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Abstract

The problem of estimating the Minkowski content L0(G) of a body G ⊂ Rd is considered.
For d = 2, the Minkowski content represents the boundary length of G. It is assumed
that a ball of radius r can roll inside and outside the boundary of G. We use this
shape restriction to propose a new estimator for L0(G). This estimator is based on
the information provided by a random sample, taken on a square containing G, in which
we know whether a sample point is in G or not. We obtain the almost sure convergence
rate for the proposed estimator.
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1. Introduction

The aim of this work is to propose an estimator for the surface area of G. Therefore, in the
two-dimensional case, d = 2, our goal is the estimation of the boundary length of G. This
problem has been extensively considered, for example, in stereology; see [1, pp. 162–168] and
the references therein.

The length and surface area estimation can be thought of as a further step in nonparametric
set estimation theory. One of the goals in set estimation is to recover a set G, given a random
sample of points whose distribution is related to G. The set of interest may be the support of
a density, while the data is a sample drawn from this density. See [3] for more details. From
this set estimation point of view, the estimation of the length and surface area of G can be seen
as the problem of estimating an important geometric characteristic of a set which gives useful
information about its shape. For example (for the bidimensional case), the ‘contour index’,
which is defined as the ratio between the boundary length and the squared root of the area,
provides a scale-invariant measurement of boundary roughness. Its minimal value (2

√
π ) is

attained by the circle and it increases as the set becomes more fragmented. The contour index
has been used as an auxiliary diagnosis criterion in medical imaging. For example, in oncology
the irregularity in the border of a tumor may suggest a bad prognosis because the damage is
highly disseminated. See [4] for more details.

The case where G is assumed to be convex has been extensively analyzed in the literature,
probably owing to the fact that in this case there exists a quite natural estimator of G: the
convex hull of the sample. The perimeter and surface area of the convex hull of the sample can
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be successfully used for estimating the length and surface area of G. See [2] and [9] for more
details. However, assuming that G is convex may be too restrictive in practice. In a more general
framework there is no obvious estimator to be used. Recently, in [4], a universally consistent
estimator of the surface area L0(G) was proposed, without assuming any shape restriction on
G (except that L0(G) exists). Unfortunately, this estimator achieves a relatively slow rate of
convergence when G is smooth. The objective of this work is to propose an estimator of L0(G)

which improves the convergence rate attained in [4] for a large family of smooth sets which
includes convex sets. See Section 2 for the definition of this family.

The paper is organized as follows. In Section 2 we establish some notation and the precise
definition of the ‘surface area’. We also define the class of smooth sets we will work with. The
sampling model and the proposed estimator is introduced in Section 3. Finally, in Section 4
the almost sure convergence rate for the proposed estimator is obtained.

2. Notation and previous concepts

Let G be a compact subset of Euclidean space Rd . We assume, without loss of generality,
that G is a subset of the open unit square (0, 1)d .

We denote by ‖ · ‖ and 〈·, ·〉 the Euclidean norm and the inner product of Euclidean space,
respectively. The d-dimensional Lebesgue measure is denoted by µ. We respectively denote
by B(x, r) and B̊(x, r) the closed and open ball with center x and radius r . In order to simplify
the notation, we write B and B̊ to refer to B(0, 1) and B̊(0, 1), respectively.

If A ⊂ Rd then Ac, int(A), Ā, and ∂A will stand for the complement, interior, closure, and
boundary of A, respectively. The ε-neighborhood of A is defined by

B(A, ε) :=
⋃
a∈A

B(a, ε) = {x ∈ Rd : d(x, A) ≤ ε},

where d(x, A) = inf{‖x − a‖: a ∈ A}. The Hausdorff distance between two compact sets A

and C in Rd is defined by

dH(A, C) = max
{

sup
a∈A

d(a, C), sup
c∈C

d(c, A)
}

= min{ε > 0 : A ⊂ B(C, ε), C ⊂ B(A, ε)}.

