CAPACITÉ DES ENSEMBLES PRODUITS

MAKOTO OHTSUKA

Introduction

Si X est un ensemble mesurable au sens de Lebesgue dans un espace euclidien E_n et Y est un ensemble mesurable au sens de Lebesgue dans un autre espace euclidien E_m , alors $X \times Y$ est mesurable dans $E_{n+m} = E_n \times E_m$ et sa mesure est égale au produit de la mesure de X et celle de Y. Mais il n'existe pas de telle relation simple ni pour la capacité d'ordre général ni pour la mesure de Hausdorff de dimension générale. Dans le présent mémoire nous essayons d'évaluer la capacité des ensembles produits au moyen de la capacité ou de la mesure de Hausdorff des ensembles composants.

Le premier paragraphe est consacré aux préliminaires. Il s'agira d'un espace métrique localement compact et des noyaux $\log 1/\rho$, $1/\rho^a$ et $\log^+ 1/\rho$, où ρ est la distance et, en général, f^+ signifie max (f, 0). L'étude des potentiels pour des noyaux plus généraux dans un espace localement compact est courante dans la théorie du potentiel, mais dans le présent mémoire nous nous limitons strictement à ce qui sera nécessaire dans les paragraphes suivants; une discussion sera faite d'un point de vue général dans un mémoire en préparation.

Il est bien connu que la dimension capacitaire est égale à la dimension hausdorffienne dans l'espace euclidien. Ainsi la connaissance de la valeur de mesure de Hausdorff est utile en déterminant la valeur de capacité. Il y a d'assez nombreuses recherches sur la mesure de Hausdorff des ensembles produits. Nous donnerons dans 1.6 un exposé rapide des résultats connus sur ce sujet. En particulier, nous citons ici un phénomène pathologique trouvé par Besicovitch-Moran [4] disant que, étant donnés α et β , $0 < \alpha$, $\beta \le 1$, il existe un ensemble fermé X de dimension α sur l'axe des x et un ensemble fermé Y de dimension β sur l'axe des y tels que la dimension de $X \times Y$ soit égale à min $(1 + \alpha, 1 + \beta)$.

Received May 22, 1957.

L'objet des $\S 2-3^1$ est d'évaluer la capacité des ensembles produits. Le seule travail qui a explicitement traité ce problème est [10] par Deny-Lelong qui montre qu'un ensemble cylindrique dans l'espace euclidien E_n $(n \ge 3)$ est de capacité extérieure d'ordre n-2 nulle si et seulement si l'ensemble à base est de capacité extérieure d'ordre n-3 (ou capacité logarithmique extérieure si n=3) nulle. La capacité des ensembles produits est minorée dans $\S 2$ et majorée dans $\S 3$, au moyen de la capacité ou de la mesure de Hausdorff des ensembles composants.

Soient X et Y des ensembles compacts. Le résultat de Besicovitch-Moran mentionné ci-dessus suggère qu'il n'existe pas de limitation supérieure pour la dimension de $X \times Y$ si on ne tient pas compte des dimensions des deux espaces dans lesquels X et Y sont respectivement placés. En effet, on montrera dans $\S 4$ que, si $X \subset E_n$ et $Y \subset E_m$, on a

$$\dim(X) + \dim(Y) \leq \dim(X \times Y) \leq \min(n + \dim(Y), m + \dim(X))$$

et que, étant donnés α , $0 < \alpha \le n$, et β , $0 < \beta \le m$, on peut trouver un compact $X \subset E_n$ de dimension α et un compact $Y \subset E_m$ de dimension β tels que dim $(X \times Y)$ = min $(n + \beta, m + \alpha)$. Besicovitch et Moran ont évalué la mesure de Hausdorff mais nous compterons la capacité d'un ensemble de Cantor généralisé.

Ce travail a son origine dans le problème de trouver des critères pour qu'un ensemble soit effilé en un point. De fait nos résultats sur l'évaluation de la capacité des ensembles produits peuvent s'appliquer au problème d'effilement, mais on prendra une autre occasion pour cette application; il faudra étendre une condition de Wiener-Brelot pour l'effilement.

§ 1. Potentiel, capacité et dimension

1.1. L'espace Ω dont il s'agira sera un espace métrique localement compact, et les noyaux seront les fonctions particulières de la distance $\rho(P, Q)$:

$$\Phi(P, Q) = \log \frac{1}{\rho(P, Q)} \quad \text{et} \quad \frac{1}{\rho^{\alpha}(P, Q)} \quad (0 < \alpha < \infty).$$

Les potentiels pour ces noyaux, engendrés par une mesure de Radon positive finie μ à support compact, sont définis par

¹⁾ Un résumé de résultats partiels a été donné dans Bull. Amer. Math. Soc., 59 (1953), pp. 453-454.

$$\int_{\Omega} \Phi(P, Q) \, d\mu(Q)$$

et notés $U_0^{\mu}(P)$ et $U_{\alpha}^{\mu}(P)$, et ils sont appelés le 0-potentiel ou le potentiel logarithmique et l' α -potentiel respectivement; une mesure de Radon μ sera toujours positive finie à support compact dans ce mémoire et son support sera noté S_{α} .

On définit l'énergie (µ, µ) par

$$\iint \!\! \varPhi(P,\,Q) \, d\mu(P) \, d\mu(Q)$$

et désigne par \mathfrak{E} l'ensemble des mesures dont l'énergie est finie. Nous désignons par \mathfrak{F}_x l'ensemble des mesures de masse totale unité dont le support est contenu dans un ensemble X.

Posons pour un compact $K \subset \Omega$ non vide

$$W(K) = \inf_{\mu \in \widetilde{\mathfrak{H}}_K} (\mu, \mu).$$

A cause d'un théorème de choix (voir [5], par exemple), il existe au moins une mesure $\mu_0 \in \mathfrak{F}_K$ qui rend l'énergie minimum. De plus, par le raisonnement habituel on peut démontrer la

Proposition 1. On a

$$U_{\alpha}^{\mu_{\nu}}(P) \equiv W(K)$$
 partout sur $S_{\mu_{\nu}}$

et

$$U_{\mathfrak{a}}^{\beta_0}(P) \geq W(K)$$

sur K sauf sur un F_{σ} dont la masse est nulle pour toute $\mu \in \mathfrak{G}$.

Pour la démonstration voir [17; 19].

1. 2. On dit qu'un noyau satisfait au principe du maximum c-dilaté $(c \ge 0)^3$ si pour toute μ on a

$$\sup_{P\in\Omega}U^{\mu}_{\alpha}(P)\leq c\sup_{P\in\mathbb{S}_{\mu}}U^{\mu}_{\alpha}(P).$$

On va démontrer la

Proposition 2. Le noyau $\rho^{-\alpha}(P, Q)$ $(\alpha > 0)$ satisfait au principe du maxi-

²⁾ En outre, on considérera dans 1.7 le noyau $\log^+1/\rho = \max{(\log 1/\rho, 0)}$ et désignera le potentiel pour ce noyau par $\tilde{U}_0^\mu(P)$.

