(\gamma ; z, w)=\psi(\gamma) \boldsymbol{e}\left[\frac{1}{2 \sqrt{-1}}(\mathscr{H}+\mathscr{2})(\gamma ; z, w)+\frac{1}{4 \sqrt{-1}}(\mathscr{H}+\mathscr{Q})(\gamma, \gamma)+\mathscr{L}(\gamma)\right]
$$

for all $\gamma \in \Gamma$ and $(z, w) \in \boldsymbol{C}^{n}$. We say that ρ is of type $(\mathscr{H}, \psi, \mathscr{Q}, \mathscr{L})$ when it has an expression as the above.

Remark. If rank $\Gamma=2 n$, then ρ is of the unique type. But in general, a type of ρ is not uniquely decided. Let $\boldsymbol{R}_{\Gamma}^{n+m}=C_{T}^{m} \oplus V$, where V is a real-linear subspace of $\boldsymbol{R}_{\Gamma}^{n+m}$. Then $\boldsymbol{C}^{n}=\boldsymbol{C}_{\Gamma}^{m} \oplus V \oplus \sqrt{-1} V$. A hermitian form \mathscr{H} changes according to the choice of $\left.\mathscr{A}\right|_{V \times \sqrt{-1} V}$. We may assume that $\left.\mathscr{A}\right|_{V \times \sqrt{-1} V}=0$.

§2. Proof of the proposition

Let L be a homogeneous line bundle over a toroidal group $X=C^{n} / \Gamma$. We may assume by a result of Vogt ([12], see also [1]) that $L=L_{\alpha} \otimes L_{\rho}$,
where L_{α} is a topologically trivial holomorphic line bundle given by a factor of automorphy α and L_{ρ} is a theta bundle given by a theta factor ρ. Furthermore we may assume that ρ is reduced, i.e. ρ is of type (\mathscr{H}, ψ) $=(\mathscr{H}, \psi, 0,0)$, and α has the properties in Lemma 1 .

Let $\pi: C^{n} \rightarrow X$ be the projection. Take any $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right) \in C_{\Gamma}^{m} \times \boldsymbol{Z}^{n-m}$, and set $x=\pi\left(x^{*}\right)$. The pull-back $T_{x}^{*} L$ of L by a translation T_{x} is given by a factor of automorphy $\alpha\left(\gamma, w-x_{2}^{*}\right) \rho\left(\gamma ; z-x_{1}^{*}, w-x_{2}^{*}\right)$. Since $\alpha(\gamma, w)$ is Z^{n-m}-periodic, we have $T_{x}^{*} L_{\alpha}=L_{\alpha}$. Then $T_{x}^{*} L_{\rho} \cong L_{\rho}$. We set $a:=-x^{*}$ and $\rho_{1}(\gamma ; z, w):=\rho\left(\gamma ; z-x_{1}^{*}, w-x_{2}^{*}\right)$. Then ρ_{1} is of type $\left(\mathscr{H}, \psi_{1}, 0, \mathscr{L}_{1}\right)$, where

$$
\begin{aligned}
& \psi_{1}(\gamma):=\psi(\gamma) e(-\mathscr{A}(a, \gamma)), \\
& \mathscr{L}_{1}(z, w):=\frac{1}{2 \sqrt{-1}} \mathscr{H}(a ; z, w)
\end{aligned}
$$

We define a homomorphism $\beta: \Gamma \rightarrow C_{1}^{\times}$by

$$
\beta(\gamma):=\psi(\gamma) \psi_{1}(\gamma)^{-1}=e(\mathscr{A}(a, \gamma)) .
$$

Since $\rho \cdot \rho_{1}^{-1}$ is equivalent to $1, \beta$ is also equivalent to 1. By Lemma 2 there exists a C-linear form \mathscr{L} on C^{n} depending only on w such that

$$
\beta(\gamma)=\boldsymbol{e}(\mathscr{L}(\gamma)) \quad \text { for all } \gamma \in \Gamma .
$$

