K. Shiraiwa Nagoya Math. J. Vol. 33 (1968), 53–56

A NOTE ON TANGENTIAL EQUIVALENCES

KENICHI SHIRAIWA

The main objective of this paper is to prove the following theorem, which generalizes some results of [1], [2], [6]. Our theorem is also suggested by the work of Novikov [5].

THEOREM. Let M, M' be closed smooth 2n-manifolds of the same homotopy type. Let $\tau(M)$ and $\tau(M')$ be the tangent bundles of M and M'. Suppose we are given a homotopy equivalence $f: M \to M'$ such that the induced bundle $f^*\tau(M')$ is stably equivalent to $\tau(M)$. (cf. [4]). Then $f^*\tau(M')$ is actually equivalent to $\tau(M)$.

COROLLARY. Under the same assumption, M and M' have the same span, that is the maximal numbers of linearly independent vector fields on M and M' are equal. (cf. [1]).

Proof of the theorem. Let $M^{2^{n-1}}$ be the (2n-1)-skeleton of M. Set $\tau = \tau(M)$ and $\tau' = f^*\tau(M')$. Let $\tau | M^{2^{n-1}}$ and $\tau' | M^{2^{n-1}}$ be the restrictions of τ and τ' on $M^{2^{n-1}}$. Let O(k) be the orthogonal group of the k-dimensional euclidean space R^k . Then (O(2n + 1), O(2n)) is (2n - 1)-connected. By our assumption $\tau | M^{2^{n-1}}$ is equivalent to $\tau' | M^{2^{n-1}}$, and using the obstruction theory we have an equivalence $\alpha : \tau | M^{2^{n-1}} \cong \tau' | M^{2^{n-1}}$ which can be extended to a stable equivalence of $\tau \oplus 1 \cong \tau' \oplus 1$ over M, where 1 is the trivial line bundle over M.

Let $i: O(2n) \rightarrow O(2n + 1)$ be the canonical inclusion. Then we have the following exact sequence

$$O \to \operatorname{Ker} \ i_* \xrightarrow{j} \pi_{2n-1}(O(2n)) \xrightarrow{i^*} \pi_{2n-1}(O(2n+1)) \to O,$$

where Ker $i_* \approx Z$ (the additive group of integers) (cf. [3]). Let c be the obstruction cocycle for extending α to an equivalence $\tau \approx \tau'$ over the whole M. (The coefficients group $\pi_{2n-1}(O(2n))$ of this cocycle is twisted if M is non-orientable, and the operation of $\pi_1(M)$ is given in [7] § 23). Then, by our previous remark on α , the value $c(\sigma_i^{2n})$ of c on each simplex σ_i^{2n} of M

Received January 18, 1968.

belongs to Ker i_* . We shall show the cohomology class $\{c\} \in H^{2^n}(M, \pi_{2n-1}(O(2n)))$ is zero. Then we are done. However, c may be considered a cocycle with coefficients in Ker i_* . Thus it is enough to show $\{c\} \in H^{2^n}(M, \text{ Ker } i_*)$ is zero.

Take a closed disc $D_i^{2^n}$ in the interior of $\sigma_i^{2^n}$. Set $N = M - \operatorname{Int} D_i^{2^n}$. Then $M^{2^{n-1}}$ is a deformation retract of N. Thus $\alpha : \tau | M^{2^{n-1}} \cong \tau' | M^{2^{n-1}}$ is extended to an equivalence $\alpha : \tau | N \cong \tau' | N$. Since $D_i^{2^n}$ is contractible, $\tau | D_i^{2^n}$ and $\tau' | D_i^{2^n}$ are trivial. Let $S_i^{2^{n-1}}$ be the boundary of $D_i^{2^n}$. Using some fixed trivialization $\tau | D_i^{2^n} \approx D_i^{2^n} \times R^{2^n}$ and $\tau' | D_i^{2^n} \approx R^{2^n}$, we can express

$$\begin{array}{c} \alpha \mid S_i^{2n-1} : S_i^{2n-1} \times R^{2n} \to S_i^{2n-1} \times R^{2n} \\ & \underset{\tau \mid S_i^{2n-1}}{\wr} \quad & \underset{\tau' \mid S_i^{2n-1}}{\wr} \end{array}$$

in the following form;

 $\alpha(x, y) = (x, f_i(x)y)$, where $f_i(x) \in O(2n)$.

By definition $c(\sigma_i^{2n}) = \{f_i\}$, the homotopy class of f_i in $\pi_{2n-1}(O(2n))$. And by our assumption on α , $\{f_i\} \in \text{Ker } i_*$.

