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Abstract

The representation theory of categories is used to embed each promonoidal monad in a
monoidal biclosed monad. The existence of a promonoidal structure on the ordinary Eilenberg-
Moore category generated by a promonoidal monad is examined. Several results by previous
authors (notably A. Kock and F. E. J. Linton) are reproved and extended.

Introduction

The aim of this note is to employ the representation theory of categories
to discuss the theories of monoidal monads and closed monads under the
common concept of a promonoidal monad. We show that each promonoidal
monad is embedded in a monoidal closed monad and we extend several
results by previous authors (notably Kock (1971a) and Linton (1969)) on this
topic.

In §1 we discuss promonoidal categories. These, together with promonoi-
dal functors and promonoidal natural transformations, form a 2-category
called Pmon. Whilst colimits in Pmon are easily computed, the existence of
limits is generally difficult to determine.

In §2 we discuss a sufficient condition for the existence of a "trace"
promonoidal structure on a full subcategory of a given promonoidal category.

In §3 we use the result of §2 to discuss promonoidal monads and whether
the usual Eilenberg-Moore category of the underlying ordinary monad can be
enriched to give the Eilenberg-Moore construction in Pmon.

In conclusion we briefly mention that we hope to develop, in a further
article, some generalisations which apply to algebraic structures which
generalise the concept of a monoidal category. These structures are the
algebras for a doctrine generated by a suitable type of club of operations (as
described in Kelly (1974)).

Unless otherwise stated the unexplained notations and terminology of
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this article are those of Day (1970a), Day and Kelly (1969), Dubuc (1970),
Eilenberg and Kelly (1966), and Street (1972). We shall assume familiarity
with the various aspects of the representation theorem and the theory of
T-monads for a suitable symmetric monoidal closed ground category Y.

1. Promonoidal categories

It is supposed throughout the article that, unless otherwise stated, all
categorical algebra is relative to a suitably complete and cocomplete symmet-
ric monoidal closed category Y = (Y, (g), / , • • • ) .

We recall from Day (1970a) that a promonoidal category (over V)
consists of data (si, P, J, a, p, A) where si is a (small) category,

P:

J-.S&-+Y
are functors, and

a: P(AX-)oP(A'A"X)sP(AA'X)°P(XA"-)

p:JX°P(AX-) =

k:JX°P(XA-) =

are natural isomorphisms satisfying suitable coherence axioms (namely
axioms PCI and PC2 of Day (1970a) where "°" denotes profunctor composi-
tion. The promonoidal structure has a symmetry <r if

<T:P(AA'-) = P(A'A-)

is a natural isomorphism satisfying axioms PC3(<r2 = 1) and PC4 of Day
(1970a).

The convolution [si, Y] of a promonoidal category si with the ground
category Y is the monoidal biclosed structure on the functor category [si, Y]
given by the formulas:

r AA'

F(g)G = FA®GA'<g)P(AA'-)

F\G = f [P(A-A')<g)FA, GA']
JAA'

G/F= f [P(-AA')<g>FA, GA'].
JAA'

A promonoidal functor <& = (<£, <(>, <f>'): si —> si between promonoidal
categories si and si comprises a functor <£: si-*si and natural transforma-
tions
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4>: P(AA 'A ")-> P(<t>A, <i>A', 4>A")

<t> : JA - • / M

satisfying axioms which give the functor

[3]

the structure of a monoidal closed functor on the convolution.
Given promonoidal functors 4> and ^ from si to M, a promonoidal

natural transformation TJ: 3>—^^r J J / — » ^ is a natural transformation
-17: <̂> —> t̂ r which satisfies the following two axioms:

PN1. The following diagram commutes:

Jif/A

PN2. The following diagram commutes:

P(AA'-) > P(4>A,<t>A',<{>-

P(T). T|, 1

Thus we obtain the 0-cells, l-cells, and 2-cells of a 2-category which we
call Pmon. It is easily seen to contain the 2-categories of monoidal categories
and associative closed categories as full sub-2-categories.

