K. Shikishima-Tsuji and M. Katsura Nagoya Math. J. Vol. 125 (1992), 93-103

HYPERTRANSCENDENTAL ELEMENTS OF A FORMAL POWER-SERIES RING OF POSITIVE CHARACTERISTIC

KAYOKO SHIKISHIMA-TSUJI AND MASASHI KATSURA

§0. Introduction

Throughout this paper, we denote by N, Q and R the set of all natural numbers containing 0, the set of all rational numbers, and the set of all real numbers, respectively.

Let K be a fixed field of positive characteristic p and K_a an algebraic closure of K. We denote by K[X] the formal power-series ring and by $d = (d_{\mu}; \mu \in \mathbf{N})$ the formal derivation of K[X], i.e., for every $A = \sum_{i=0}^{\infty} a_i X^i$ $\in K[X]$, the μ -th derivative $d_{\mu}A$ of A is defined by

$$d_{\mu}A=\sum_{i=\mu}^{\infty}inom{i}{\mu}a_{i}X^{i-\mu}.$$

For differential rings and differential fields of positive characteristic, see Okugawa [4].

This paper contains three theorems. Let A be an element $\sum_{i=0}^{\infty} a_i X^i$ of K[[X]]. We say that A is hypertranscendental over K, if, for every $\mu \in \mathbf{N}, A, d_1A, \dots, d_{\mu}A$ are algebraically independent over K(X). When the characteristic of the field is zero, the existence of hypertranscendental elements is well-known (see D. Hilbert [1], O. Hölder [2], F. Kuiper [3]). Theorem 1 shows the existence of hypertranscendental elements in case of positive characteristic.

Let L be a differential field and S a subset of a differential extension field of L. We say that S is differentially independent over L or all the elements of S are differentially independent over L, if for every $\mu \in \mathbf{N}$ and elements s_1, \dots, s_{μ} of S, there are no nonzero differential polynomial $F(X_1, \dots, X_{\mu}) \in L\{X_1, \dots, X_{\mu}\}$ such that $F(s_1, \dots, s_{\mu}) = 0$.

Theorem 2 states that there are infinitely many hypertranscendental

Received February 21, 1991.

elements in K[X] over K which are differentially independent over K.

If an element of K[X] is differentially quasi-algebraic over K (see K. Shikishima-Tsuji [5]), then

$$\lim_{s o \infty} rac{1}{s} \operatorname{tr} \deg \left\{ d_{\mu} A
ight; \; \mu < s
ight\} / K(X) = 0 \, .$$

If A is hypertranscendental over K, then

$$\lim_{s o \infty} rac{1}{s} \operatorname{tr} \deg \left\{ d_{_{\mu}} A \, ; \, \, \mu < s
ight\} / K(X) = 1 \, .$$

Let A be hypertranscendental over K. It can be easily shown that, for every 0 < r < p, the formal power series $B = d_{p-r}A$ satisfies the equation

$$\lim_{s o \infty} rac{1}{s} \operatorname{tr} \deg \left\{ d_{\mu}B; \; \mu < s
ight\} / K(X) = rac{r}{p} \; .$$

For every $\alpha \in \mathbf{R}$ $(0 \le \alpha \le 1)$, there exists a formal power series B_{α} of $K \llbracket X \rrbracket$ such that

$$\lim_{s o \infty} rac{1}{s} \operatorname{tr} \deg \left\{ d_{\mu} B_{a}; \ \mu < s
ight\} / K(X) = lpha \, .$$

This is Theorem 3.

§1.

For $m, n \in \mathbb{N}$, the binomial coefficient $\binom{m}{n}$ equals $\frac{m!}{n!(m-n)!}$ in case $m \ge n$, otherwise zero.

LEMMA 1. Let $m, n \in \mathbb{N}$. If $m = \sum_{i=0}^{e} m_i p^i$ and $n = \sum_{i=0}^{e} n_i p^i$ are the p-adic expressions of m and n respectively, then

(1)
$$\binom{m}{n} \equiv \binom{m_0}{n_0} \cdots \binom{m_e}{n_e} \pmod{p}.$$

Proof. By expanding both sides of the identity over the prime field of characteristic p:

$$(1 + x)^m = (1 + x)^{m_0}(1 + x^p)^{m_1}(1 + x^{p^2})^{m_2} \cdots (1 + x^{p^e})^{m_e},$$

and comparing the coefficients of x^n , we obtain the congruence (1). q.e.d.