³¹ Une terminologie dans [8].

mum 2^a -dilaté.⁴⁾ Pour le noyau $\log 1/\rho(P, Q)$, on a

(1.1)
$$\sup_{P \in \Omega} U_0^{\mu}(P) \leq \sup_{P \in \hat{S}_{\mu}} U_0^{\mu}(P) + \mu(\mathcal{Q}) \log 2.$$

En effet, pour $P \not \in S_{\mu}$ on désigne par $P_1 \in S_{\mu}$ un point tel que $\rho(P, P_1) = \inf_{Q \in S_{\mu}} \rho(P, Q)$. Alors

$$\rho(P_1, Q) \leq \rho(P, P_1) + \rho(P, Q) \leq 2\rho(P, Q),$$

et donc

$$U^{\mu}_{\alpha}(P) = \int_{\Omega} \frac{1}{\rho^{\alpha}(P, Q)} d\mu(Q) \leq 2^{\alpha} \int_{\Omega} \frac{1}{\rho^{\alpha}(P_{1}, Q)} d\mu(Q) = 2^{\alpha} U^{\mu}_{\alpha}(P_{1})$$

ou

$$U_0^{\mu}(P) = \int_{\Omega} \log \frac{1}{\rho(P,Q)} d\mu(Q) \leq U_0^{\mu}(P_1) + \mu(\Omega) \log 2,$$

d'où la proposition.

En vertu de cette propriété de nos noyaux, les potentiels font beaucoup de caractères communs avec le potentiel newtonien. Cependant, nous ne nous intéressons dans la suite qu'aux propriétés dont nous aurons besoin dans les pragraphes 2 et 3.

1.3. Nous définirons deux espèces de capacité. D'abord nous poserons pour un ensemble compact K

$$V_{\mu}^{(\alpha)*} = \sup_{P \in \mathcal{S}_{\mu}} U_{\alpha}^{\mu}(P) \quad \text{et} \quad V_{\alpha}^{*}(K) = \inf_{\mu \in \mathcal{T}_{K}} V_{\mu}^{(\alpha)*} \qquad (\alpha \ge 0)$$

si K n'est pas vide, et $V^*_{\alpha}(\phi) = \infty$. D'après la proposition 1, on a $V^*_{\alpha}(K) \leq W(K)$. D'autre part, on trouve $V^*_{\alpha}(K) \geq W(K)$, car pour toute $\mu \in \mathfrak{F}_K$

$$W(K) \leq \int_{\Omega} U^{\mu}_{\mathfrak{a}}(P) \, d\mu(P) \leq \sup_{P \in S_{\mu}} U^{\mu}_{\mathfrak{a}}(P).$$

Ainsi on a la

Proposition 3.
$$W(K) = V_{\pi}^*(K)$$
.

On pose pour un ensemble quelconque X

$$C_i^{(\alpha)*}(X) = \exp\left[-\inf_{K \in X} V_0^*(K)\right] \quad (\alpha = 0) \quad \text{ou} \quad \left\{\inf_{K \in X} V_\alpha^*(K)\right\}^{-1} \quad (\alpha > 0),$$

où K est un ensemble compact, et l'on pose

$$C_e^{(\alpha)*}(X) = \sup_{Y \subset X} \inf_{G \supset Y} C_i^{(\alpha)*}(G) \qquad (\alpha \ge 0),$$

⁴⁾ C'est un cas particulier du critère 3 du nº 2 de [8].

où Y est un ensemble relativement compact dans Ω et G est un ensemble ouvert. Les deux fonctions des ensembles seront appelées l' α -capacité intérieure restreinte et l' α -capacité extérieure restreinte de X respectivement. Ici on ne définit pas $C_e^{(\alpha)*}(X)$ par $\inf_{G \supset X} C_i^{(\alpha)*}(G)$; on peut démontrer qu'un ensemble est α -polaire si et seulement si son α -capacité extérieure (restreinte) est nulle; voir 1,4.

Pour définir une autre espèce de capacité nous posons

$$V_{\mu}^{(\alpha)} = \sup_{P \in \Omega} U_{\alpha}^{\mu}(P)$$
 et $V_{\alpha}(K) = \inf_{\mu \in \widehat{\mathfrak{F}}_{K}} V_{\mu}^{(\alpha)}$

si $K \neq \phi$ et $V_{\alpha}(\phi) = \infty$ si $K = \phi$, et définissons l' α -capacité intérieure par

$$C_i^{(\alpha)}(X) = \exp\left[-\inf_{K \in X} V_0(K)\right] \quad (\alpha = 0) \quad \text{ou} \quad \{\inf_{K \in X} V_\alpha(K)\}^{-1} \quad (\alpha > 0)$$

et l'α-capacité extérieure par

$$C_e^{(\alpha)}(X) = \sup_{X \in X} \inf_{G \ni X} C_i^{(\alpha)}(G) \qquad (\alpha \ge 0)$$

comme plus haut.

Les α -capacités (restreintes resp.) sont autrement appelées les capacités (restreintes resp.) d'ordre α . Elles sont des fonctions croissantes des ensembles, et

$$\begin{split} C_i^{(\alpha)*}(X) & \leq C_e^{(\alpha)*}(X), \quad C_i^{(\alpha)}(X) \leq C_e^{(\alpha)}(X), \\ C_i^{(\alpha)}(X) & \leq C_i^{(\alpha)*}(X), \quad C_e^{(\alpha)}(X) \leq C_e^{(\alpha)*}(X) \qquad (\alpha \geq 0). \end{split}$$

On a aussi la

Proposition 4.5)

$$\{C_i^{(\alpha)*}(X)\}^{1/\alpha} \ge \{C_i^{(\beta)*}(X)\}^{1/3}, \ \{C_i^{(\alpha)}(X)\}^{1/\alpha} \ge \{C_i^{(\beta)}(X)\}^{1/3} \quad \text{pour } 0 < \alpha < \beta, \text{ et}$$

$$C_i^{(0)*}(X) \ge \{C_i^{(\alpha)*}(X)\}^{1/\alpha}, \quad C_i^{(0)}(X) \ge \{C_i^{(\alpha)}(X)\}^{1/\alpha} \quad \text{pour } \alpha > 0;$$

les relations analogues sont vraies aussi pour $C_e^{(\alpha)*}(X)$ et $C_e^{(\alpha)}(X)$ ($\alpha \ge 0$).

D'après la proposition 2, on a $C_i^{(0)*}(X) \leq 2C_i^{(0)}(X)$ et $C_e^{(0)*}(X) \leq 2C_e^{(0)}(X)$, et pour $\alpha > 0$ on a $C_i^{(\alpha)*}(X) \leq 2^{\alpha}C_i^{(\alpha)}(X)$ et $C_e^{(\alpha)*}(X) \leq 2^{\alpha}C_e^{(\alpha)}(X)$. Donc on obtient la

⁵⁾ Voir, par exemple, p. 52, prob. 71 de Pólya-Szegö: Aufgaben und Lehrsätze aus der Analysis, I, Berlin (1925), ou les théorèmes 184 et 192 de Hardy-Littlewood-Pólya: Inequalities, Cambrige (1952).