The cocompleteness of Pmon is an easy consequence of the fact that the
convolution process maps an ordinary 2-colimit of promonoidal categories to
the corresponding limit of monoidal biclosed categories of the form [si, V].
Our aim is to find whether the Eilenberg-Moore construction in Cat for a
promonoidal monad can be enriched to yield the Eilenberg-Moore construc-
tion in Pmon. Our results go a little further than those of previous authors.

We conclude this section with two remarks. Firstly, one can easily define
symmetric promonoidal functors and thus obtain a sub-2-category of Pmon.
However we shall not deal with this situation explicitly -in the sequel.
Secondly, we have assumed that all promonoidal categories are "small"
relative to Y. The change-of-T-universe process described in Day (1973)
provides a convenient method of bypassing this apparent restriction.
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2. Promonoidal traces

295

Given a full embedding M: si^> si of a category si into a promonoidal
category ^ we can ask for conditions under which M induces a trace
promonoidal structure on si. For our purpose it will suffice to consider the
case in which ^ is a monoidal category which we call 38. With this data we
have:

2.1 PROPOSITION, (strong trace conditions). The category si is promonoidal
with respect to the functors

P(A, A',A")=@(MA <g>MA', MA")

JA = 38(1, MA)

if the following canonical morphisms are isomorphisms for all A, A', A" & si:

z>: 58(7, MX)°38(MX(g)MA, M - ) ^ > 38(7<g>MA, M - )

zV. 38(7, MX)° 38(MA (g)MX, M - )^> 38(MA (g) /, M - )

22: 38 (MA (g) MA', MX)° 38 (MX (g> MA", M - )
-+ 38 ((MA (g) MA') <g) MA", M -)

-H> 38 (MA <g) (MA' <g) MA"), M -).

If these conditions are satisfied then M becomes a promonoidal functor.

PROOF. The isomorphisms a, p, and A are defined by requiring the
following diagrams to commute:

P(AA'X)°P(XA"-)—^—> P(A'A"X)"P(AX-)

38(MA<g>MA',MX)°38(MX<g>MA",M-) 38(MA'(g>MA", MX)°38(MA (g>MX, M - )

\ - ^
38(MA(g)MA', V)o 38( Y <g> MA", M- ) -^» 38 (MA '(g) MA", Y) ° 38 (MA (g) Y, M - )

V
: 38(MA <g)(MA'<g>MA"), M - )

V
33 ((MA (g) MA') <g) MA", M - )

38(7,MX)o38(MA (g)MX,M-)
M

38(MA,M-)
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JXoP(XA-)
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[5]

38 (I, MX) o 9 (MX <g> MA, M - )

38(7, Y)°38(MA <g)Y,M-)

A

M

38(J(g)MA,M-)<-

The verification of the axioms PCI and PC2 (and, in the case of a symmetry,
PC3 and PC4) is straightforward but tedious; the author has verified them in
Day (1970b). The promonoidal functor axioms are easily verified for M. •

2.2 EXAMPLE. Suppose si is a small category and 9? = [si, Y] has a
monoidal biclosed structure. The full embedding L = Yop: si —* &op satisfies
the strong trace conditions. To see this we note that the following transforma-
tions are isomorphisms for all F E.SF:

z: ,F)o &(LA, LX

z*: &(LX, F)° 9>(LA, LA'

*^(LA,F(g)LA')

>^(LA,LA'(g>F).

It is easily seen that this trace structure, when convoluted with Y, yields the
original monoidal biclosed structure on & = [si, Y] (to within a monoidal
isomorphism of categories).

2.3 EXAMPLE. Suppose si contains / and is closed under the monoidal
structure on 38. Then, by the representation theorem, the strong trace
conditions are satisfied.

2.4 EXAMPLE. Suppose 33 is monoidal biclosed and si contains / and is
closed under the internal-hom functors of 33. Then, by the representation
theorem, the strong trace conditions are satisfied.