LEMMA 2. Let m, n, e, t be natural numbers. For $t < p^{e}$, we have the

following statements:

(1) If
$$m \equiv n \pmod{p^e}$$
, then $\binom{m}{t} \equiv \binom{n}{t} \pmod{p}$.

(2) If
$$m \equiv r \pmod{p^e}$$
 and $0 \leq r \leq t-1$, then $\binom{m}{t} \equiv 0 \pmod{p}$.

(3) If $m \equiv t \pmod{p^{e}}$, then $\binom{m}{t} \equiv 1 \pmod{p}$.

Proof. (1) Let $m = \sum_{i=0}^{\alpha} m_i p^i$, $n = \sum_{i=0}^{\alpha} n_i p^i$ and $t = \sum_{i=0}^{\alpha} t_i p^i$ be the *p*-adic expressions of *m* and *n* respectively. Since $m \equiv n \pmod{p^e}$, we have $m_0 = n_0, \dots, m_{e-1} = n_{e-1}$. Lemma 1 implies that

$$egin{pmatrix} {m \choose t} \equiv {m_0 \choose t_0} \cdots {m_{e-1} \choose t_{e-1}} {m_e \choose 0} \cdots {m_{\alpha} \choose 0} \ \equiv {n_0 \choose t_0} \cdots {n_{e-1} \choose t_{e-1}} {n_e \choose 0} \cdots {n_{\alpha} \choose 0} \equiv {n \choose t} \pmod{p}.$$

(2) Since $r \le t - 1$, we have $\binom{r}{t} = 0$. By (1), we have

$$\binom{m}{t} \equiv \binom{r}{t} \pmod{p}.$$

(3) By (1), we have

$$\binom{m}{t} \equiv \binom{t}{t} \pmod{p}.$$
 q.e.d.

Let B be a formal power series of K[X]. We denote the leading degree of B by v(B) (i.e., if $B = \sum_{i=r}^{\infty} b_i X^i$ and $b_r \neq 0$, then v(B) = r and if B = 0, then $v(B) = \infty$).

THEOREM 1. Let A be an element $\sum_{i=0}^{\infty} a_i X^{m_i}$ of K[[X]] with nonzero $a_i \in K$ $(i \in \mathbb{N})$ and $m_0 < m_1 < m_2 < \cdots$ be natural numbers. If A satisfies the following condition, then A is hypertranscendental over K.

For any $e, s \in \mathbf{N}$, there exist natural numbers $i_0 < i_1 < i_2 < \cdots$ such that

(1)
$$m_{i_j} \equiv s \pmod{p^e}$$
 and $\lim_{j \to \infty} \frac{m_{i_j}}{m_{i_{j-1}}} = \infty$.

Proof. Suppose A is not hypertranscendental over K_a . Then, there is a positive integer μ such that $A, d_1A, \dots, d_{\mu}A$ are algebraically dependent over $K_a(X)$, that is, there exists a non-zero polynomial $F(X, Y_0, \dots, Y_{\mu}) \in K_a[X, Y_0, \dots, Y_{\mu}]$ which satisfies the following two conditions:

- (2) $F(X, A, d_1A, \dots, d_{\mu}A) = 0.$
- (3) If G(X, Y₀, ..., Y_μ) is non-zero polynomial such that G(X, A, d₁A, ..., d_μA) = 0, then the total degree of G is not smaller than that of F. We see that F is irreducible by the condition (3).

Let c_1 and c_2 be the degrees of F on X and on Y_0, \dots, Y_{μ} , respectively. We take a natural number e such that $\mu < p^e$. By the assumption (1), there exist $k_0, k_1, \dots, k_{\mu} \in \mathbb{N}$ such that the following conditions hold for every s ($0 \le s \le \mu$);

(4) $m_{k_{s}-1} \ge c_{1} + \mu,$ (5) $m_{k_{s}} \ge (c_{2} + 1)m_{k_{s}-1},$ (6) $m_{k_{s}} \equiv s \pmod{p^{e}},$ and,

(7)
$$m_{k_s} > v \Big(\frac{\partial F}{\partial Y_t}(X, A, d_1 A, \dots, d_{\mu} A) \Big) + 2\mu$$
, for every $t \ (0 \le t \le \mu)$ such that $\frac{\partial F}{\partial Y_t}(X, A, d_1 A, \dots, d_{\mu} A) \ne 0.$

Let

$$G_s = \sum_{i=0}^{k_s-1} a_i X^{m_i}$$
 and $B_s = \sum_{i=k_s}^{\infty} a_i X^{m_i}$ $(0 \le s \le \mu).$