PROPOSITION 5. Pour tout X, $C_i^{(\alpha)*}(X) = 0$ $(C_e^{(\alpha)*}(X) = 0$ resp.) si et seulement si $C_i^{(\alpha)}(X) = 0$ $(C_e^{(\alpha)}(X) = 0$ resp.).

Par conséquent, tout critère pour qu'une capacité restreinte soit nulle est valable aussi pour la capacité correspondante et l'inverse est vrai; on ne donnera donc des critères que pour C_i et C_e .

On peut établir sans aucune difficulté la

Proposition 6. Soient $\{B_n\}$ (n=1, 2, ...) des ensembles boréliens. Les égalités $C_i^{(\alpha)}(B_n) = 0$ $(\alpha \ge 0)$ entraînent $C_i^{(\alpha)}(\bigcup B_n) = 0$. Il en est même de $C_e^{(\alpha)}$.

Le détail de la démonstration sera publié ultérieurement.

On dira que X est α -capacitable (α -capacitable au sens restreint resp.) si

$$C_i^{(\alpha)}(X) = C_e^{(\alpha)}(X)$$
 $(C_i^{(\alpha)*}(X) = C_e^{(\alpha)*}(X) \text{ resp.}),$

et on écrira la valeur commune $C^{(\alpha)}(X)$ ($C^{(\alpha)*}(X)$ resp.). Evidemment tout ensemble ouvert est α -capacitable aux deux sens. On peut démontrer aussi que tout ensemble compact est α -capacitable ($\alpha \ge 0$) aux deux sens.

Proposition 7.

$$C_i^{(\alpha)}(K) = C_e^{(\alpha)}(K) \quad et \quad C_i^{(\alpha)*}(K) = C_e^{(\alpha)*}(K) \qquad (\alpha \ge 0).$$

En effet, on prend une suite d'ensembles ouverts $\{G_n\}$ telle que $G_n \setminus K$ et que l'adhérence G_n^a de G_n soit compacte et contenue dans G_{n-1} $(n=1, 2, \ldots)$. Soit $\mu_n \in \mathfrak{F}_{G_n^a}$ une répartition qui rend $(\mu_n, \mu_n) = \inf_{\mu \in \mathfrak{F}_{G_n^a}} (\mu, \mu)$. On peut extraire une suite partielle $\{\mu_{n_k}\}$, grâce à un théorème de choix, qui converge vaguement vers une mesure $\mu_0 \in \mathfrak{F}_K$. Alors on a $\lim_{k \to \infty} (\mu_{n_k}, \mu_{n_k}) \geq (\mu_0, \mu_0)$. D'autre part $(\mu_0, \mu_0) \geq (\mu_{n_k}, \mu_{n_k})$ car $\mu_0 \in \mathfrak{F}_{G_n^a}$ pour tout n, et donc $\lim_{k \to \infty} (\mu_{n_k}, \mu_{n_k}) = (\mu_0, \mu_0)$. Comme $(\mu', \mu') \geq (\mu_{n_k}, \mu_{n_k})$ si $\mu' \in \mathfrak{F}_K$, on en conclut que $(\mu_0, \mu_0) = \inf_{\mu \in \mathfrak{F}_K} (\mu, \mu) = W(K)$. Il résulte d'après la proposition 3 que

$$(\mu_0, \mu_0)^{-1} = V_a^*(K)^{-1} = C_i^{(a)*}(K) \le C_{e_i}^{(a)*}(K) \le C^{(a)}(G_{n_k}) \le C_i^{(a)*}(G_{n_k}^a)$$
$$= V^*(G_{n_k}^a)^{-1} = (\mu_{n_k}, \mu_{n_k})^{-1} \quad \text{pour} \quad \alpha > 0$$

et

$$e^{-(\mu_0, \mu_0)} = C_i^{(0)*}(K) \le C_e^{(0)*}(K) \le C^{(0)*}(G_{n_k}) \le e^{-(\mu_{n_k}, \mu_{n_k})},$$

d'où l'égalité

$$C_i^{(\alpha)*}(K) = C_e^{(\alpha)*}(K)$$
 pour $\alpha \ge 0$.

Pour démontrer $C_i^{(a)}(K) = C_e^{(a)}(K)$, on prend $\nu_n \in \mathfrak{F}_{G_n}^a$ telle que $V_{\nu_n}^{(a)} < V_{\alpha}(G_n^a)$ + $\frac{1}{n}$ et on choisit $\{\nu_{n_k}\}$ qui converge vaguement vers $\nu_0 \in \mathfrak{F}_K$. Alors $\lim_{k \to \infty} U^{\nu_{n_k}}(P)$ $\geq U^{\nu_0}(P)$ dans \mathcal{Q} et donc $\lim_{k \to \infty} V_{\nu_{n_k}}^{(a)} \geq V_{\nu_0}^{(a)}$, d'où $\lim_{n \to \infty} V_{\alpha}(G_n^a) \geq V_{\alpha}(K)$. Par conséquent $C_e^{(a)}(K) \leq C_i^{(a)}(K)$. L'inverse est évident et on en déduit l'égalité $C_i^{(a)}(K)$ = $C_e^{(a)}(K)$.

Si les ensembles sont dans un espace euclidien E_n , nous avons la

Proposition 8. Tout ensemble analytique relativement compact dans E_n est α -capacitable ($\alpha \ge 0$) au sens restreint.

Pour la démonstration, nous renvoyons à [1] (voir aussi [7]).

1.4. Un ensemble X relativement compact dans Ω sera appelé α -polaire $(\alpha \ge 0)$ s'il existe un potentiel $U^{\mu}_{\alpha}(P)$ qui est égal à ∞ en chaque point de X. Un ensemble quelconque sera appelé α -polaire si tout sous-ensemble relativement compact dans Ω est α -polaire.

Proposition 9. L' α -capacité extérieure d'un ensemble α -polaire X est nulle.

On peut supposer que X est relativement compact dans \mathcal{Q} . Supposons qu'il existe un potentiel $U^{\nu}_{\alpha}(P)$ qui est égal à ∞ en chaque point de X. Comme $U^{\mu}_{\alpha}(P)$ est semi-continu inférieurement, l'ensemble $G_n = \{P \; ; \; U^{\mu}_{\alpha}(P) > n\}$ est un ensemble ouvert contenant X. Soit ν une mesure quelconque de \mathfrak{F}_{a_n} . Alors de la relation

$$n < \int_{\Omega} U^{\mu}_{\sigma}(P) d\nu(P) = \int_{\Omega} U^{\nu}_{\sigma}(P) d\mu(P)$$

on tire l'inégalité $\sup_{P\in\Omega}U^{\vee}_{\mathfrak{a}}(P)>n$, d'où $C_{i}^{(\alpha)}(G_{n})\leq 1/n$ et donc $C_{e}^{(\alpha)}(X)=0$.