2.5 EXAMPLE. Suppose Y is cartesian closed. A cocartesian monoidal
structure on 38 (that is (g) = +) leaves a trace on any full subcategory si of 38.
One way to verify this is to observe that the resulting reflective embedding

[M, 1] H M: [si, Y] -* [38, Y]

is always cartesian monoidal.
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2.6 EXAMPLE. More generally, suppose M: si-* 38 is a full embedding
and consider the reflective embedding:

[M, 1]HM: [si,Y]^>[9B,Y].

It can be shown (see Day (1974a) §1) that this is a monoidal biclosed
adjunction if and only if the following two canonical morphisms are
isomorphisms for all B, B'E 58 and A £ r f :

z: ®(B,MX)°@(MX<g>B',MA)-+ ®(B ® B',MA)

Thus the strong trace conditions are satisfied by suitable choice of B, B' €E 53.
Note that 58 could be replaced here by the monoidal full subcategory of 39
generated by the image of si under M.

2.7 EXAMPLE. Suppose 38 is monoidal biclosed and M\-\ R: 38 —> si
with unit 1-»RM an isomorphism; thus si is coreflective in 38. Then,
applying the representation theorem, the strong trace conditions are satisfied
by M if and only if the counits MR(B\MA)^> B\MA and
MR(MA/B)^>MA/B are isomorphisms for suitable choice of B G 38 and all

3. Promonoidal monads

We suppose that si is a fixed promonoidal category and that 2T =
(T, fj., 17) is a promonoidal monad on si. Thus 5" is a monad in Pmon. This
implies that [ST, 1] is a monoidal biclosed monad on the convolution [si, Y].

The usual resolution of 3~ into a Kleisli category ^ and an Eilenberg-
Moore category si* is denoted by the following diagram:

si

The functor F: si-*siw gives the adjunction on [si, Y\.

Thus [si?, Y] is a monoidal biclo'sed category and F = [U,l] preserves the
identity and (finite) tensor products. From this we deduce that si? has a
canonical promonoidal structure (see 2.2 Example) which we denote by
(P1, / ' , - • • ) . In fact, six is now the Kleisli category of 5" in Pmon (cf. Street
(1972)). We shall omit this verification and simply note the following:
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3.1 PROPOSITION. P(A, A',U-) = P'(FA, FA',-) naturally in
A, A'Ed.

PROOF. This follows from the fact that F = [U, 1] preserves tensor
products. •

It is straightforward to check that P' is defined "on morphisms" as
follows:

3.2 PROPOSITION. If f E Vsi^(FA',FA), g E Vsi<r(FB',FB), and hE
Vs£,T{FC,FC) then the following diagram commutes:

P'(FA, FB, FC) s P(A, B, UFC)

P(UFA, UFB, UFUFC)

I P(Uf, Ug, UFUg)

P( UFA', UFB', UFUFC)

P'(FA', FB', FC) = P(A',B', UFC).

3.3 REMARK. The symbol U is omitted if no confusion seems likely.
Define @°PC [si, T] to be the full subcategory of [si, Y] comprising J

together with all tensor products of representable functors with each other
(and with / ) . Define 387C[sis, Y] similarly. Then, because F=[U,l]
preserves tensor products, we obtain an induced strong monoidal functor

F: @op^®7

which is surjective (to within isomorphism) on objects. Thus there exists a
monadic adjunction

FH[F, 1]: [®7,Y]-»[®op,Y]

on the convolution [38op, Y]. Indeed, %7 may be regarded as the "monoidal
theory" of ST.

This gives the following summary diagram:
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where E: M3C\'31,Y\ is "evaluation". The functor E is defined to be
LanNE. Thus, if (A, | )G si* then E(A) is the coequaliser in [@7, V] of the
following pair of morphisms:

9t¥(stj (T2A, - ), - )

Alternatively,

E(A)=[ si* (NK, A) • EX.

The functor E is a fully faithfull extension of E because N is dense
(= adequate) (see §5, Appendix I). This gives the following representation
of 9~: '

M —>[®°p, T]

where W = [F,\].