By Taylor's expansion, we have

$$0 = F(X, A, d_1A, \cdots, d_{\mu}A)$$

= $F(X, G_s, d_1G_s, \cdots, d_{\mu}G_s) + \sum_{t=0}^{\mu} d_t B_s \frac{\partial F}{\partial Y_t}(X, A, d_1A, \cdots, d_{\mu}A) - E_s$

where E_s is a sum of terms of degree ≥ 2 in $\{B_s, d_1B_r, \dots, d_{\mu}B_s\}$. We have

$$\deg F(X,\,G_s,\,d_1G_s,\,\cdots,\,d_\mu G_s) \leq c_1\,+\,c_2m_{k_s-1}\,,
onumber \ v\Big(d_\iota B_srac{\partial F}{\partial Y_\iota}(X,\,A,\,d_1A,\,\cdots,\,d_\mu A)\Big) \geq v(d_\iota B_s) \geq m_{k_s}-t\,,$$

and

(8)
$$v(E_s) \ge \min_{0 \le t_1, t_2 \le \mu} \{v(d_{t_1}B_s d_{t_2}B_s)\} \ge 2(m_{k_s} - \mu).$$

Hence, by (4) and (5), we have

$$\begin{split} v\Big(\sum_{t=0}^{\mu} d_t B_s \frac{\partial F}{\partial Y_t}(X, A, d_1 A, \cdots, d_{\mu} A) - E_s\Big) \\ \geq m_{k_s} - \mu > (c_2 + 1) m_{k_s - 1} - \mu \\ \geq c_2 m_{k_s - 1} + c_1 \geq \deg F(X, G_s, d_1 G_s, \cdots, d_{\mu} G_s) \end{split}$$

96

Therefore, $F(X, G_s, d_1G_s, \cdots, d_{\mu}G_s) = 0$ and

(9)
$$\sum_{i=0}^{\mu} d_i B_s \frac{\partial F}{\partial Y_i}(X, A, d_1 A, \cdots, d_{\mu} A) = E_s \quad (s = 0, 1, \cdots, \mu).$$

Let

$$W=\detegin{pmatrix} B_0&d_1B_0&\cdots &d_\mu B_0\ &\cdots&\cdots&\cdots\ B_\mu&d_1B_\mu&\cdots &d_\mu B_\mu \end{pmatrix},$$

and

$$V_{\iota} = \detegin{pmatrix} B_{_0} & d_{_1}B_{_0} & \cdots & d_{_{\iota-1}}B_{_0} & E_{_0} & d_{_{\iota+1}}B_{_0} & \cdots & d_{_{\mu}}B_{_0} \ & & \cdots & \cdots & \cdots & \cdots \ & & & & & & \ B_{_{\mu}} & d_{_1}B_{_{\mu}} & \cdots & d_{_{\iota-1}}B_{_{\mu}} & E_{_{\mu}} & d_{_{\iota+1}}B_{_{\mu}} & \cdots & d_{_{\mu}}B_{_{\mu}} \end{pmatrix}$$

On the other hand, $d_i B_s = \sum_{i=k_s}^{\infty} \binom{m_i}{t} a_i X^{m_i - t}$, and by (6) and Lemma 2,

$$\binom{m_{k_s}}{s}=1, \quad \binom{m_{k_s}}{s+1}=\cdots=\binom{m_{k_s}}{\mu}=0.$$

Hence, the coefficient of the leading form of the power series W is $a_{k_0} \cdots a_{k_{\mu}}$ and $v(W) = m_{k_0} + \cdots + m_{k_{\mu}} - \frac{\mu(\mu+1)}{2}$. Therefore, $W \neq 0$. By Cramer's rule, (9) implies

(10)
$$W\frac{\partial F}{\partial Y_t}(X, A, d_1A, \cdots, d_{\mu}A) = V_t.$$

We have

$$egin{aligned} & v(V_t) \geq \min_{0 \leq s \leq
u} \left\{ \left(m_{k_0} + \, \cdots \, + \, m_{k_{||}} - \, rac{\mu(\mu \, + \, 1)}{2}
ight) - (m_{k_s} - t) \, + \, v(E_s)
ight\} \ & \geq v(W) \, + \, \min_{0 \leq s \leq \mu} \left\{ v(E_s) \, - \, m_{k_s}
ight\} \, . \end{aligned}$$