In many situations the boundary of G is a (d − 1)-dimensional manifold. The Hausdorff
measure is often used in fractal geometry to determine the content of subsets whose dimension
is lower than d; see, e.g. [7, pp. 54–74]. However, the Hausdorff measure is difficult to estimate
when G is not completely known. Hence, we propose to measure the area of T = ∂G in a
simpler way (equivalent to the Hausdorff measure if T is smooth). We define the surface area
of G by

L0 ≡ L0(G) = lim
ε↓0

L(ε), (1)

provided that the limit exists and is finite, where

L(ε) = µ(B(T , ε))

2ε
. (2)

We assume that G and Gc are both r-convex. A closed subset A ⊂ Rd is said to be r-convex
if A = Cr(A), where

Cr(A) =
⋂

{B̊(x,r) : B̊(x,r)∩A=∅}
(B̊(x, r))c
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is the smallest r-convex set that contains A. A set is r-convex if any point of the complement
is contained in an open ball of radius r which does not meet the set. Thus, Cr(A) will be close
to Ā for small r and it will be close to the convex hull of A for large r; see, e.g. [8]. The
r-convexity is also closely related to the dilation and erosion operations from mathematical
morphology; see [10, pp. 43–59]. It can be easily seen that the r-convex hull of the set A is the
morphological closing of A with respect to the structuring element rB̊, that is,

Cr(A) = (A ⊕ rB̊)  rB̊,

where ⊕ and  respectively denote the Minkowski addition and Minkowski subtraction, defined
by A⊕C := {a+c : a ∈ A, c ∈ C} and AC := {x : {x}⊕C ⊂ A}, and λC := {λa : a ∈ A}
for any A, C ⊂ Rd and λ ∈ R.

The sets G such that G and Gc are r-convex were characterized in [11]. It could be useful
to state this characterization here. First, we need to define a very intuitive geometric concept.
A ball of radius λ is said to roll freely in a closed set A if, for each point a ∈ ∂A, there exists
x ∈ Rd such that a ∈ B(x, λ) ⊂ A.

Theorem 1. ([11].) Let G ⊂ Rd be a nonempty compact set, and let r > 0. Then, the following
conditions are equivalent.

(i) The conditions
G = (G  λB) ⊕ λB, 0 ≤ λ ≤ r,

G = (G ⊕ λB)  λB, 0 ≤ λ < r,

hold.

(ii) G and Gc are r-convex and int(Gi) �= ∅ for each path-connected component Gi ⊂ G.

(iii) A ball of radius λ rolls freely inside G and Gc for all 0 ≤ λ ≤ r .

(iv) ∂G is a (d − 1)-dimensional C1 manifold with the outward pointing unit normal vector
η(x) at x ∈ ∂G, satisfying the Lipschitz condition

‖η(x) − η(t)‖ ≤ 1

r
‖x − t‖ for all x, t ∈ ∂G.

3. The sampling model and the estimator

Let G satisfy one of the conditions of Theorem 1. In [4] it was proved that L0 is well
defined for these sets. As in that paper, we assume that the sampling information is given
by independent and identically distributed observations (Z1, δ1), . . . , (Zn, δn) of a random
variable (Z, δ), where Z is uniformly distributed on the unit square [0, 1]d and δ = 1{Z∈G}.

Let us denote by PX and PY the conditional distributions of the observations in G and in
Gc, respectively, that is, the uniform distributions on G and R = [0, 1]d \ int(G), respectively.

Let {εn} be a deterministic sequence of positive numbers which converges to 0 as n tends
to ∞. We propose to estimate L0 by means of

Ln = µ(Tn)

2εn

, (3)

where Tn is an estimator of B(T , εn). Based on the fact that

B(T , εn) = B(G, εn) ∩ B(R, εn),
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(a) (b)

Figure 1: (a) G and R in light and dark gray, respectively. (b) Uniform sample on [0, 1]2 of size n = 2500,
Xn (light-gray dots), Yn (black dots), and Tn (dark-gray region) for εn = 0.04.

it is possible to construct an estimator of B(T , εn) from estimators of the sets G and R. Since
G and R are both r-convex, it is reasonable to estimate them using the r-convex hull of Xn =
{Zi : δi = 1} and Yn = {Zi : δi = 0}. Thus, we propose the following estimator:

Tn = B(Gn, εn) ∩ B(Rn, εn), (4)

where
Gn = Cr(Xn) and Rn = Cr(Yn).