Let $\pi: O(2n) \to S^{2^{n-1}}$ be the projection given by $\pi(r) = re$, where *e* is a base point of $S^{2^{n-1}}$. Then the following composition of homomorphisms

$$k: \text{Ker } i_* = Z \to \pi_{2n-1}(O(2n)) \to \pi_{2n-1}(S^{2n-1}) = Z$$

is the multiplication by two. (cf. [7]). Let $k_*: H^{2^n}(M, \text{ Ker } i_*) \to H^{2^n}(M, \pi_{2n-1}(S^{2^{n-1}}))$ be the induced homomorphism. Then the both groups are isomorphic to Z since the coefficients are twisted in case M is non-orientable, and k_* is also the multiplication by two. Therefore, if $k_* \{c\} = 0$, then $\{c\} = 0$ and we are through.

Let [M] and [M'] be the fundamental homology classes of M and M'. Let \langle , \rangle be the Kronecker product which gives the duality of $H^{2n}(M, \pi_{2n-1}(S^{2n-1}))$ and $H_{2n}(M, \pi_{2n-1}(S^{2n-1}))$. Let $X(\tau), X(\tau')$ be the Euler classes of τ and τ' . Then

> $\langle X(\tau), [M] \rangle = \langle X(\tau(M)), [M] \rangle =$ the Euler number of M. $\langle X(\tau), [M] \rangle = \langle f^*X(\tau(M')), [M] \rangle$ $= \langle X(\tau(M')), [M'] \rangle$ = the Euler number of M'.

Since M and M' are of the same homotopy type, the above shows that $X(\tau) = X(\tau')$. Thus our theorem will follow from

$$(*) \quad X(\tau) - X(\tau') = -k_* \{ c \} \in H^{2n}(M, \pi_{2n-1}(S^{2n-1})).$$

The proof of (*) proceeds as follows. First, we shall construct a 2*n*-plane bundle δ over M from the disjoint union $N \times R^{2^n} + \bigcup_i D_i^{2^n} \times R^{2^n}$ by identifying a point $(x, y) \in S_i^{2^{n-1}} \times R^{2^n} \subset N \times R^{2^n}$ with $(x, f_i(x)y) \in S_i^{2^{n-1}} \times R^{2^n} \subset$ $D_i^{2^n} \times R^{2^n}$. Define $s: N \to N \times R^{2^n}$ by $s(x) = (x, e), e \in S^{2^{n-1}} \subset R^{2^n}$. Then s is a non-zero section of δ over N, and the obstruction cohomology class for extending s to a non-zero section over M is the Euler class $X(\delta)$ of δ . But the construction of δ shows that $X(\delta)$ is represented by a cocycle dsuch that $d(\sigma_i^n) = \{\bar{f}_i\}$, where $\bar{f}_i: S_i^{2^{n-1}} \to S^{2^{n-1}}$ is given by $\bar{f}_i(x) = f_i(x)e$. Therefore, $d(\sigma_i^n) = k_{\sharp} c(\sigma_i^n)$, where k_{\sharp} is the induced cochain map by k: Ker $i_{\ast} \to \pi_{2^{n-1}}(S^{2^{n-1}})$.

Let $E(\tau)$ and $E(\tau')$ be the total spaces of τ and τ' respectively. τ has a non-zero section $t: N \to E(\tau)$, and the obstruction cohomology class for extending t over M is the Euler class $X(\tau)$. Since D_i^{2n} is contractible, $E(\tau)|D_i^{2n}$ can be identified with $D_i^{2n} \times R^{2n}$. Then $t|S_i^{2n-1}: S_i^{2n-1} \to E(\tau)|S_i^{2n-1} \subset D_i^{2n} \times R^{2n}$ may be given by $t(x) = (x, \bar{t}_i(x))$, where $\bar{t}_i(x) \in S^{2n-1} \subset R^{2n}$. And $X(\tau)$ is represented by the cocycle z_1 , defined by

$$z_1(\sigma_i^{2n}) = \{ \bar{t}_i \} \in \pi_{2n-1}(S^{2n-1}).$$

On the other hand, using $\alpha: E(\tau) | N \cong E(\tau') | N$ we have a non-zero section $t': N \to E(\tau')$ defined by $t'(x) = \alpha(t(x))$. $X(\tau')$ is the obstruction for extending t' over M. Since α is given by $\alpha(x, y) = (x, f_i(x)y)$ on S_i^{2n-1} , $X(\tau')$ is represented by the cocycle z_2 defined by $z_2(\sigma_i^{2n}) = \{\bar{t}'_i\} \in \pi_{2n-1}(S^{2n-1})$, where $\bar{t}'_i(x) = f_i(x)\bar{t}_i(x)$ for $x \in S_i^{2n-1}$. Thus, (*) is proved if we show $z_1(\sigma_i^{2n}) - z_2(\sigma_i^{2n}) = -d(\sigma_1^{2n})$. And this follows from $\{\bar{t}_i\} - \{\bar{t}'_i\} = -\{\bar{f}_i\}$ in $\pi_{2n-1}(S^{2n-1})$.