If $\frac{\partial F}{\partial Y_{\iota}}(X, A, d_{1}A, \dots, d_{\mu}A) \neq 0$, then by (7), (8) and (10), we have

$$egin{aligned} &v\Big(rac{\partial F}{\partial Y_t}(X,\,A,\,d_1A,\,\cdots,\,d_\mu A)\Big)=v(V_t)-v(W)\ &\geq \min_{0\leq s\leq \mu}\left\{v(E_s)-m_{k_s}
ight\}\ &\geq \min_{0\leq s\leq \mu}\left\{m_{k_s}-2\mu
ight\}>v\Big(rac{\partial F}{\partial Y_t}(X,\,A,\,d_1A,\,\cdots,\,d_\mu A)\Big)\,, \end{aligned}$$

which is a contradiction. Therefore, we have

KAYOKO SHIKISHIMA-TSUJI AND MASASHI KATSURA

$$rac{\partial F}{\partial Y_\iota}(X,A,d_\imath A,\cdots,d_\mu A)=0 \quad (0\leq t\leq \mu)\,.$$

By the assumption (3), we have

$$\frac{\partial F}{\partial Y_t}(X, Y_0, \cdots, Y_{\mu}) = 0 \quad (0 \le t \le \mu) \,.$$

Since F is irreducible, it follows that $F(X, Y_0, \dots, Y_{\mu}) \in K_a[X, Y_0^p, \dots, Y_{\mu}^p]$ and there exist $F_0, \dots, F_{p-1} \in K_a[X^p, Y_0^p, \dots, Y_{\mu}^p]$ such that

$$F(X, Y_0, \dots, Y_{\mu}) = F_0(X, Y_0, \dots, Y_{\mu}) + XF_1(X, Y_0, \dots, Y_{\mu}) + \dots + X^{p-1}F_{p-1}(X, Y_0, \dots, Y_{\mu}).$$

Since $F(X, d_1A, \dots, d_{\mu}A) = 0$ and $F_i(X, d_1A, \dots, d_{\mu}A) \in K_a[X^p]$ $(i = 0, \dots, p - 1)$, we have

 $F_i(X, d_1A, \dots, d_\mu A) = 0$ $(i = 0, \dots, p - 1).$

Since K_a is perfect, there exist $G_0, \dots, G_{p-1} \in K_a[X, Y_0, \dots, Y_{\mu}]$ such that

 $F_i(X, \, Y_{\scriptscriptstyle 0}, \, \cdots, \, Y_{\scriptscriptstyle \mu}) = (G_i(X, \, Y_{\scriptscriptstyle 0}, \, \cdots, \, Y_{\scriptscriptstyle \mu}))^p \quad (i = 0, \, \cdots, p \, - \, 1) \, .$

Since $G_i(X, d_1A, \dots, d_\mu A) = 0$ $(i = 0, \dots, p - 1)$, (3) implies that

$$G_i(X, Y_0, \dots, Y_{\mu}) = 0$$
 $(i = 0, \dots, p - 1)$.

It follows that $F(X, Y_0, \dots, Y_{\mu}) = 0$. This is a contradiction. q.e.d.

By this theorem, the power series

$$\sum_{i=0}^{\infty} X^{p^{i^2+i}}, \quad \sum_{i=0}^{\infty} X^{i^ip+i}$$
 and $\sum_{i=0}^{\infty} X^{i!+i}$

are hypertranscendental.

§ 2.

Let $A = \sum_{i=0}^{\infty} a_i X^i$ be a formal power series of K[X]. For $e \in \mathbb{N}$ and $k \in \{0, 1, \dots, p^e - 1\}$ we denote the power series $\sum_{i=0}^{\infty} a_{k+ip^e} X^{ip^e}$ by $A_k^{(e)}$. Then, $A_0^{(e)}, \dots, A_{p^{e-1}}^{(e)}$ are elements of $K[X^{p^e}]$ and we have

$$A = A_0^{(e)} + X A_1^{(e)} + \cdots + X^{p^{e-1}} A_{p^{e-1}}^{(e)}.$$

THEOREM 2. Let $A = \sum_{i=1}^{\infty} a_i X^i$ be hypertranscendental. For each t $(t = 1, \dots, p - 1)$ and $s \in \mathbf{N} - \{0\}$, let

$$B_{s,t} = (A_{tp^{s-1}}^{(s)})^{p-s} = \sum_{i=0}^{\infty} (a_{tp^{s-1}+ip^s})^{p-s} X^i$$

https://doi.org/10.1017/S0027763000003913 Published online by Cambridge University Press

Then, $\{B_{s,t}; s \in \mathbb{N} - \{0\}, t = 1, \dots, p - 1\}$ are differentially independent over $K_a(X)$.