L'inverse de cette proposition est vrai mais ne sera pas démontré ici; on n'aura pas besoin de ce fait dans ce mémoire. Cependant, la proposition suivante nous fournira des ensembles α -polaires; elle est une généralisation du théorème dit d'Evans ou d'Evans-Selberg.

Proposition 10. Tout ensemble compact K d' α -capacité (restreinte) nulle porte une mesure μ de masse-unité telle que $U^{\mu}_{\alpha}(P) = \infty$ en chaque point de K.

La démonstration peut être faite comme d'habitude. Certainement K est alors α -polaire; une réunion dénombrable d'ensembles compacts d' α -capacité (restreinte) nulle est aussi α -polaire. Des propositions 1 et 3 on tire la

Proposition 11. Soit K un ensemble compact. Pour tout $\varepsilon > 0$, K porte une mesure μ de masse totale unité telle que

$$U^{\mu}_{\alpha}(P) \ge \frac{V^*_{\alpha}(K)}{1+\varepsilon}$$
 partout sur K.

1.5. La dimension capacitaire intérieure (extérieure resp.) d'un ensemble quelconque X dans un espace métrique localement compact est définie par

$$\inf \left\{ \alpha \; ; \; C_i^{(\alpha)}(X) = 0 \quad (C_e^{(\alpha)}(X) = 0 \text{ resp.}) \right\}$$

et notée $\dim_{ci}(X)$ ($\dim_{ce}(X)$ resp.); cette définition se fonde sur la proposition 4. A cause de la proposition 5, il ne faut pas définir la dimension par rapport aux capacités restreintes.

Or nous définirons la mesure de Hausdorff d'un ensemble quelconque X dans l'espace euclidien E_n de dimensions. n Considérons

$$m_0^{(\epsilon)}(X) = \inf_{(H_k)} \sum_k \frac{1}{\log \frac{1}{\operatorname{diam} H_k}}$$
 si $\alpha = 0$

ou

$$m_{\alpha}^{(\varepsilon)}(X) = \inf_{\{H_k\}} \sum_{k} (\operatorname{diam} H_k)^{\alpha} \quad \text{si} \quad \alpha > 0,$$

où $\{H_k\}$ est un recouvrement dénombrable de X tel que tout diam H_k soit $< \varepsilon$. Nous appellerons $\lim_{\varepsilon \to 0} m_\alpha^{(\varepsilon)}(X)$ la mesure de Hausdorff de dimension α et la noterons $m_\alpha(X)$ ($\alpha \ge 0$). La mesure intérieure $m_\alpha(X)$ est définie par $\sup m_\alpha(K)$ par rapport aux ensembles compacts K contenus dans K. Si un ensemble K est m_α -mesurable et $m_\alpha(X) < \infty$, alors $m_\alpha(X) = m_\alpha(X)$.

Nous avons les relations suivantes entre les capacités et les mesures de Hausdorff.

PROPOSITION 12. Soit $X \subset E_n$. Si $m_{\alpha}(X) > 0$ alors $C_e^{(\beta)}(X) > 0$ pour tout β , $0 \le \beta < \alpha$, et si $m_{\alpha}(X) > 0$ alors $C_i^{(\beta)}(X) > 0$ pour tout β , $0 \le \beta < \alpha$.

On trouve une démonstration du premier énoncé dans [6] et [20]. Si $m_{\alpha}(X) > 0$ il existe un compact $K \subset X$ tel que $m_{\alpha}(K) > 0$. D'après le premier énoncé $C_e^{(3)}(K) > 0$ pour tout β , $0 \le \beta < \alpha$. Par la proposition 7 on a $C_t^{(\beta)}(X) \ge C_t^{(\beta)}(K) = C_e^{(\beta)}(K) > 0$.

Inversement on a la

PROPOSITION 13. Soit $X \subset E_n$. Si $C_e^{(\alpha)}(X) > 0$ $(\alpha \ge 0)$ alors $m_\alpha(X) = \infty$, et si $C_i^{(\alpha)}(X) > 0$ alors $\underline{m}_\alpha(X) = \infty$.

Une démonstration du deuxième énoncé se trouve sous une forme plus générale dans [18]. Ensuite supposons que $C_e^{(\alpha)}(X) > 0$; soit $X_1 \subset X$ relativement compact tel que $C_e^{(\alpha)}(X_1) > 0$. Puisque $m_{\alpha}(X)$ est une mesure extérieure régulière, il existe un ensemble relativement compact $G_\delta \supset X_1$ tel que $m_{\alpha}(G_\delta) = m_{\alpha}(X_1)$. Comme G_δ est capacitable au sens restreint d'après la proposition 8, $C_i^{(\alpha)}(G_\delta) = C_e^{(\alpha)}(G_\delta) > 0$ et, en vertu du deuxième énoncé, $m_{\alpha}(X_1) = m_{\alpha}(G_\delta) = \infty$.

On définit la dimension haus dorffienne $\dim_h\left(X\right)$ d'un ensemble X dans un espace euclidien par

$$\inf \{ \alpha \; ; \; m_{\alpha}(X) = 0 \},$$

et la dimension hausdorffienne intérieure $\dim_{hi}(X)$ par

$$\inf \{\alpha \; ; \; m_{\alpha}(X) = 0 \}.$$

On tire des propositions 12 et 13 la

Proposition 14. $\dim_{ce}(X) = \dim_h(X) \ge \dim_{ci}(X) = \dim_{hi}(X)$ pour tout X dans un espace eucldien. Si $\underline{m}_{\alpha}(X) > 0$ pour tout $\alpha > 0$ tel que $m_{\alpha}(X) > 0$, toutes les dimensions sont égales.

Les abréviations $\dim_c(X)$ et dim (X) auront les significations évidentes.

1. 6. Les propositions 12 et 13 montrent que la connaissance de valeurs de la mesure (ou mesure intérieure resp.) de Hausdorff des ensembles produits est utile en étude de la capacité extérieure (intérieure resp.) des ensembles produits. Il y a d'assez nombreux travaux sur celle-là; nous citons ici Hausdorff [16], Randolph [25], Besicovitch et Moran [4], Moran [22; 23], Eggleston [11; 12], Freilich [14; 15], Federer [13] et Marstrand [21].

Nous allons faire un exposé sur certains de leurs résultats. Soit Z un ensemble dans le plan x+iy et soit X un ensemble sur l'axe des x. Désignons par Z_x l'intersection de Z avec la droite de l'abscisse x. Marstrand [21] a monure que si p est un nombre positif tel que pour tout $x \in X$ on ait $m_{\beta}(Z_x) > p$, alors il existe une constante absolue c > 0 telle que l'inégalité

$$m_{\alpha+\beta}(Z) \ge c p \, m_{\alpha}(X)$$

soit vraie pour tout $\alpha > 0$. De cette relation on tire immédiatement

b) Voir la fin de 1.6. Évidemment $m_{\alpha}(X) > 0$ entraîne $m_{\beta}(X) > 0$ pour tout β , $0 \le \beta < \alpha$.

$$m_{\alpha+\beta}(X\times Y)\geq c\,m_{\alpha}(X)\,m_{\beta}(Y)$$

et

$$\dim_h (X \times Y) \ge \dim_h (X) + \dim_h (Y);$$

une généralisation de cette relation sera donnée dans le corollaire 3 du théorème 2.