Define $g_i, g'_i: S_i^{2n-1} \to O(2n) \times S^{2n-1}$ by $g_i(x) = (1, \bar{t}_i(x))$, and $g'_i(x) = (f_i(x), \bar{t}_i(x))$, where $1 \in O(2n)$ is the unit. Let $\phi: O(2n) \times S^{2n-1} \to S^{2n-1}$ be the canonical operation of O(2n) on S^{2n-1} . Then $\bar{t}_i = \phi \circ g_i$ and $\bar{t}'_i = \phi \circ g'_i$.

Consider the following sequence of homomorphisms.

$$\pi_{2n-1}(S_{i}^{2n-1}) \xrightarrow{g_{i*}}_{g_{i'*}} \pi_{2n-1}(O(2n) \times S^{2n-1}) \xrightarrow{\phi_{*}}_{\pi_{2n-1}} \pi_{2n-1}(S^{2n-1})$$

$$\parallel \\ \pi_{2n-1}(O(2n)) \oplus \pi_{2n-1}(S^{2n-1})$$

Let $\iota \in \pi_{2n-1}(S_i^{2n-1})$ be the canonical generator. Then $\phi * \circ g_{i*}(\iota) = \{\bar{t}_i\}$ and $\phi * \circ g'_{i*}(\iota) = \{\bar{t}'_i\}$. Therefore, $\{\bar{t}_i\} - \{\bar{t}'_i\} = \phi * (g_{i*} - g'_{i*})(\iota)$. Since $g_{i*}(a) = O + \bar{t}_{i*}(a)$ and $g'_i(a) = f_{i*}(a) \oplus \bar{t}_{i*}(a)$, we have $\{\bar{t}_i\} - \{\bar{t}'_i\} = -\phi * \circ (f_{i*}(\iota) \oplus O) = -\phi * (f_{i*}(\iota) \oplus C_*(\iota))$, where $C : S_i^{2n-1} \to S^{2n-1}$ is the constant map given by C(x) = e.

On the other hand, put $h_i: S_i^{2n-1} \to O(2n) \times S^{2n-1}$ by $h_i(x) = (f_i(x), e) = (f_i(x), C(x))$. Then $\bar{f}_i = \phi \circ h_i$ and it is clear that

$$\{\bar{f}_i\} = \phi * \circ h_{i*}(\iota) = \phi * (f_{i*}(\iota) \oplus C_*(\iota)). \quad \text{Thus, } \{\bar{t}_i\} - \{\bar{t}'_i\} = -\{\bar{f}_i\}.$$

This completes the proof.

ADDENDUM. Let M, M' be oriented closed smooth 2n-manifolds of the same homotopy type. Suppose we are given a homotopy equivalence such that $f^*\tau(M')$ is stably equivalent to $\tau(M)$ as an oriented bundle. Then $f^*\tau(M')$ is equivalent to $\tau(M)$ as an oriented bundle.

This follows completely analogously to our proof.

CONJECTURE. Can our theorem be generalized to the odd dimensional case?

References

- [1] G.E. Bredon and A. Kosinski: Vector fields on π -manifolds, Ann. Math. 84 (1966), 85–90.
- [2] H. Ishimoto: A note on homotopy invariance of tangent bundles, Nagoya Math. J., 31 (1968), 247-250.
- [3] M. Keraire, Some nonstable homotopy groups of Lie groups, Ill. J. Math., 4 (1960), 161-169.
- [4] B. Mazur: Stable equivalence of differentiable manifolds, Bull. Amer. Math. Soc. 67 (1961), 377–384.
- [5] S.P. Novilov: Homotopically equivalent smooth manifolds, I. Izvestia Akad. Nauk. SSSR 28 (1964), 365–474. Amer. Math. Soc. Translation, (2) 48 (1965), 271–396.
- [6] K. Shiraiwa: A note on tangent bundles, Nagoya Math. J. 29 (1967), 259-267.
- [7] N.E. Steenrod: The topology of fibre bundles, Princeton University Press, 1951.

Nagoya University.