Remark. Let $m_0 < m_1 < m_2 < \cdots$ be a sequence of natural numbers satisfying the condition (1) of Theorem 1. The power series $A = \sum_{i=0}^{\infty} a_i X^i$ where $a_i = 1$ if *i* equals some m_j ($j \in \mathbf{N}$), otherwise 0, is hypertranscendental over *K* by Theorem 1. Therefore, by Theorem 2, $B_{s,t} = \sum_{i=0}^{\infty} a_{tp^{s-1}+ip^s} X^i$ ($s \in \mathbf{N} - \{0\}, t = 1, \cdots, p - 1$) are differentially independent over K(X).

Proof of Theorem 2. By $A_0^{(s-1)} = \sum_{t=0}^{p-1} X^{tp^{s-1}} A_{tp^{s-1}}^{(s)}$, we have $A = A_0^{(e)} + \sum_{s=1}^{e} \sum_{t=1}^{p-1} X^{tp^{s-1}} A_{tp^{s-1}}^{(s)}$.

Hence, for $1 \le \mu \le p^e - 1$,

$$d_{\mu}A = d_{\mu}A_{0}^{(e)} + \sum_{s=1}^{e} \sum_{t=1}^{p-1} \sum_{v_{1}+v_{2}=\mu} d_{v_{1}}X^{tp^{s-1}}d_{v_{2}}A_{tp^{s-1}}^{(s)}$$

For every $u, d_v A_u^{(r)} \neq 0$ implies $p^r | v$. Then, $d_{\mu} A \in K(X, d_{vp^s} A_{tp^{s-1}}^{(s)}; s = 1, 2, \dots, e, t = 1, 2, \dots, p - 1, v = 0, 1, \dots, p^{e^{-s}} - 1$). Hence,

 $egin{aligned} &K(X,\,d_{\mu}A\,;\;\mu=1,\,2,\,\cdots,p^{e}-1)\ &\subseteq K(X,\,d_{vp^{s}}A_{tp^{s-1}}^{(s)};\,s=1,\,2,\,\cdots,e,\,t=1,\,2,\,\cdots,p-1,\,v=0,\,1,\,\cdots,p^{e^{-s}}-1). \end{aligned}$ Since A is hypertranscendental,

$$egin{aligned} & ext{tr} \deg \left\{ {d_{vp^s}A_{tp^{s-1}}^{(s)};\,s=1,\,2,\,\cdots,\,e,\,t=1,\,2,\,\cdots,\,p-1,\,v=1,\,2,\,\cdots,\,p^{e^{-s}}-1
ight\}/K_a(X) \ &\geq ext{tr} \deg \left\{ {d_\mu A};\,\mu=1,\,2,\,\cdots,\,p^e-1
ight\}/K_a(X)=p^e-1\,. \end{aligned}$$

However, the cardinality of the set $\{(s, t, v); s = 1, 2, \dots, e, t = 1, 2, \dots, p - 1, v = 0, 1, \dots, p^{e-s} - 1\}$ is $(p-1)(p^{e-1} + p^{e-2} + \dots + p + 1) = p^e - 1$. Hence, $\{d_{vp^s}A_{tp^{s-1}}^{(s)}; s = 1, 2, \dots, e, t = 1, 2, \dots, p - 1, v = 0, 1, \dots, p^{e-s} - 1\}$ are algebraically independent over $K_a(X)$. Since, $d_{vp^s}A_{tp^{s-1}}^{(s)} = d_{vp^s}(B_{s,t})^{p^s} = (d_v B_{s,t})^{p^s}$, we see that

$$\{d_v B_{s,t}; s = 1, 2, \dots, e, t = 1, 2, \dots, p - 1, v = 0, 1, \dots, p^{e-s} - 1\}$$

are algebraically independent over $K_a(X)$. Thus, we have the conclusion. q.e.d.

§ 3.

For $k \in \mathbf{N}$, we associate the real number $\langle\!\langle k \rangle\!\rangle$ as follows: If

$$k = k_0 + k_1 p + \dots + k_{e^{-1}} p^{e^{-1}}$$
 $(0 \le k_i \le p - 1)$

is the *p*-adic expression, then

$$\langle\!\langle k
angle\!
angle = rac{k_{\scriptscriptstyle 0}}{p} + rac{k_{\scriptscriptstyle 1}}{p^{\scriptscriptstyle 2}} + \cdots + rac{k_{e^{-1}}}{p^{e}}$$

For a set S, the cardinal number of S is denoted by #S.