3.4 PROPOSITION. WE = EU and EF = FE.

PROOF. E is defined at (A, ^) to be the coequaliser of the canonical pair:

Thus, because W preserves coequalisers, WE (A) is the coequaliser of the
canonical pair:

But F(H)=HU for all H G S8opC [si, T]. Thus W£(A)(H) is the coequal-
iser of the canonical pair:

HU(T2A)=iHU(TA).

Thus

WE(A)(H) = HUA

= E(UA)(H) for all H G 3TP.

Secondly,
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FE(A) = #(98op(^(A, - ) , - ) )

m 7(FX, - ) <g> S8 op(d(A - ), X)

, i/-), -)

, -), -)

= E(FA) = EF(A) for all A & M. U

We now ask for conditions under which the convolution structure
<# = [38|P, T] induces a promonoidal trace on si3.

3.5 EXAMPLE. Suppose the unit object / of % is of the form El for some
object I of si* and suppose that there exists a functor * from (s£*y®d* to
d3 such that

EA (g)EA's E(A * A')

for all A , A ' E ^ T . Then, by the representation theorem, the strong trace
conditions are satisfied.

3.6 EXAMPLE. Suppose / G ̂  is El for some / e si3 and, for all
A,A',A"Gsi^ we have:

EA\EA' = E(A\A')

EA'/EA=E(A'/A)

for some A \A' and A '/A in .stf̂ . Then, by the representation theorem, the
strong trace conditions are satisfied.

3.7 EXAMPLE. Suppose C (g> EA = C + EA whenever C is of the form
/, EA, EA (g) EA'. Then, by the representation theorem, the strong trace
conditions are satisfied.

It remains to determine formulas for the trace presentation. In examples
3.5 and 3.6 these turn out to be similar to formulas already discussed by
earlier authors. We shall use the presentation of E(A) as the coequaliser of
the canonical pair:

E(T()

Suppose A = (A, £), B = (B, £), C = (C, £) are 5"-algebras.

3.8 PROPOSITION. C(E(FUA)®E(FUB),EC) = P(UA, UB, UC).

PROOF. Firstly we compute E (FUA) <g> £ (FUB) in <g.
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E(FUA)iS>E(FUB)

<% ?(si* (FA, -), X) <g> 38f(st* (FB, -), Y) <g> 38 7(X <g> Y, - )

by definition of the convolution,

s 3 8 1 ? ( ^ (FA, -)<g>si* (FB, - ) , - )

by the representation theorem. Thus

% (E (FUA) <g) E (FUB), EC) =<€(® 7(M? (FA, -)<g)si* (FB, -),-), EC),

= E(C)(sir (FA, -)<g)si*(FB, -))

by the representation theorem. By definition of E(C) this object is the
coequaliser of the two canonical morphisms from

»?(si*(FUFUC, -), si?(FUA, -)®st*(FUB, - ) )
to

S37(^(FUC, -), si*(FUA, -)®si*(FUB, -)).
Thus, by the representation theorem, the object

E(C)(M*(FUA, -)®si*(FUB, -))

is the coequaliser of the two canonical morphisms from

(si*(FUA, -)®si*(FUB, -))(FUFUC)

= P'(FUA, FUB, FUFUC) by definition of P',

= P(UA, UB, UFUFUC) by 3.1 Proposition,
to

(si*(FUA, -)®si*(FUB, -))(FUC)

= P'(FUA, FUB, FUC) by definition of P',

s P(UA, UB, UFUC) by 3.1 Proposition.

Thus, because the canonical pair

UFUFUC = £ UFUC

is a split (absolute) coequaliser , we have

E(C)(sir (FUA, -)<g>sir (FUB, -)) = P(UA, UB, UC)

on objects. •
Note also that <€(I,E(C)) = JUC.
A direct description of the trace on si* can now be given in terms of P

alone. By 3.8 Proposition we know that %(EA 0 E B , EC) is the joint
equaliser of the two canonical pairs:

https://doi.org/10.1017/S1446788700018929 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018929


302 B. J. Day

<€(E(TA)<g)E(TB),EC)

[11]

We denote this equaliser by P(A, B, C); it is easily seen to be functorial in
each variable such that the inclusion P—>P is natural in these variables.