It follows immediately from the above equality that

$$
\mathscr{A}(a, x)=\mathscr{L}(x) \quad \text { for all } x \in R_{r}^{n+m}
$$

Since $a \in C_{\Gamma}^{m} \times \boldsymbol{Z}^{n-m}$ is arbitrary, have

$$
\mathscr{A}(x, y)=0 \quad \text { for all } x \in \boldsymbol{R}_{\Gamma}^{n+m} \quad \text { and } \quad y \in \boldsymbol{C}_{\Gamma}^{m} .
$$

By Remark below Lemma 3 we may assume that $\left.\mathscr{A}\right|_{V \times \sqrt{-1} V}=0$. Then we have

$$
\begin{equation*}
\left.\mathscr{A}\right|_{c_{\Gamma}^{m} \times C^{n}}=0 \quad \text { and }\left.\quad \mathscr{A}\right|_{c^{n} \times C_{T}^{m}}=0 \tag{2.1}
\end{equation*}
$$

because \mathscr{A} is the imaginary part of a hermitian form \mathscr{H}. By (2.1) a hermitian form \mathscr{H} is regarded as a hermitian form on $C^{n-m} \times C^{n-m}$.

We set $\left(I_{n-m} R\right)=\left({ }^{t} e_{1}, \cdots,{ }^{t} e_{n-m},{ }^{t} r_{1}, \cdots,{ }^{t} r_{2 m}\right)$ in the period matrix (1.1). Every r_{k} is represented as

$$
r_{k}=\sum_{j=1}^{n-m} r_{j, k} e_{j}, \quad r_{j, k} \in \boldsymbol{R}
$$

For any i and k we have

$$
\mathscr{A}\left(e_{i}, r_{k}\right)=\sum_{j=1}^{n-m} r_{j, k} \mathscr{A}\left(e_{i}, e_{j}\right) \in Z .
$$

Since $X=C^{n} / \Gamma$ is a toroidal group, we obtain by (1.2) that

$$
\begin{equation*}
\mathscr{A}\left(e_{i}, e_{j}\right)=0 \quad \text { for all } i, j=1, \cdots, n-m \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2) we conclude

$$
\begin{equation*}
\mathscr{A}=0 \quad \text { on } C^{n} \times C^{n}, \tag{2.3}
\end{equation*}
$$

hence $\mathscr{H}=0$ on $C^{n} \times C^{n}$. This means that L_{ρ} is given by a representation of Γ, therefore L_{ρ} is topologically trivial.

§3. Proof of the theorem

Let L be a homogeneous line bundle over a toroidal group $X=C^{n} / \Gamma$. By Proposition L is topologically trivial. Then L is given by a factor of automorphy $\alpha(\gamma, w)=\exp (\alpha(\gamma, w))$, where a summand of automorphy $a(\gamma, w)$ has the properties in Lemma 1. Since L is homogeneous, $a(\gamma, w+x)$ and $a(\gamma, w)$ are equivalent for all $x \in C^{n-m}$. That is, there exist a holomorphic function $g_{x}: C^{n} \rightarrow C$ and a homomorphism $n_{x}: \Gamma \rightarrow Z$ for any x such that

$$
\begin{equation*}
g_{x}\left(z+\gamma_{1}, w+\gamma_{2}\right)-g_{x}(z, w)=a(\gamma, w+x)-a(\gamma, w)+2 \pi \sqrt{-1} n_{x}(\gamma) \tag{3.1}
\end{equation*}
$$

for all $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in \Gamma$ and $(z, w) \in C^{n}$. We see by (3.1) that all first order derivatives of g_{x} with respect to z are Γ-periodic. Then g_{x} is expressed as

$$
g_{x}(z, w)=\ell_{x}(z)+h_{x}(w)
$$

where $\ell_{x}(z)$ is a C-linear form on C_{Γ}^{m} and $h_{x}(w)$ is a holomorphic function on C^{n-m}. By (3.1) it holds that