An example of the proposed estimator is shown in Figure 1.

Remark 1. In [8] the r-convex hull of a sample is proposed as an estimator of the support of
a distribution. Its asymptotic behavior is analyzed when the support is under the conditions of
Theorem 1. The situation in this work is quite similar. In our case Xn and Yn are samples (of
random size) from the distributions PX and PY with supports G and R, respectively. Therefore,
many of the results in [8] can be adapted to this new situation, although it is necessary to do
some adjustments since now the samples have random size and the boundary of R is not only T ,
it also includes the boundary of [0, 1]d . This set is not under the assumptions of Theorem 1;
see the rolling condition, Theorem 1(iii).

4. Theoretical results

Theorem 2 gives the almost sure rate of convergence of Ln to L0 and represents the main
result of this work.

Theorem 2. Let G ⊂ (0, 1)d be a set under the conditions of Theorem 1. Then, with proba-
bility 1,

inf
εn

|Ln − L0| = O

(
log n

n

)1/(d+1)

.

Remark 2. In [4], a similar estimator to the one defined in this work is proposed. They
considered the estimator given in (4) with Gn = Xn and Rn = Yn and proved its universal
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consistency (provided that L0(G) existed). However, the convergence rate for the estimator
of L0 based on this empirical approximation of B(T , εn) is n−1/2d , which is worse than the
rate attained with the estimator proposed in this work. The main reason for this improvement
is that smoothing the samples Xn and Yn allows us to choose a smaller radius εn of order
(log n/n)1/(d+1). In [4] the optimal εn had to be of order n−1/2d . An important practical
problem is the construction of a data-driven selection method for the smoothing parameter εn.
In that sense, a simulation study in [4] shows a considerable stability of the estimator with
respect to the values of εn. We have obtained the same conclusion for Ln in a preliminary
simulation study.

4.1. Proof of Theorem 2

We will follow the ideas of the proof of Theorem 3 of [8]. The proof is based on Proposi-
tions 1, 2, and 3, below. Proposition 1 establishes that if T ⊂ B(ZX

n , 2ρn) ∩ B(Z
Y
n , 2ρn), where

ZX
n = {Zi ∈ Xn : d(Zi, T ) ≤ ρ2

n} and Z
Y
n = {Zi ∈ Yn : d(Zi, T ) ≤ ρ2

n}, then B(T , εn) \ Tn

is contained in the disc Dn = B(T , εn) \ B(T , εn − Kρ2
n) for large enough K . Proposition 2

relies on the fact that µ(Dn) = O(ρ2
n) to find a bound for |Ln − L0| depending only on εn

and ρn. Finally, in Proposition 3 we determine the order of ρn for which, with probability 1,
we have T ⊂ B(ZX

n , 2ρn) ∩ B(Z
Y
n , 2ρn) for large enough n, that is, ρn satisfies

P(T ⊂ B(ZX
n , 2ρn) ∩ B(Z

Y
n , 2ρn) eventually) = 1.

Theorem 2 is a straightforward consequence of these three results.

Proposition 1. Let G be a set under the conditions of Theorem 2. Then the following results
hold.

(i) With probability 1, Tn ⊂ B(T , εn).

(ii) Let us assume that ρn → 0 satisfies ρ2
nε−1

n → 0 and that

P(T ⊂ B(ZX
n , 2ρn) ∩ B(Z

Y
n , 2ρn) eventually) = 1,

where ZX
n = {Zi ∈ Xn : d(Zi, T ) ≤ ρ2

n} and Z
Y
n = {Zi ∈ Yn : d(Zi, T ) ≤ ρ2

n}. Then,
if K ≥ max(2, 8/r), we have

P(B(T , εn − Kρ2
n) ⊂ Tn eventually) = 1.