LEMMA 3. Let $\alpha \in \mathbf{R}$ ($0 \le \alpha \le 1$). Then,

$$\lim_{s o\infty}rac{1}{s}\, \sharp\{\lambda\in {f N};\; \lambda\leq s-1,\; \langle\!\langle\lambda
angle\!\rangle\leq lpha\}=lpha \quad (s\in {f N})\, .$$

Proof. Let $\alpha = \frac{\alpha_0}{p} + \frac{\alpha_1}{p^2} + \cdots$ be the *p*-adic expression of α , where there is no *n* such that $\alpha_n = \alpha_{n+1} = \cdots = p - 1$. We fix a natural number *s* and associate $e = e(s) \in \mathbf{N}$ with *s* by $p^{e-1} \leq s < p^e$. The set

$$\Big\{\lambda \in \mathbf{N}; \ \lambda \leq s-1, \ \langle\!\langle \lambda \rangle\!\rangle \leq rac{lpha_0}{p} + \cdots + rac{lpha_{e^{-1}}}{p^e}\Big\}$$

is the disjoint union of the following sets:

$$T_{ij} = \{\lambda = \lambda_0 + \lambda_1 p + \dots + \lambda_{e-1} p^{e-1}; \ \lambda_0 = \alpha_0, \ \lambda_1 = \alpha_1, \dots, \lambda_{i-1} = \alpha_{i-1}, \\ \lambda_i = j, \ \lambda \le s-1\} \quad (i=0, 1, \dots, e-1, j=0, 1, \dots, \alpha_i-1).$$

Let $s = s_0 + s_1 p + \cdots + s_{e^{-1}} p^{e^{-1}}$ be the *p*-adic expressions of *s*. If $\alpha_0 + \alpha_1 p + \cdots + \alpha_{i-1} p^{i-1} + j p^i < s_0 + s_1 p + \cdots + s_i p^i$, then

$$\#T_{ij} = s_{i+1} + s_{i+2}p + \cdots + s_{e-1}p^{e-i-2}.$$

If $\alpha_0 + \alpha_1 p + \cdots + \alpha_{i-1} p^{i-1} + j p^i \ge s_0 + s_1 p + \cdots + s_i p^i$, then

$$\# T_{ij} = s_{i+1} + s_{i+2}p + \cdots + s_{e-1}p^{e-i-2} - 1$$

In any case, we have

$$rac{s}{p^{i+1}} - 1 \leq \# T_{ij} \leq rac{s}{p^{i+1}} \, .$$

It follows that

$$\begin{split} s\Big(\alpha - \frac{1}{p^{e(s)}}\Big) &- (p-1)e(s) \\ &\leq s\Big(\frac{\alpha_0}{p} + \frac{\alpha_1}{p^2} + \dots + \frac{\alpha_{e-1}}{p^e}\Big) - (\alpha_0 + \alpha_1 + \dots + \alpha_{e-1}) \\ &= \alpha_0\Big(\frac{s}{p} - 1\Big) + \alpha_1\Big(\frac{s}{p^2} - 1\Big) + \alpha_{e-1}\Big(\frac{s}{p^e} - 1\Big) \\ &\leq \sum_{i=0}^{e-1} \sum_{j=0}^{\alpha_i-1} \sharp T_{ij} \end{split}$$

100

$$\leq \sharp \left\{ \lambda \in \mathbf{N} | \lambda \leq s - 1, \langle \langle \lambda \rangle \rangle < \frac{\alpha_0}{p} + \frac{\alpha_1}{p^2} + \dots + \frac{\alpha_{e^{-1}}}{p^e} \right\}$$

$$\leq \sharp \left\{ \lambda \in \mathbf{N} | \lambda \leq s - 1, \langle \langle \lambda \rangle \rangle \leq \alpha \right\}$$

$$\leq \sharp \left\{ \lambda \in \mathbf{N} | \lambda \leq s - 1, \langle \langle \lambda \rangle \rangle < \frac{\alpha_0}{p} + \frac{\alpha_1}{p^2} + \dots + \frac{\alpha_{e^{-1}}}{p^e} \right\} + 1$$

$$\leq \sum_{i=0}^{e^{-1}} \sum_{j=0}^{\alpha_i - 1} \sharp T_{ij} + 1$$

$$\leq \alpha_0 \frac{s}{p} + \alpha_1 \frac{s}{p^2} + \alpha_{e^{-1}} \frac{s}{p^e} + 1$$

$$= s \left(\frac{\alpha_0}{p} + \frac{\alpha_1}{p^2} + \dots + \frac{\alpha_{e^{-1}}}{p^e} \right) + 1$$

$$\leq s\alpha + 1.$$

Since $\lim_{s \to \infty} \left(\alpha - \frac{1}{p^{e(s)}} - \frac{(p-1)e(s)}{s} \right) = \lim_{s \to \infty} \left(\alpha + \frac{1}{s} \right) = \alpha$, we have the conclusion. q.e.d.