$$
\begin{align*}
h_{x}\left(w+\gamma_{2}\right)-h_{x}(w) & =a(\gamma, w+x)-a(\gamma, w)+2 \pi \sqrt{-1} n_{x}(\gamma)-\ell_{x}\left(\gamma_{1}\right) \tag{3.2}\\
& =a(\gamma, w+x)-a(\gamma, w)+c_{x}(\gamma)
\end{align*}
$$

for all $\gamma \in \Gamma$ and $w \in C^{n-m}$, where we set $c_{x}(\gamma)=2 \pi \sqrt{-1} n_{x}(\gamma)-\ell_{x}\left(\gamma_{1}\right)$.
Let $p^{j}=\left(p_{1}^{j}, p_{2}^{j}\right) \in \boldsymbol{C}_{\Gamma}^{m} \times \boldsymbol{C}^{n-m}$. We define a \boldsymbol{C}-linear form $\mathscr{L}_{x}(w)$ on C^{n-m} by

$$
\mathscr{L}_{x}(w):=\sum_{j=1}^{n-m} c_{x}\left(p^{j}\right) w_{j} .
$$

Putting $\tilde{g}_{x}(w):=h_{x}(w)-\mathscr{L}_{x}(w)$, we have by (3.2) that

$$
\tilde{g}_{x}\left(w+\gamma_{2}\right)-\tilde{g}_{x}(w)=a(\gamma, w+x)-a(\gamma, w)+c_{x}(\gamma)-\mathscr{L}_{x}\left(\gamma_{2}\right)
$$

for all $\gamma \in \Gamma$ and $w \in C^{n-m}$. We set newly $g_{x}(w)=\tilde{g}_{x}(w)$ and $c_{x}(\gamma)=c_{x}(\gamma)$ $-\mathscr{L}_{x}\left(\gamma_{2}\right)$. Then we have

$$
\begin{equation*}
g_{x}\left(w+\gamma_{2}\right)-g_{x}(w)=a(\gamma, w+x)-a(\gamma, w)+c_{x}(\gamma) \tag{3.1'}
\end{equation*}
$$

for all $\gamma \in \Gamma$ and $w \in \boldsymbol{C}^{n-m}$, where $c_{x}(\gamma)=0$ for $\gamma \in\left(0 \quad \boldsymbol{Z}^{n-m}\right)$ and $g_{x}(w)$ is a \boldsymbol{Z}^{n-m}-periodic holomorphic function on C^{n-m}.

We set $\left(I_{n-m} R\right)=\left({ }^{t} s_{1}, \cdots,{ }^{t} s_{n+m}\right)$, i.e. $s_{j}=p_{2}^{j}$ and define

$$
b_{x}^{j}(w):=a\left(p^{j}, w+x\right)-a\left(p^{j}, w\right)+c_{x}\left(p^{j}\right)
$$

Then $b_{x}^{j}(w)$ is a \boldsymbol{Z}^{n-m}-periodic holomorphic function on C^{n-m}. We obtain by (3.1') that

$$
\begin{equation*}
g_{x}\left(w+s_{j}\right)-g_{x}(w)=b_{x}^{j}(w), \quad j=1, \cdots, n+m \tag{3.3}
\end{equation*}
$$

We put

$$
\begin{aligned}
a\left(p^{j}, w\right) & =\sum_{\sigma \in Z^{n-m}} a_{j, \sigma} \boldsymbol{e}\left(\sigma^{t} w\right), \\
b_{x}^{j}(w) & =\sum_{\sigma \in Z^{n-m}} b_{x, \sigma}^{j} \boldsymbol{e}\left(\sigma^{t} w\right)
\end{aligned}
$$

and

$$
g_{x}(w)=\sum_{\sigma \in Z^{n}-m} g_{x, \sigma} \boldsymbol{e}\left(\sigma^{t} w\right)
$$