L'inégalité dans l'autre sens n'est pas vraie en général. Les résultats suivants ont été obtenus par Besicovitch et Moran [4]. Si X est un ensemble m_a -mesurable sur l'axe des x et sa \dim_h est égale à α et si Y est un ensemble m_{θ} -mesurable sur l'axe des y et sa \dim_h est égale à β , alors

$$\dim_h (X \times Y) \leq 1 + \min (\alpha, \beta)$$

et, pour α et β , $0 < \alpha$, $\beta \le 1$, quelconques, on trouve des ensembles fermés X et Y qui réalisent l'égalité. Si, de plus, $0 < m_{\sigma}(X) < \infty$ et $0 < m_{\beta}(Y) < \infty$ et si la densité inférieure de Y par rapport à la mesure m_{β} est positive en tout point de Y, alors

$$\dim_h (X \times Y) = \dim_h (X) + \dim_h (Y) = \alpha + \beta.$$

Si $m_1(X) < \infty$, on a

$$(1.4) m_1(X) m_{\beta}(Y) \leq m_{1+\beta}(X \times Y) \leq 2^{(1+\beta)/2} m_1(X) m_{\beta}(Y).$$

Même si X est un segment et Y est un ensemble plan m_t -mesurable, il y a un cas où

$$(1.5) m_1(X) m_1(Y) < m_2(X \times Y);$$

la question pour l'existence de tel exemple avait été posée par Randolph [25].

Freilich [14] a rétabli (1.5) et Moran [23] et Federer [13] ont obtenu certaines inégalités pareilles à (1.4).

Un ensemble X est appelé un α -ensemble s'il contient un ensemble compact de m_{α} -mesure positive finie. La question à savoir quand un ensemble m_{α} -mesurable X de $m_{\alpha}(X) = \infty$ est un α -ensemble a été étudiée par Besicovitch [2; 3] et Davies [9]. Ils ont montré que c'est le cas de tout ensemble analytique mais non pas toujours l'est. Donc $\underline{m}_{\alpha}(X) > 0$ si X est analytique et $m_{\alpha}(X) > 0$.

1.7. Pour l'utiliser dans certaines évaluations de capacité, on considérera une autre espèce de capacité logarithmique. On désigne par $\dot{U}_0^{\mu}(P)$ le potentiel

pour le noyau $\log^{\perp} 1/\rho(P, Q)$, et par $\dot{V}_0^*(K)$ et $\dot{V}_0(K)$ les quantités correspondantes à $V_0^*(K)$ et $V_0(K)$ respectivement. Nous définissons $\dot{C}_i^{(0)*}(X)$ et $\dot{C}_i^{(0)}(X)$ encore par $\exp[-\inf\dot{V}_0^*(K)]$ et $\exp[-\inf\dot{V}_0(K)]$ respectivement; la signification de $\dot{C}_e^{(0)*}(X)$ et $\dot{C}_e^{(0)}(X)$ sera manifeste.

La proposition 1 est vraie aussi pour $\dot{U}_0^u(P)$ et on indiquera ce fait comme la proposition 1'.

On a évidemment

$$\dot{\bar{C}}_{i}^{(0)*}(X) \leq C_{i}^{(0)*}(X), \ \dot{\bar{C}}_{i}^{(0)}(X) \leq C_{i}^{(0)}(X),
\dot{\bar{C}}_{e}^{(0)*}(X) \leq C_{e}^{(0)*}(X), \ \dot{\bar{C}}_{e}^{(0)}(X) \leq C_{e}^{(0)}(X)$$

et

$$\dot{\bar{C}}_{i}^{(0)*}(X) \leq \dot{\bar{C}}_{e}^{(0)*}(X), \ \dot{\bar{C}}_{i}^{(0)}(X) \leq \dot{\bar{C}}_{e}^{(0)}(X),
\dot{\bar{C}}_{i}^{(0)*}(X) \leq \dot{\bar{C}}_{i}^{(0)*}(X), \ \dot{\bar{C}}_{e}^{(0)}(X) \leq \dot{\bar{C}}_{e}^{(0)*}(X).$$

Un analogue de la proposition 5 est vrai pour \dot{C} . On a aussi la

Proposition 15. $\dot{C}_{i}^{(0)}(X) = 0$ $(\dot{C}_{e}^{(0)}(X) = 0 \ resp.)$ si et seulement si $C_{i}^{(0)}(X) = 0$ $(C_{e}^{(0)}(X) = 0 \ resp.)$.

Supposons que $C_i^{(0)}(K) > 0$ pour un compact $K \subset X$. Nous désignons le diamètre de K par $d < \infty$. Si la distance de P à S_k est ≥ 1 , on a

$$\dot{U}_0^{\prime\prime}(P) = \int \log^+ \frac{1}{a} d\mu = 0$$

pour $\mu \in \mathfrak{F}_K$ quelconque, et si la distance est < 1, on a

$$\dot{U}_0^{\mu}(P) = U_0^{\mu}(P) + \int_{\rho \ge 1} \log \rho d\mu \le V_{\mu}^{(0)} + \log (1+d),$$

d'où $\dot{V}_0(K) < \infty$.

Ensuite on suppose que $C_e^{(0)}(X_1) > 0$ pour un ensemble $X_1 \subseteq X$ relativement compact dans Ω . Soit $G \supset X_1$ un ensemble ouvert de diamètre $d(G) < \infty$. De la même façon que ci-dessus on a

$$\log \frac{1}{\dot{C}_{i}^{(0)}(G)} \leq \log \frac{1}{C_{i}^{(0)}(G)} + \log (1 + d(G)),$$

et donc

$$\dot{C}_e^{(0)}(X_1) \geq \frac{C_e^{(0)}(X_1)}{1+d(X_1)},$$

oú $d(X_1)$ est le diamètre de X_1 . Ainsi $\overset{\leftarrow}{C}_e^{(0)}(X) \geqq \overset{\leftarrow}{C}_e^{(0)}(X_1) > 0$.

§ 2. Minoration de la capacité des ensembles produits

2. 1. Soient Ω_1 et Ω_2 des espaces métriques localement compacts, et soit $\Omega=\Omega_1\times\Omega_2$ l'espace produit; si $\rho_1(P_1,\,Q_1)$ et $\rho_2(P_2,\,Q_2)$ sont les distances respectives dans Ω_1 et Ω_2 , la distance entre $P=(P_1,\,P_2)$ et $Q=(Q_1,\,Q_2)$ dans Ω est par $\rho(P,\,Q)=\sqrt{\rho_1^2(P_1,\,Q_1)+\rho_2^2(P_2,\,Q_2)}$.