Proof. Under the conditions of the proposition, G and R are r-convex. Since, with proba-
bility 1, Xn ⊂ G and Yn ⊂ R,

Gn = Cr(Xn) ⊂ Cr(G) = G, Rn = Cr(Yn) ⊂ Cr(R) = R.

Thus, with probability 1,

Tn = B(Gn, εn) ∩ B(Rn, εn) ⊂ B(G, εn) ∩ B(R, εn) = B(T , εn),

which concludes the proof of (i). On the other hand, the proof of (ii) will be finished if we show
that

P(T ⊂ B(Gn, Kρ2
n) ∩ B(Rn, Kρ2

n) eventually) = 1, (5)
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since if T ⊂ B(Gn, Kρ2
n) ∩ B(Rn, Kρ2

n) and εn > Kρ2
n then

B(T , εn − Kρ2
n) ⊂ B(B(Gn, Kρ2

n) ∩ B(Rn, Kρ2
n), εn − Kρ2

n)

⊂ B(Gn, εn) ∩ B(Rn, εn)

= Tn.

In order to prove (5), it suffices to show that, with probability 1, for large enough n,

xG = x − Kρ2
nη(x) ∈ Gn and xR = x + Kρ2

nη(x) ∈ Rn for x ∈ T , (6)

where η(x) is the outward pointing unit normal vector at x (see Theorem 1(iv)).
To prove (6), we have to show that xG cannot be contained in an open ball of radius r which

does not meet the sample Xn. In the same manner we have to prove that xR cannot be contained
in an open ball of radius r which does not meet the sample Yn. The situation in which the center
of the ball is close to T is analyzed in Lemma 2, below. This lemma yields the result for xG.
For xR , we have also to analyze the situation in which the center of the ball is far from T .
This case is studied in Lemma 3, below. Finally, in Lemma 4, below, both results are used to
establish the precise conditions under which (6) is satisfied. The proposition is a consequence
of this result. We begin with a geometric lemma, needed to prove Lemma 2.

Lemma 1. LetGbe a set under the conditions of Theorem 1, and lety ∈ Rd such thatd(y, T ) =
r − δ, where 0 ≤ δ ≤ r . Then, for all x ∈ Rd with d(x, T ) ≤ δ/2 and ‖x − y‖ ≥ r , we have

‖x − PT y‖ ≥
√

rδ

2
,

where PT y is the metric projection of y onto T .

Proof. This lemma is similar to Lemma 1 of [8] and its proof is almost identical. Let y ∈ Rd

be a point such that d(y, T ) = r −δ, where 0 ≤ δ ≤ r . We denote by PT y the metric projection
of y onto T . Let η be the outward pointing unit normal vector at PT y.

First, we assume that y ∈ G. Then, it is easy to prove that y = PT y − (r − δ)η. Let
t = PT y + rη. Then, for x ∈ Rd with d(x, T ) ≤ δ/2 and ‖x − y‖ ≥ r ,

r2 ≤‖x − y‖2 =‖x − PT y + (r − δ)η‖2 =‖x − PT y‖2 + (r − δ)2 + 2(r − δ)〈x − PT y, η〉,(
r − δ

2

)2

≤ ‖x − t‖2 = ‖x − PT y − rη‖2 = ‖x − PT y‖2 + r2 − 2r〈x − PT y, η〉.

The second inequality is a consequence of d(x, T ) ≤ δ/2 and d(t, T ) = r . Then

‖x − PT y‖2 + 2(r − δ)〈x − PT y, η〉 ≥ 2rδ − δ2,

‖x − PT y‖2 − 2r〈x − PT y, η〉 ≥ −rδ + δ2

4
.