3.9 PROPOSITION. P(A, B, C) is the joint equaliser of the following two
pairs of morphisms:

P(A, B, C)
/ I

p(i,f,nX IT

P(A, TB, C) *^—i— P(TA, TB, TC)

PROOF. Consider the following diagram:

P(TA, B, C).

, l/B, UFUC) , UB, UC)

T

P(UFUA, UFUB, UFUFUC) P(UUUFel P(UFUA, UFUB, UFUC)

P(UA, UFUB, UFUC) , [/FC/B, l/C).

The upper half commutes by naturality of T, while the lower half commutes
by an axiom on £ By 3.2 Proposition, this implies that the following diagram
commutes:

P'(FUA,FUB,FUC) f"'U'—> P(UA,UB,UC)

P(Tt/A, Tt/B, Tt/C)

\, FUFUB, FUC) — — * P(UA, UFUB, UC).

Thus <%(l(g)Eli,l)=P(ri, l , £ ) - f : Similarly %(E/J. (g) 1,1) = P(l , v,£)- T D
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3.10 PROPOSITION. P(A, B,C) is the equaliser of the following pair of
morphisms:

, TB, C).

PROOF. On composing this triangle with P(TJ, 1,1) and P(l, TJ, 1) we
obtain the two pairs of morphisms respectively. Conversely, suppose a
morphisms equalises both of the given pairs of morphisms. Consider the
following diagram:

P(A, B, C)

P(!,U)| ' P(TA,TB,TC)

P(TA, B, C) * P(TA, B, C

P ( l , f , l ) | P(T2,TB,TC)

P(TA, TB, C)

By naturality of e we have that

P(£ £ l)e = P(TJ, 1, 0 • T- P(l, T,, | ) •

By naturality of T we have

9- P(l,r,,€)= P(l,Tr,,T£)-T.

Thus

by promonoidal naturality of /x,

Thus e equalises P(£ ,̂ 1) and (PI, 1, £)7; as required. •
The trace structure on M3 measures the extent to which
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£: T—*l: s£^>sil fails to be a promonoidal natural transformation. We
conclude this section by noting that if the trace of %> exists on si3 then s4s is
the Eilenberg-Moore construction in Pmon (see Street (1972)).

We know that U and Ue are promonoidal. Suppose

T=UF

is a left lax transformation in Pmon. Then, using the fact that H lifts to a left
lax transformation 8 in cat, we obtain R as a functor:

T=UF

where RB = HB and 8 = y. It remains to verify that (R, 8) is promonoidal.
Because 1/ is "K-faithful it suffices to construct J? and R . If (38, Q, K, • • •)
denotes the promonoidal structure on 88 then the following diagram com-
mutes by promonoidal naturality of y: TH —> H.

Q(B,B', B") * P(HP, HB', HB")

H

P(HB,HB',HB")

P(THB, THB', THB") * P{THB, THB', HB").

Thus H factors through P(HB,HB',HB"). Similarly H factors through
J(HB). D

4. Examples; monoidal and biclosed monads

There are two cases of special interest.

4.1 EXAMPLE. Suppose that the initial promonoidal category si is
monoidal; thus P(A,B,C)=s4(A®B,C). In this case P(A,B,C) is the
equaliser of the pair:
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M{A <g) B, C) —^e<B>eA) > s$(TA (g) TB, C)

si(TA®TB,TC). Ja?(1'^)

This corresponds to the pair:

g)B), C) •rfy(F<{8'{)')> ^ ^ ( ^ ( 7 ^ (gjJB), C)

si3 (F(TA <g)TB),TC).

Thus, by the representation theorem, si3' is monoidal if the coequaliser in si3

of each reflective pair of the form:

F(TA (g) TB) > F(A

exists in j ^ y and is preserved by the embedding EU of si* in [38op,
described in Appendix II and Day (1974b) §2.