Lemme 1. Soient Ω_1 et Ω_2 des espaces métriques localement compacts. Soit Z un ensemble ouvert dans l'espace produit $\Omega_1 \times \Omega_2$, et soit X un compact dans Ω_1 . Posons $Z_{P_1} = \{P_2 ; (P_1, P_2) \in Z\}$ et supposons que $C^{(3)}(Z_{P_1}) \geq b$ $(\beta \geq 0)$ pour tout $P_1 \in X$. Alors on a

$$(2.1) C^{(\alpha+\beta)}(Z) \geq \alpha^{-\alpha/2}\beta^{-\beta/2}(\alpha+\beta)^{(\alpha+\beta)/2}bC^{(\alpha)}(X) pour \alpha, \ \beta > 0,$$

(2.2)
$$C^{(0)}(Z) \ge \sqrt{2bC^{(0)}(X)}$$
.

On a aussi

(2.3)
$$C^{(\alpha)}(Z) \ge C^{(\alpha)}(X)^{7} \qquad \text{pour } \alpha \ge 0$$

si $Z_{P_1} \neq \phi$ pour chaque $P_1 \in X$; il ne faut pas que $C^{(\beta)}(Z_{P_1}) \geq b > 0$. Les mêmes relations sont vraies pour la capacité restreinte.

On peut supposer que b > 0 et Z n'est pas vide. En premier lieu nous considérons le cas où α et β sont positifs. Soit 0 < b' < b. Pour chaque point $P_1 \in X$, on peut trouver un compact $K_{P_1} \subset Z_{P_1}$ tel que $C^{(3)}(K_{P_1}) > b'$. Si on prend un voisinage ouvert v_{P_1} de P_1 assez petit, $v_{P_1} \times K_{P_1}$ est contenu dans Z. Un nombre fini de tels voisinages, soient $v^{(1)}, \ldots, v^{(n)}$ couvrent X. Soient $K^{(1)}, \ldots, K^{(n)}$ les compacts correspondants à $v^{(1)}, \ldots, v^{(n)}$; alors $C^{(3)}(K^{(j)}) > b'$ $(j = 1, \ldots, n)$. On considère l'ensemble $(v^{(1)} \times K^{(1)}) \cup ((v^{(2)} - v^{(1)}) \times K^{(2)}) \cup ((v^{(3)} - v^{(2)} - v^{(1)}) \times K^{(3)}) \cup \ldots \cup ((v^{(n)} - \bigcup_{i=1}^{n-1} v^{(i)}) \times K^{(n)})$. Choisissons $v_j \in \mathfrak{F}_{K^{(j)}}$ telle que $U_{\beta}^{v_j}(P_2) < 1/b'$ en tout point P_2 de Q_2 . Désignons par Q_j la restriction d'une mesure quelconque $Q_j \in \mathfrak{F}_{X_j}$ à $v^{(j)} - \bigcup_{i=1}^{j-1} v^{(i)}$, et posons $\sum_{j=1}^{n} (\mu_j \times v_j) = \lambda$. Alors $\lambda \in \mathfrak{F}_{Z_j}$ et

$$U_{lpha+eta}^{\wedge}(P) = \sum_{j=1}^{n} \! \int_{\Omega_{2}} \! \int_{\Omega_{1}} \! rac{d\mu_{j}(Q_{1}) \, d\nu_{j}(Q_{2})}{ \left\{
ho_{1}^{2}(P_{1}, Q_{1}) +
ho_{2}^{2}(P_{2}, Q_{2})
ight\}^{(lpha+eta)/2}} \; .$$

Remarquons que, pour s > 0 et t > 0 quelconques,

^{7) (2.3)} signifie (2.2) si et seulement si $C^{(0)}(X) \ge 2b$.

$$\frac{s^{\alpha}t^{3}}{(s^{2}+t^{2})^{(\alpha+\beta)/2}} = \frac{\left(\frac{t}{s}\right)^{3}}{\left\{1+\left(\frac{t}{s}\right)^{2}\right\}^{(\alpha+\beta)/2}} \leq \frac{\alpha^{\alpha/2}\beta^{3/2}}{(\alpha+\beta)^{(\alpha+\beta)/2}};$$

nous désignerons la quantité à droite par γ . En posant $s = \rho_1(P_1, Q_1)$ et $t = \rho_2(P_2, Q_2)$, on aura

$$\begin{split} \frac{1}{C^{(\alpha+\beta)}(Z)} & \leq \sup_{P \in \Omega} U_{\alpha+\beta}^{\lambda}(P) \leq \sup_{P \in \Omega} \gamma \sum_{j=1}^{n} \int_{\Omega_{2}} \int_{\Omega_{1}} \frac{d\mu_{j}(Q_{1})}{\rho_{1}^{\alpha}(P_{1}, Q_{1})} \frac{d\nu_{j}(Q_{2})}{\rho_{2}^{\lambda}(P_{2}, Q_{2})} \\ & \leq \gamma \sup_{P \in \Omega} \sum_{j=1}^{n} U_{\alpha}^{\mu_{j}}(P_{1}) U_{\beta}^{\nu_{j}}(P_{2}) \leq \frac{\gamma}{b'} \sup_{P_{1} \in \Omega_{1}} U_{\alpha}^{\lambda}(P_{1}). \end{split}$$

Comme $\mu \in \mathfrak{F}_X$ peut être choisie arbitrairement, on a, en faisant $b' \to b$,

$$\frac{1}{C^{(\alpha+\beta)}(Z)} \leq \frac{\gamma}{bC^{(\alpha)}(X)}.$$

Pour établir (2.2), il suffira de remarquer que, pour $\lambda = \sum_{j=1}^{n} (\mu_j \times \nu_j)$ ci-dessus,

$$\begin{split} U_0^{\lambda}(P) &= \sum_{j=1}^n \frac{1}{2} \int_{\Omega_2} \int_{\Omega_1} \log \frac{1}{\rho_1^2(P_1, Q_1) + \rho_2^2(P_2, Q_2)} d\mu_j(Q_1) d\nu_j(Q_2) \\ &= \sum_{j=1}^n \frac{1}{2} \int_{\Omega_2} \int_{\Omega_1} \log \frac{\rho_2/\rho_1}{1 + (\rho_2/\rho_1)^2} d\mu_j d\nu_j + \frac{1}{2} U_0^{\nu}(P_1) \\ &+ \frac{1}{2} \sum_{j=1}^n U_0^{\nu_j}(P) \mu_j(X) \\ &\leq \frac{1}{2} \log \frac{1}{2} + \frac{1}{2} U_0^{\nu}(P_1) + \frac{1}{2} \log \frac{1}{h'}, \end{split}$$

où ν_j est choisie telle que $U_{\emptyset}^{\gamma_j}(P_2) \leq \log \frac{1}{b'}$ dans Ω_2 .