LEMMA 4. A power series A is hypertranscendental over K if and only if $\{A_0^{(e)}, \dots, A_{p^{e-1}}^{(e)}\}$ is algebraically independent over K(X) for every $e \in \mathbf{N}$.

Proof. It is easy to see that if $\mu \leq p^e - 1$, then

$$d_{\mu}A_{k}^{(e)}=d_{\mu}(\sum_{i=0}^{\infty}a_{k+i\,p^{e}}X^{i\,p^{e}})=0$$

for $k \in \{0, 1, \dots, \mu\}$. Since $A = A_0^{(e)} + XA_1^{(e)} + \dots + X^{p^e-1}A_{p^{e-1}}^{(e)}$, the vector space spanned by $A, Xd_1A, \dots, X^{p^{e-1}}d_{p^{e-1}}A$ over K coincides with the vector space spanned by $A_0^{(e)}, XA_1^{(e)}, \dots, X^{p^{e-1}}A_{p^{e-1}}^{(e)}$ over K. q.e.d.

THEOREM 3. For any $\alpha \in \mathbf{R}$ ($0 \le \alpha \le 1$), there exists a formal power series B of K[X] such that

$$\lim_{s\to\infty}\frac{1}{s}\operatorname{tr} \operatorname{deg} \{B, \ d_1B, \ \cdots, \ d_{s-1}B\}/K(X) = \alpha \quad (s\in \mathbf{N}).$$

Proof. Let $A = \sum_{i=0}^{\infty} a_i X^i$ be hypertranscendental. We consider the formal power series $B = \sum_{i=0}^{\infty} \varepsilon_i a_i X^i$ with $\varepsilon_i = 0$ if $\langle\!\langle i \rangle\!\rangle > \alpha$ and $\varepsilon_i = 1$ if $\langle\!\langle i \rangle\!\rangle \le \alpha$. Let $\alpha = \frac{\alpha_0}{p} + \frac{\alpha_1}{p^2} + \cdots$ be the *p*-adic expression of α , where there is no *n* such that $\alpha_n = \alpha_{n+1} = \cdots = p - 1$. We fix a natural number *s* and associate

$$e = e(s) \in \mathbf{N}$$
 by $p^{e-1} \leq s < p^e$,
 $t = \alpha_0 + \alpha_1 p + \cdots + \alpha_{e-1} p^{e-1}$

and

$$eta = \langle\!\langle t \rangle\!\rangle = rac{lpha_0}{p} + rac{lpha_1}{p^2} + \cdots + rac{lpha_{e-1}}{p^e}$$

For every $k \in \mathbf{N}$ $(k < p^e)$ such that $\langle\!\langle k \rangle\!\rangle > \alpha$ and every $i \in \mathbf{N}$, we have $\langle\!\langle ip^e + k \rangle\!\rangle \geq \langle\!\langle k \rangle\!\rangle > \alpha$. By the definition of B, we have

$$B_k^{(e)} = \sum_{i=0}^{\infty} \varepsilon_{k+ip} a_{k+ip} X^{ip} = 0$$

Therefore,

 $(1) \quad \text{if} \quad \langle\!\langle k \rangle\!\rangle > \alpha \quad \text{then} \quad B_k^{\scriptscriptstyle(e)} = 0 \, .$

For each $j \in \mathbf{N}$ $(j < p^{\epsilon})$, either $\langle\!\langle k \rangle\!\rangle > \langle\!\langle j \rangle\!\rangle$ or else $\langle\!\langle j \rangle\!\rangle > \alpha$. In the former case, we have $\binom{j}{k} = 0$ by Lemma 1. In the latter case, we have $B_{j}^{(e)} = 0$ by (1). Hence we have

$$d_kB=\sum_{j=k}^{p^{e-1}}\binom{j}{k}B_j^{(e)}X^{j-k}=0\,.$$

Therefore,

(2) if $\langle\!\langle k \rangle\!\rangle > \alpha$ then $d_k B = 0$.