4.2 EXAMPLE. Consider the case of si biclosed:

P(A, B, C) = si{B, A \ C) = M(A, C/B).

A canonical map T: T(A \B)—* TA \ TB is defined by means of the compo-
site:

/ —U. si{A \B, A \B) a P(A, A \B, B) - ^ P(TA, T(A \B), TB)

= si{T(A\B),TA\TB)

and, dually, T*: T(B/A)^> TB/TA is defined.

4.3 PROPOSITION. / / A and B are J-algebras then A \B and B/A are
2T-algebras with respect to the "evaluationwise" structures defined by

- ^ r A \ T B —-^ A\B

and

^BM: f (B/A)—^ TB/TA - ^ > B/A
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PROOF. Only gA\B is explained since £BM follows by duality. For the first
algebra axiom on £A\B we have:

equals

= s£(l, 1\£)- sd(\, 1\T/) •/ by promonoidal naturality of 17,

= / because B is an algebra.

The second algebra axiom for A\B is verified by showing

But

T • T(r] \ £) = (TTJ \ T£) • T by naturality of T,

and

(1? \f) • (TTJ \ 7?) = (17 \£) • (T, \/tt) because B is an algebra.

Thus we require

T-JA = ( T T ) \ / X ) - T - TT.

This follows from promonoidal naturality of (JL because:

T-7^=^(1, T t i \ l ) - r f ( F f
\ l ) -r D

A subalgebra A \ B of A \ B is defined to be the equaliser of the
pair of morphisms:

A\B > TA\B

T(A\B) > TA\TB.

4.4 PROPOSITION. P(A, B, C) = si^{B,A\C) for all

PROOF. Consider the following diagram:
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siJ(B,A%C)

307

P(A, B, C)

sd(TB,T(A\C))

sd(TB,A\C) *-"\«?(61)

sd{B, A \ C)

rf(UU) sd(B,TA\TC)
i ^

sd{B, TA \ C) *

To show that the monomorphism from P(A, B, C) to sd(B, A\C) factors
through si(B, A\C) we have:

\ f) • sd{\, 7

by definition of r,

which is equalised with si(-q, 1) • sd{%, £ \1) by P(A, B, C), as required. To
show that the resultant monomorphism now factors through si3(B, A\C)
we consider the above diagram. A simple diagram chase reduces the
requirement to commutativity of the following diagram:

, A\C) sd(TB,T{A\C))

sd{TB,T{TA\TC))

s4{TB,T(TA\C))

M{TB,TA\TC) sd{TB, T\A \ TC).

This diagram commutes because the representation theorem applied to
B £ si gives the following diagram:
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T(A\C)

TA\TC <- T2A \ TC.

where the lower part commutes by naturality of T while the upper part
commutes because £A\c = ( I ? \£ )T is an algebra structure on A\C. Con-
versely, we can follow the same lines and show that si^iB, A\C) equalises
the following pair:

* si(TB,TA\C)

st(l,l\t)

si(TB, TA\TC).

Thus P(A, B, C) = si*(B, A\C) and, similarly, P(A, B, C) = si (A, C\B).

a
The net result is that si* is biclosed if si is biclosed and the necessary

equalisers exist in si and are preserved by the embedding E of si in
[35op, y\z» described in Appendix II and Day (1974b) §2.

4.5 REMARK. In order that a biclosed promonoidal structure
(P, J, a, p, A) on si be associative in the sense that a be an isomorphism it is
necessary and sufficient that the functors - \ - and - / - be associative in
the sense that the natural transformation with components
(A \B)/C—> A \(B/C) be an isomorphism. It is clear that a symmetric closed
structure is associative in this sense. Moreover, it is straightforward to verify
that the functors - \ - and —#- constructed in this section are associative
if — \ — and — / — are associative.