Pour démontrer (2.3), on prend $\sum_{j=1}^{n} (v^{(j)} - \bigcup_{i=1}^{j-1} v^{(i)}) \times K^{(j)} \subset \mathbb{Z}$ comme ci-dessus; cette fois il ne faut que de $K^{(j)} \neq \phi$. Soit $\mu = \sum_{j=1}^{n} \mu_j \in \mathfrak{F}_X$ et $\nu_j \in \mathfrak{F}_{K^{(j)}}$. En posant $\lambda = \sum_{j=1}^{n} (\mu_j \times \nu_j)$, on aura

$$U_0^{\lambda}(P) \leqq \int_{\Omega_1} \log rac{1}{
ho_1(P_1, Q_1)} d\mu(Q_1) = U_0^{\mu}(P_1)$$

et pour $\alpha > 0$

$$U_{\alpha}^{\lambda}(P) \leqq \int_{\Omega_{1}} \frac{1}{\rho_{1}^{\alpha}(P_{1}, Q_{1})} d\mu(Q_{1}) = U_{\alpha}^{\alpha}(P_{1}).$$

On peut faire le même raisonnement pour la capacité restreinte.

Lemme 2. Soit $Z \subset \Omega_1 \times \Omega_2$ un compact, et soit $X \subset \Omega_1$ un compact tel que, pour chaque $P_1 \in X$, $C^{(\beta)}(Z_{P_1}) \geq b$ $(\beta \geq 0)$. Alors

$$(2.4) C^{(\alpha+\beta)}(Z) \geq \alpha^{-\alpha/2}\beta^{-3/2}(\alpha+\beta)^{(\alpha+\beta)/2}bC^{(\alpha)}(X) pour \alpha, \ \beta \geq 0,$$

$$(2.5) C^{(0)}(Z) \ge \sqrt{2}bC^{(0)}(X).$$

On a aussi

$$(2.6) C^{(\alpha)}(Z) \ge C^{(\alpha)}(X)$$

si $Z_{P_1} \neq \phi$ pour chaque $P_1 \in X$; il ne faut pas que $C^{(3)}(Z_{P_1}) \geq b > 0$. Les mêmes relations sont vraies pour la capacité restreinte.

En effet, d'après la proposition 7, on peut choisir une suite d'ensembles ouverts $\{G_n\}$ telle que $C^{(\alpha+\beta)}(G_n) \downarrow C^{(\alpha+\beta)}(Z)$. En vertu du lemme précédent on a $C^{(\alpha+\beta)}(G_n) \geq \gamma^{-1}bC^{(\alpha)}(X)$ si $\alpha, \beta > 0$, d'où (2,4). Les autres inégalités peuvent être démontrées de la même manière.

De ce lemme on tire immédiatement le

Théorème 1. Soient Ω_1 et Ω_2 des espaces métriques localement compacts, $X \subset \Omega_1$ et $Y \subset \Omega_2$ des sous-ensembles quelconques, et $C_i^{(\alpha)}(X)$ et $C_i^{(\beta)}(Y)$ les capacités intérieures d'ordre α et d'ordre β respectivement. Alors, pour l'ensemble produit $X \times Y$ dans l'espace métrique produit, on a

$$(2.7) \quad C_i^{(\alpha+\beta)}(X\times Y) \geq \alpha^{-\alpha/2}\beta^{-\beta/2}(\alpha+\beta)^{(\alpha+\beta)/2}C_i^{(\alpha)}(X)C_i^{(\beta)}(Y) \quad pour \ \alpha, \ \beta \geq 0,$$

(2.8)
$$C_i^{(0)}(X \times Y) \ge 2\sqrt{C_i^{(0)}(X)C_i^{(0)}(Y)},$$

(2.9)
$$C_i^{(\alpha)}(X \times Y) \ge C_i^{(\alpha)}(X)^{(\beta)}$$
 pour $\alpha \ge 0$ et pour Y non vide.

Les mêmes relations sont vraies pour la capacité intérieure restreinte.

Cependant, il reste ouvert si le fait comme le lemme 1 est vrai pour un ensemble arbitraire Z et pour la capacité intérieure (restreinte).

De ce théorème on tire

COROLLAIRE 1.

$$\dim_{ci}(X \times Y) \ge \dim_{ci}(X) + \dim_{ci}(Y)$$
.

En vertu de la proposition 14 on obtient

COROLLAIRE 2. Si X et Y sont des ensembles dans espaces euclidiens,

$$(2.10) \qquad \dim_{hi}(X \times Y) \ge \dim_{hi}(X) + \dim_{hi}(Y).$$

Théorème 2. Soient Ω_1 et Ω_2 des espates localement compacts, soit Z un 8) Voir 7).

ensemble relativement compact dans $\Omega_1 \times \Omega_2$, et soit $X \subset \Omega_1$. Si $Z_{P_1} = \{P_2 ; (P_1, P_2) \in Z\}$ et $C_e^{(3)}(Z_{P_1}) \ge b$ $(\beta \ge 0)$ pour tout $P_1 \in X$, alors on a

$$(2.11) C_e^{(\alpha+\beta)}(Z) \ge \alpha^{-\alpha/2}\beta^{-\beta/2}(\alpha+\beta)^{(\alpha+\beta)/2}bC_e^{(\alpha)}(X) pour \quad \alpha, \beta > 0,$$

(2.12)
$$C_e^{(0)}(Z) \ge \sqrt{2b}C_e^{(0)}(X)$$
.

On a aussi

$$(2.13) C_e^{(\alpha)}(Z) \ge C_e^{(\alpha)}(X)^{\$} pour \quad \alpha \ge 0.$$

Les mêmes relations sont vraies pour la capacité extérieure restreinte.

En effet, soit $G \supset Z$ un ensemble ouvert, et soit $P_1^* \in X$ un point fixe quelconque. A chaque point $(P_1^*, P_2) \in G$, on peut trouver un ensemble produit ouvert dans G. Un nombre dénombrable de tels ensembles ouverts $\{G_i\}$ couvrent la section $\{(P_1^*, P_2) ; (P_1^*, P_2) \in G\}$ de G, et, pour b' < b, la capacité d'ordre G de la section $\{(P_1^*, P_2) ; (P_1^*, P_2) \in \bigcup_{i=1}^n G_i\}$ est plus grande que G si G est assez grand. Ainsi, pour chaque point, G est plus grande que G si G est assez grand. Ainsi, pour chaque point, G is existe un ensemble produit ouvert G tel que la projection G' de G sur G contienne G et la capacité de la projection G' de G sur G soit G on pose G is explicitly G est un sousensemble ouvert de G. Si on prend un compact G quelconque dans G ensemble ouvert de G sur G and G ensemble G ensemble

De ce théorème on a

COROLLAIRE 1. Les mêmes relations que dans le théorème 1 sont vraies pour la capacité extérieure (restreinte).

COROLLAIRE 2.

$$\dim_{ce}(X \times Y) \ge \dim_{ce}(X) + \dim_{ce}(Y)$$
.

À cause de la proposition 14 on a

COROLLAIRE 3. Si X et Y sont des ensembles dans espaces euclidiens,

$$(2.14) \qquad \dim_h (X \times Y) \ge \dim_h (X) + \dim_h (Y).$$

C'est une généralisation de (1.2) au cas où les dimensions des espaces euclidiens contenant X et Y respectivement sont générales.