Multiplying the first inequality by r and the second inequality by (r − δ) and adding, we have

‖x − PT y‖2 ≥ 2r2δ − rδ2 − (r − δ)rδ + (r − δ)(δ2/4)

2r − δ
= r2δ + (r − δ)(δ2/4)

2r − δ
≥ rδ

2
,

where the last inequality is a consequence of 0 ≤ δ ≤ r .
For y ∈ Gc, we can apply the previous result to Gc. In this case y ∈ Gc and T is also the

boundary of Gc.
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Lemma 2. Let G be a set under the conditions of Theorem 2, and let

T ⊂ B(ZX
n , 2ρn) ∩ B(Z

Y
n , 2ρn),

where ZX
n = {Zi ∈ Xn : d(Zi, T ) ≤ ρ2

n} and Z
Y
n = {Zi ∈ Yn : d(Zi, T ) ≤ ρ2

n}. Then, for all
y ∈ Rd such that d(y, T ) = r − δ with max(2, 8/r)ρ2

n < δ ≤ r ,

B̊(y, r) ∩ Xn �= ∅ and B̊(y, r) ∩ Yn �= ∅.

Proof. Let y ∈ Rd be a point such that d(y, T ) = r − δ with max(2, 8/r)ρ2
n < δ ≤ r .

We denote by PT y the metric projection of y onto T . Since T ⊂ B(ZX
n , 2ρn), there exists

zx ∈ ZX
n such that ‖zx − PT y‖ ≤ 2ρn. Furthermore, d(zx, T ) ≤ ρ2

n < δ/2. If ‖zx − y‖ ≥ r

then Lemma 1 yields

‖zx − PT y‖ ≥
√

rδ

2
> 2ρn,

which leads to a contradiction. The last inequality is a consequence of δ > 8ρ2
n/r . There-

fore, ‖zx − y‖ < r and B̊(y, r) ∩ Xn �= ∅. In the same manner it can be proved that
B̊(y, r) ∩ Yn �= ∅.

Before stating Lemma 3, it is necessary to introduce some notation. Since we are assuming
that G ⊂ (0, 1)d , for all x ∈ G,

d(x, Rd \ (0, 1)d) > 0.

The function d(·, Rd \ (0, 1)d) is continuous and, therefore, it reaches its minimum in the
compact set G. Let us denote by e the minimum, that is,

e = min
x∈G

d(x, Rd \ (0, 1)d) > 0. (7)

Note that B(G, e) ⊂ [0, 1]d .

Lemma 3. Let x ∈ Rd be a point such that 0 ≤ d(x, G) ≤ e/2, and let y /∈ [0, 1]d satisfy
x ∈ B̊(y, r). Then there exists z0 ∈ R for which B(z0, e/4) ⊂ B̊(y, r).

Proof. The function

d(λ) = d(λx + (1 − λ)y, G), 0 ≤ λ ≤ 1,

is continuous. Since y /∈ [0, 1]d , we have d(0) = d(y, G) > e. Furthermore, d(1) =
d(x, G) ≤ e/2. Bolzano’s theorem establishes that there exists z0 in the segment joining x and
y such that d(z0, G) = 3e/4. Moreover, z0 ∈ R, since z0 ∈ B(G, e) ⊂ [0, 1]d and z0 /∈ G.

Let us now prove that B(z0, e/4) ⊂ B̊(y, r). Let z ∈ B(z0, e/4). We have

‖z − y‖ ≤ ‖z − z0‖ + ‖z0 − y‖ ≤ e

4
+ ‖z0 − y‖.

Since z0 is in the segment joining x and y, ‖z0−y‖ = ‖x−y‖−‖x−z0‖. From d(z0, G) = 3e/4
and d(x, G) ≤ e/2, it follows that ‖x − z0‖ ≥ e/4 and, therefore,

‖z0 − y‖ = ‖x − y‖ − ‖x − z0‖ < r − e

4
.

Thus,

‖z − y‖ <
e

4
+ r − e

4
= r.
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Lemma 4. Let us assume that T ⊂ B(ZX
n , 2ρn) ∩ B(Z

Y
n , 2ρn) and Kρ2

n < min(e/2, r) with
K ≥ max(2, 8/r). Let us also assume that dH(Xn, G) < r and dH(Yn, R) < min(e/4, r).
Then, for all x ∈ T ,

x − Kρ2
nη(x) ∈ Gn and x + Kρ2

nη(x) ∈ Rn,

where η(x) is the outward pointing unit normal vector at x.