It follows that

$$K(X, B, d_1B, d_2B, \cdots, d_{s-1}B) = K(X)(d_kB; k \leq s-1, \langle\!\langle k \rangle\!\rangle \leq \alpha).$$

Hence

(3) tr deg { $B, d_1B, d_2B, \cdots, d_{s-1}B$ }/ $K(X) \le \#$ { $k \in \mathbb{N}; k \le s-1, \langle \langle k \rangle \rangle \le \alpha$ }.

For every $k \in \mathbf{N}$ $(k < p^e)$ such that $\langle\!\langle k \rangle\!\rangle < \beta$ and every $i \in \mathbf{N}$, we have $\langle\!\langle ip^e + k \rangle\!\rangle < \langle\!\langle k \rangle\!\rangle + \frac{1}{p^e} \le \alpha$. By the definition of *B*, we have

$$B_{k}^{(e)} = \sum_{i=0}^{\infty} \varepsilon_{k+ip^{e}} a_{k+ip^{e}} X^{ip^{e}} = A_{k}^{(e)}$$
.

Therefore,

 $(4) \quad \text{if} \quad \langle\!\langle k \rangle\!\rangle < \beta \quad \text{then} \quad B_k^{\scriptscriptstyle(e)} = A_k^{\scriptscriptstyle(e)} \,.$

For any $k \in \mathbf{N}$ with $k < p^{\epsilon}$ and $\langle\!\langle k \rangle\!\rangle < \beta$ it follows from (1) and (4) that

$$d_{k}B=A_{k}^{\scriptscriptstyle(e)}+inom{t}{k}B_{\iota}^{\scriptscriptstyle(e)}X^{\iota_{-k}}+\suminom{i}{k}A_{\iota}^{\scriptscriptstyle(e)}X^{\iota_{-k}}$$

where the summation ranges over all i with $k < i < p^{e}$, $\langle i \rangle < \beta$. Therefore,

102

FORMAL POWER-SERIES RING

$$egin{aligned} K(X,B^{\scriptscriptstyle(e)}_\iota)(d_kB;k\leq s-1,\,k
eq t)(A^{\scriptscriptstyle(e)}_i;s\leq i< p^e,\,\langle\!\langle i
angle\!
angle$$

Since $\{A_k^{(e)}; 0 \le k < p^e, \langle\!\langle k \rangle\!\rangle < \beta\}$ is algebraically independent over K(X) by Lemma 4, we have

$$egin{aligned} & ext{tr deg } \{B,\, d_1B,\; d_2B,\; \cdots,\, d_{s-1}B\}/K(X) \ &\geq ext{tr deg } \{d_kB\,|\,k\leq s-1,\,k\neq t\}/K(X,\,B_t^{(e)}) \ &\geq \#\{k\in\mathbf{N};\,k\leq s-1,\,\langle\!\langle k
angle\!\rangle < eta\}-1\,. \end{aligned}$$

Since $\{k \in \mathbb{N}; k \leq s - 1, \langle\!\langle k \rangle\!\rangle < \beta\} = \{k \in \mathbb{N}; k \leq s - 1, \langle\!\langle k \rangle\!\rangle \leq \alpha\} - \{t\}$, we have

(5)
$$\operatorname{tr} \operatorname{deg} \{B, d_1B, d_2B, \cdots, d_{s-1}B\}/K(X) \\ \geq \sharp\{k \in \mathbf{N}; k \leq s-1, \langle\!\langle k \rangle\!\rangle \leq \alpha\} - 2.$$

Now the conclusion follows from (3), (5) and Lemma 3.

q.e.d.

The problem treated in this paper has been derived from a subject suggested by Professor Hideyuki Matsumura, for whom the authors are grateful.

References

- [1] D. Hilbert, Mathematische Probleme, C.R. du 2. congrès international des math., Paris 1902.
- [2] O. Hölder, Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen, Math. Ann., 28 (1886), 1-13.
- [3] F. Kuiper, On algebraic independence in differential rings, Proc. Kon. Ned. Akad. Wetensch., Ser. A67 (1964), 90-103.
- [4] K. Okugawa, "Differential Algebra of Nonzero Characteristic", Lectures in Mathematics, Department of Math. Kyoto Univ., 16, 1987.
- [5] K. Shikishima-Tsuji, Differentially quasi-algebraic extension of positive characteristic p, submitted.

Kayoko Shikishima-Tsuji Institute of Mathematics Yoshida College Kyoto University Kyoto 606, Japan

Masashi Katsura Department of Mathematics Faculty of Science Kyoto Sangyo University Kyoto 603, Japan