Since $g_{x}(w)$ is a solution of the system of difference equations (3.3), we have

$$
b_{x, 0}^{j}=c_{x}\left(p^{j}\right)=0
$$

and

$$
g_{x, \sigma}=\frac{b_{x, \sigma}^{j}}{e\left(\sigma^{t} s_{j}\right)-1}, \quad \sigma \neq 0
$$

for j with $\sigma^{t} s_{j} \notin Z$ ([11, Lemma 2]). The system of difference equations (3.3) is independent of $g_{x, 0}$. So we may assume that $g_{x, 0}=0$. It follows from the definition of b_{x}^{j} that

$$
\begin{equation*}
g_{x, \sigma}=a_{j, \sigma} \frac{\boldsymbol{e}\left(\sigma^{t} x\right)-1}{\boldsymbol{e}\left(\sigma^{t} s_{j}\right)-1}, \quad \sigma \neq 0 \tag{3.4}
\end{equation*}
$$

For any $\gamma \in \Gamma$ we have

$$
\boldsymbol{e}\left(\sigma^{t}\left(x+\gamma_{2}\right)\right)-1=\boldsymbol{e}\left(\sigma^{t} \gamma_{2}\right)\left(\boldsymbol{e}\left(\sigma^{t} x\right)-1\right)+\boldsymbol{e}\left(\sigma^{t} \gamma_{2}\right)-1
$$

Using (3.1), (3.4) and the above equality, we get

$$
\begin{equation*}
g_{x+\gamma_{2}}(w)-g_{x}(w)=a(\gamma, w+x)-a(\gamma, w)+g_{r_{2}}(w) \tag{3.5}
\end{equation*}
$$

for all $\gamma \in \Gamma$ and $w \in C^{n-m}$.
The series $\sum_{\sigma \in Z^{n-m}} g_{x, \sigma}$ is absolutely convergent at each point $x \in C^{n-m}$. We shall show that this series is uniformly absolutely convergent in the wider sense on C^{n-m}. Let

$$
A_{\sigma}:= \begin{cases}\frac{a_{j, \sigma}}{\boldsymbol{e}\left(\sigma^{t} s_{j}\right)-1} & \text { if } \sigma \neq 0 \\ 0 & \text { if } \sigma=0\end{cases}
$$

Then

$$
g_{x, \sigma}=A_{\sigma}\left(e\left(\sigma^{t} x\right)-1\right) \quad \text { for } \sigma \neq 0
$$

It suffices to show that $\sum_{\sigma \in Z^{n-m}} A_{\sigma} X^{\sigma}$ is uniformly absolutely convergent in the wider sense of C^{n-m}. Now we set

$$
r_{\sigma}(x):=\exp \left(-2 \pi \sigma^{t} \operatorname{Im} x\right)
$$

Then we have

$$
\left|g_{x, \sigma}\right| \geqq\left|A_{\sigma}\right|\left|r_{\sigma}(x)-1\right| .
$$

We can write $r_{\sigma}(x)=r_{1}\left(x_{1}\right)^{\sigma_{1} \ldots r_{n-m}}\left(x_{n-m}\right)^{\sigma_{n-m}}$, where $r_{i}\left(x_{i}\right):=\exp \left(-2 \pi \operatorname{Im} x_{i}\right)$, $i=1, \cdots, n-m$. There exists a positive number C such that for sufficiently large $r_{1}\left(x_{1}\right), \cdots, r_{n-m}\left(x_{n-m}\right)$

$$
\left|r_{\sigma}(x)-1\right| \geqq C r_{1}\left(x_{1}\right)^{\sigma_{1} \ldots r_{n-m}}\left(x_{n-m}\right)^{\sigma_{n-m}}
$$

for all $\sigma_{1}>0, \cdots, \sigma_{n-m}>0$. Thus we have

$$
\begin{align*}
& \sum_{\sigma_{1} \geq 0, \ldots, \sigma_{n-m} \geq 0}\left|A_{\sigma}\right|\left|r_{\sigma}(x)-1\right| \tag{3.6}\\
& \quad \geqq C_{\sigma_{1}>0, \ldots, \sigma_{n-m} \geq 0}\left|A_{\sigma}\right| r_{1}\left(x_{1}\right)^{\sigma_{1} \ldots r_{n-m}\left(x_{n-m}\right)^{\sigma_{n-m}}}
\end{align*}
$$