Proof. Let x ∈ T , and let xG = x − Kρ2
nη(x). The point xG belongs to Gn if any open ball

of radius r that contains the point xG meets the sample Xn. Thus, let y ∈ Rd be a point such
that xG ∈ B̊(y, r). We want to show that B̊(y, r) ∩ Xn is not empty. This is straightforward
when y ∈ G, since dH(Xn, G) < r . Now, let us assume that y ∈ Gc. Since xG ∈ B̊(y, r) ∩ G

(Kρ2
n < r), then d(y, T ) = r − δ, where δ > Kρ2

n ≥ max(2, 8/r)ρ2
n . By Lemma 2 we have

B̊(y, r) ∩ Xn �= ∅.
Now, let xR = x + Kρ2

nη(x). As before, in order to prove that xR belongs to Rn, we need
to show that B̊(y, r) ∩ Yn is not empty for any y ∈ Rd such that xR ∈ B̊(y, r). Again, this
is straightforward when y ∈ R, since dH(Yn, R) < r by assumption. Now let us assume that
y /∈ R. There are two possibilities: y ∈ G or y /∈ [0, 1]d . For y ∈ G, as xR ∈ B̊(y, r)∩
Gc(Kρ2

n < r), we have d(y, T ) = r − δ with δ > Kρ2
n ≥ max(2, 8/r)ρ2

n . Lemma 2
implies that B̊(y, r) ∩ Yn �= ∅. Finally, if y /∈ [0, 1]d , by the definition of xR , we have
d(xR, G) = Kρ2

n < e/2. Then Lemma 3 establishes that there exists z0 ∈ R such that
B(z0, e/4) ⊂ B̊(y, r). Since dH(Yn, R) < e/4, we have B(z0, e/4)∩Yn �= ∅. Thus, we have
B̊(y, r) ∩ Yn �= ∅.

The proof of Proposition 1 is now complete since the conditions of Lemma 4 are satisfied
with probability 1 for large enough n.

Now, we can prove Proposition 2, below, which gives a bound for the distance |Ln − L0|
by splitting it into a bias term |L(εn) − L0| and a variance term |Ln − L(εn)|. Recall that L0,
L(εn), and Ln were defined in (1), (2), and (3), respectively.

Proposition 2. Under the conditions of Proposition 1, we have, with probability 1,

|Ln − L0| ≤ |L(εn) − L0| + O

(
ρ2

n

εn

)
= O(εn) + O

(
ρ2

n

εn

)

and
inf
εn

|Ln − L0| = O(ρn).

Proof. We have
|Ln − L0| ≤ |Ln − L(εn)| + |L(εn) − L0|.

In [4] it was proved that |L(εn) − L0| = O(εn). On the other hand, Proposition 1 yields

P(B(T , εn − Kρ2
n) ⊂ Tn ⊂ B(T , εn) eventually) = 1.

Then, with probability 1, for large enough n,

|Ln − L(εn)| = µ(B(T , εn))

2εn

− µ(Tn)

2εn

≤ µ(B(T , εn)) − µ(B(T , εn − Kρ2
n))

2εn

.

In the following lemma the convergence rate of the last term in the previous inequality is
determined.
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Lemma 5. Assume that F(ε) = µ(B(T , ε)) is differentiable in a neighborhood of 0 and that
the derivative F ′ is continuous at 0. Then

lim
n→∞

µ(Dn)

2Kρ2
n

= L0,

where Dn = B(T , εn) \ B(T , εn − Kρ2
n).

Remark 3. In Lemma 5 we assume that the function F(ε) = µ(B(T , ε)) is smooth in a
neighborhood of 0. This holds for the boundary T of a set G under the conditions of Theorem 1.
In that case it can be proved that T satisfies the conditions of Theorem 5.6 of [6]. This result
ensures that F(ε) coincides locally for ε ∈ (0, r) with a polynomial of degree at most d.
Therefore, Lemma 5 suffices for our purposes.