5. Appendix I

We recall several features of Kan extensions. Suppose ^ = [&, T] is a
functor category where SF C [si, T] and 5F is small relative to V. Moreover,
suppose E: sd^> <€ is "evaluation", N: si —> 38 is a functor, and E is the left
Kan extension of E along N.
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N

E

E

= [9, Y]

E(B)=j ®(NA,B)-EA

E(NA ')= I m {NA, NA') • EA

= (A si(A,A') EA if N is fully faithful,

= EA' by the representation theorem.

We note that E is fully faithful if and only if N is dense. If F G 9 and
A€.M then

EA(F) = FA

= 5P(s£(A, -), F) by the representation theorem,

thus

[9, V\ (EA, F] = [9, Y] (9(J4{A, - ) , - ) , F)

by the representation theorem. From this we may deduce:

= « ( f SS(NA,B)-EA, {* ®(NA',B')-EA')

= f [S8(NA,B),^(£A, | A ®(NA',B')-EA'\\

9S(NA',B')®9(st{A', - ) ,

s f \a(NA,B), I* 9S(NA',B')<S)si(A,A<)\

by the representation theorem,

s I"
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by the representation theorem,

= ®(B,B') if and only if N is dense.

6. Appendix II

The embedding of the promonoidal monad 9~ into the monoidal biclosed
monad WF (see §3) may be refined so that the embedding of si9 preserves
certain colimits. This is achieved by considering the monoidal closure of the
Isbell completion of 38 in [38op, Y] (see Day (1974b) for notation).

Firstly, let Z° be the monoidal interior J 2 G Z ; F 0 z £ Z and z ® F G
Z for all F 6 [ a o p , Y]} of the class Z of morphisms inverted by the Isbell
conjugation functor:

7. [FB,®(B, -

from [38op, Y] to [38, Y]°p. Denote [38°/, Y] by <g and form 3)={HG<€;
W(H) _L Z°} as a full subcategory of <<?.

6.1 PROPOSITION. The category 3) is closed under limits and under ex-
ponentiation in c€.

PROOF. Clearly 3) is closed under limits in <€. For all G G % H G % and
z G_Z° we have that [98°P,Y](WG ® z,WH) is an isomorphism, hence
C(F(WG(g)z),H)==<g(FWG(g)Fz, H) are isomorphisms. This implies, by
monadicity of WF, that ^(G <g)Fz, H) is an isomorphism. Thus
c€{Fz,G\H)=[m°\ T](z, W(G\H)) are isomorphisms. Therefore we have
W(G\H)±Z° whence G\H&3) for all G e « and H £ 3. Similarly
H/G G S for all G G « and H £ 9 . •

Under suitable hypotheses on V the category 2) is reflective in <# and the
reflection .R is necessarily monoidal (by 6.1 Proposition) when it exists. It is
easy to verify that 3) is monadic over [38op, Y\z- and contains si* as a full
subcategory.

Now consider a colimit colim K of a functor K: 3if—>.s/y. This gives a
comparison transformation

K : colim EK —» £ (colim K)
in <£.

6.2 PROPOSITION. // £ [ / : ^ y ^[S8op, T"]z. preserves colim K then
RE: si^ —» ® preserves colim K.

PROOF. The embedding i?£ preserves colim K if and only if K is
inverted by the reflection R. This is so if k ± H for all HE. 3). But WK G Z°
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because EU preserves colim K by hypothesis. Thus, by definition of 3),
WK 1 WH forall H £ i But [38op, T](WK, WH) is an isomorphism for all
H E ® iff %(FWK,H) is an isomorphism for all H e S . T h i s implies that
FWK is inverted by R, whence K is inverted by R because F -\ W is monadic.

•
Therefore, under suitable hypotheses on V, there exists an embedding

RE of si3 which preserves all the colimits preserved by
EU: .stf̂  —»[53op; T]z°; this generalises the embedding theorem for closed
categories discussed in [7] by the author. Note that, by the change-of-T-
universe procedure outlined in Day (1973), we may replace Y by a larger
category W with respect to which si and sd* are both "small". This implies
that the hypotheses necessary on Y in order that S) be reflective in <€ are
always satisfied if Y is replaced by W throughout.
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