This implies that the series $\sum_{\sigma_{1} \geqq 0, \ldots, \sigma_{n-m} \geqq 0} A_{\sigma} X^{\sigma}$ is absolutely convergent in the wider sense on C^{n-m}. Also we have

$$
\begin{align*}
\sum_{\sigma \in Z^{n-m}} A_{\sigma} X^{\sigma}= & \sum_{\sigma_{1} \geq 0, \ldots, \sigma_{n-m} \geqq 0} A_{\sigma} X^{\sigma} \tag{3.7}\\
& +\sum_{\sigma_{1}<0, \sigma_{2} \geq 0, \ldots, \sigma_{n-m} \geqq 0} A_{\sigma} X^{\sigma} \\
& +\cdots+\sum_{\sigma_{1}<0, \ldots, \sigma_{n-m}<0} A_{\sigma} X^{\sigma} .
\end{align*}
$$

Since we can write $r_{i}\left(x_{i}\right)^{\sigma_{i}}=r_{i}\left(-x_{i}\right)^{-\sigma_{i}}$ when $\sigma_{i}<0$, we obtain similar inequalities as (3.6) and each term in the right side of (3.7) is uniformly absolutely convergent in the wider sense on C^{n-m}. Hence $\sum_{\sigma \in Z^{n-m}} g_{x, \sigma}$ is
uniformly absolutely convergent in the wider sense on C^{n-m}. Let $G(x):=$ $g_{x}(0)$. Since each $g_{x, \sigma}$ is holomorphic, $G(X)$ is a holomorphic function on C^{n-m}. It follows from (3.5) that

$$
\begin{equation*}
G\left(x+\gamma_{2}\right)-G(x)=a(\gamma, x)-a(\gamma, 0)+G\left(\gamma_{2}\right) \tag{3.8}
\end{equation*}
$$

for all $\gamma \in \Gamma$. This implies that a factor of automorphy $\alpha(\gamma, x)=\exp (\alpha(\gamma, x))$ is equivalent to a representation $\exp (\phi(\gamma))$ of Γ, where $\phi(\gamma):=a(\gamma, 0)-$ $G\left(\gamma_{2}\right)$.

References

[1] Abe, Y., (H, C)-groups with positive line bundles, Nagoya Math. J., 107 (1987), 1-11. (in press)
[2] Cousin, P., Sur les fonctions triplement périodiques de deux variables, Acta Math., 1-11.
[3] Kazama, H., $\bar{\partial}$ Cohomology of (H, C)-groups, Publ. R.I.M.S. Kyoto Univ., 20 (1984), 297-317.
[4] Kazama, H. and Umeno, T., Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91-106.
[5] Kopfermann, K., Maximale Untergruppen Abelscher komplexer Liescher Gruppen, Schr. Math. Inst. Univ. Münster, 29 (1964).
[6] Malgrange, B., La cohomologie d'une variété analytique complexe à bord pseudoconvexe n'est pas nécessairement séparée, C.R. Acad. Sci. Paris Sér. A, 280 (1975), 93-95.
[7] Matsushima, Y., Fibrés holomorphes sur une tore complexe, Nagoya Math. J., 14. (1959), 1-14.
[8] Morimoto, A., Sur la classification des espaces fibrés vectories holomorphes sur une tore complexe admettant des connexions holomorphes, Nagoya Math. J., 15 (1959), 83-154.
[9] --, Non-compact complex Lie groups without non-constant holomorphic functions, Proc. Conf. on Complex Analysis (Minneapolis 1964), Springer, 1965, 256-272.
[10] - On the classification of non-compact complex abelian Lie groups, Trans. Amer. Math. Soc., 123 (1966), 200-228.
[11] Vogt, Ch., Line bundles on toroidal groups, J. Reine Angew. Math., 335 (1982), 197-215.
[12] -, Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217-232.

Department of Mathematics
Toyama University
Gofuku, Toyama 930, Japan