Proof of Lemma 5. For large enough n (since εn, ρn → 0), we have

µ(Dn)

2Kρ2
n

= µ(B(T , εn)) − µ(B(T , εn − Kρ2
n))

2Kρ2
n

= F(εn) − F(εn − Kρ2
n)

2Kρ2
n

= F ′(ξn)Kρ2
n

2Kρ2
n

= F ′(ξn)

2
,

where ξn is a point in the interval (εn − Kρ2
n, εn) (by the mean value theorem). Since F ′ is

continuous at 0,

lim
n→∞

µ(Dn)

2Kρ2
n

= F ′(0)

2
= L0,

where the last equality is a consequence of (1).

By Lemma 5, with probability 1,

|Ln − L(εn)| = O

(
ρ2

n

εn

)
.

Therefore, with probability 1,

|Ln − L0| ≤ |L(εn) − L0| + O

(
ρ2

n

εn

)
= O(εn) + O

(
ρ2

n

εn

)
.

To prove the last part of Proposition 2, it suffices to take εn = ρn.

As we mentioned at the beginning of Subsection 4.1, in the following proposition we deter-
mine the rate for ρn which guarantees that, with probability 1, T ⊂ B(ZX

n , 2ρn)∩B(Z
Y
n , 2ρn)

for large enough n.

Proposition 3. If c > 0 is large enough then

P(T ⊂ B(ZX
n , 2ρn) ∩ B(Z

Y
n , 2ρn) eventually) = 1,
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where

ρn =
(

c log n

n

)1/(d+1)

,

ZX
n = {Zi ∈ Xn : d(Zi, T ) ≤ ρ2

n}, and Z
Y
n = {Zi ∈ Yn : d(Zi, T ) ≤ ρ2

n}.
Proof. Theorem 1 of [5] establishes that, for ρn > 0,

P(T � B(ZU
n , 2ρn)) ≤ ρ−d

n 	(G, ZU
n , ρn), U = X, Y,

where 	(G, ZU
n , ρn) = supx∈T P(B(x, ρn) ∩ ZU

n = ∅). Therefore, by the Borel–Cantelli
lemma, it remains to prove that

∞∑
n=1

ρ−d
n 	(G, ZU

n , ρn) < ∞, U = X, Y. (8)

Let x ∈ T . Since Z is uniformly distributed on [0, 1]d , we have, for ρ2
n < e (see (7)),

P(B(x, ρn) ∩ ZX
n = ∅) = P(Zi /∈ B(x, ρn) ∩ B(T , ρ2

n) ∩ G, i = 1, . . . , n)

= (1 − µ(B(x, ρn) ∩ B(T , ρ2
n) ∩ G))n

≤ exp(−nµ(B(x, ρn) ∩ B(T , ρ2
n) ∩ G)).

Likewise,

P(B(x, ρn) ∩ Z
Y
n = ∅) ≤ exp(−nµ(B(x, ρn) ∩ B(T , ρ2

n) ∩ R)).

The following lemma is proved in [8]. It gives a lower bound for µ(B(x, ρn) ∩ B(T , ρ2
n) ∩ G)

and µ(B(x, ρn) ∩ B(T , ρ2
n) ∩ R) for large enough n.

Lemma 6. If G is under the conditions of Theorem 1 then there exist constants α, β > 0 such
that, for all ε ∈ [0, β] and for all x ∈ T ,

µ(B(x, ε) ∩ B(T , ε2) ∩ G) ≥ αεd+1 and µ(B(x, ε) ∩ B(T , ε2) ∩ Gc) ≥ αεd+1.

It is easy to prove that if ρn is small enough (for example, ρ2
n < e) then

µ(B(x, ρn) ∩ B(T , ρ2
n) ∩ R) = µ(B(x, ρn) ∩ B(T , ρ2

n) ∩ Gc),

and, therefore, by Lemma 6,

P(B(x, ρn) ∩ ZU
n = ∅) ≤ exp(−nαρd+1

n ), U = X, Y.

It is not hard to prove that, for large enough c, (8) is satisfied. Thus, the proof of the proposition
is complete.

Theorem 2 is a straightforward consequence of Propositions 1, 2, and 3.
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