2. 2. Dans ce numéro nous nous occupons du cas où un espace composant est E_n , et nous considérons la mesure de Hausdorff des ensembles composants dans E_n au lieu de la capacité. Nous voulons obtenir des résultats analogues aux théorèmes 1 et 2, ou bien des inégalités plus précises sous forme d'intégrale prise par rapport à la mesure de Hausdorff. Cependant, nous ne pouvons démontrer que certaines relations peu satisfaisantes dans ce qui suit.

Théorème 3. Soit X un ensemble dans l'espace euclidien E_n , $\underline{m}_n(X)$ sa mesure intérieure de Lebesgue et Y un ensemble dans un espace métrique localement compact Ω . Alors on a

$$(2.15) C_i^{(n+\beta)}(X \times Y) \ge r(n, \beta) m_n(X) C_i^{(\beta)}(Y)$$

pour $\beta > 0$ quelconque, et si $m_n(X) < \infty$ on a

(2.16)
$$C_{i}^{(n)}(X \times Y) \ge \gamma(n, 0) \underline{m}_{n}(X) \left[\log \frac{1}{\dot{C}_{i}^{(0)}(Y)} + \log (1 + \sqrt{2}) + \frac{1}{n} \log^{+} \{ \gamma(n, 0) \, n \underline{m}_{n}(X) \} \right]^{-1},$$

où $\gamma(n, \beta)$ est une constante positive qui ne dépend que de n et $\beta \geq 0$ et $C_i^{(0)}(Y)$ est la capacité définie dans 1.7.

Si
$$\underline{m}_n(X) = \infty$$
 et $C_i^{(0)}(Y) > 0$, on a
$$(2.17) \qquad \qquad C_i^{(n)}(X \times Y) = \infty.$$

Les mêmes inégalités sont valables pour les capacités intérieures restreintes $C_i^{(n+\beta)*}$ et $\dot{C}_i^{(0)*}$.

Nous démontrerons les inégalités seulement pour C_i ; le raisonnement s'applique aussi pour C_i^* . Un point de E_n sera représenté par P_1 et un point de Ω par P_2 ; $P=(P_1, P_2)$ sera dans $E_n \times \Omega$. On peut supposer que $Y \neq \phi$ et que $\underline{m}_n(X) > 0$. En premier lieu considérons le cas $\beta > 0$. Soit $K \subset X$ un ensemble compact de mesure $m_n(K)$ positive finie, et soit $\nu \in \mathfrak{F}_{\ell}$. Définissons une mesure $\mu(E)$ sur les ensembles mesurables au sens de Lebesgue dans E_n par

$$\frac{m_n(E\cap K)}{m_n(K)}$$
.

Soit a_n l'aire de la sphère-unité dans E_n . En désignant par $a_n(r)r^{n-1}$ l'aire de l'intersection de K avec la sphère $\sigma(P_1, r)$ de rayon r et de centre P_1 , on a

$$\begin{split} U_{n+\beta}^{\text{HXS}}(P) &= \frac{1}{m_n(K)} \int_{\Omega} \int_{0}^{\infty} \frac{a_n(r) r^{n-1} dr d\nu(Q_2)}{\langle r^2 + \rho^2(P_2, Q_2) \rangle^{(n+\beta)/2}} \\ & \leq \frac{1}{m_n(K)} \int_{\Omega} \frac{d\nu(Q_2)}{\rho^3(P_2, Q_2)} \int_{0}^{\infty} \frac{a_n t^{n-1}}{(1+t^2)^{(n+\beta)/2}} dt. \end{split}$$

Si on pose la dernière intégrale égale à $K(n, \beta)$, l'inégalité s'écrit

$$U_{n+\beta}^{\mu\times\nu}(P) \leq \frac{K(n,\beta)}{m_n(K)} U_{\beta}^{\nu}(P_2).$$

Ainsi il en résulte (2.15).

Considérons ensuite le cas $\beta = 0$. Soient K, μ et ν comme ci-dessus. On a

$$\begin{split} U_n^{\mu \times \nu}(P) &= \frac{1}{m_n(K)} \int_{\Omega} d\nu \int_0^{\infty} \frac{a_n(r) \, r^{n-1}}{(r^2 + \rho^2)^{n/2}} \, dr \leq \frac{1}{m_n(K)} \int_{\Omega} d\nu \int_0^{r_0} \frac{a_n \, r^{n-1}}{(r^2 + \rho^2)^{n/2}} \, dr \\ &= \frac{a_n}{m_n(K)} \int_{\Omega} d\nu \int_0^{r_0/\rho} \frac{t^{n-1}}{(1 + t^2)^{n/2}} \, dt, \end{split}$$

où r_0 est le rayon de la boule dont le volume est égal à $m_n(K)$: $a_n r_0^n/n = m_n(K)$. Si on remarque que

$$\frac{t^{\alpha-1}}{(1+t^2)^{\alpha/2}} \le \frac{1}{\sqrt{1+t^2}} \quad \text{pour tous} \quad \alpha \ge 1 \text{ et } t > 0,$$

on aura

$$\begin{split} U_n^{\text{\tiny H} \times \text{\tiny V}}(P) & \leqq \frac{a_n}{m_n(K)} \int_{\Omega} \log \left\{ \frac{r_0}{\rho} + \sqrt{\left(\frac{r_0}{\rho}\right)^2 + 1} \right\} d\nu \\ & \leqq \frac{a_n}{m_n(K)} \Big[\int_{\Omega} \log \left\{ \frac{1}{\rho} + \sqrt{\frac{1}{\rho^2} + 1} \right\} d\nu + \log^+ r_0 \Big] \\ & \leqq \frac{a_n}{m_n(K)} \Big[\left(\int_{1 \leq \rho} + \int_{1 > \rho} \right) \log \left\{ \frac{1}{\rho} + \sqrt{\frac{1}{\rho^2} + 1} \right\} d\nu + \log^+ r_0 \Big] \\ & \leqq \frac{a_n}{m_n(K)} \left\{ \int_{\Omega} \log^+ \frac{1}{\rho} d\nu + \log \left(1 + \sqrt{2} \right) + \log^+ r_0 \right\} \\ & \leqq \frac{a_n}{m_n(K)} \left\{ \dot{U}_0^{\nu}(P_2) + \log \left(1 + \sqrt{2} \right) + \frac{1}{n} \log^+ \frac{n m_n(K)}{a_n} \right\}, \end{split}$$

d'où

$$\left\{C_i^{(n)}(X\times Y)\right\}^{-1} \leq \frac{a_n}{m_n(K)} \left\{\log \frac{1}{\hat{C}_i^{(0)}(Y)} + \log (1+\sqrt{2}) + \frac{1}{n} \log^+ \frac{nm_n(K)}{a_n}\right\}.$$

On en conclut (2.16) si $m_{\tau}(X) < \infty$. Si $C_i^{(0)}(Y) > 0$ et $m_n(X) = \infty$, la quantité à droite tend vers 0 lorsque $m_n(K) \to \infty$; on y tient compte de la proposition 15. Donc (2.17) est démontré.

COROLLAIRE. Soit X un ensemble dans E_n avec $m_n(X) > 0$ et Y un ensemble dans un espace métrique localement compact Ω avec $C_t^{(\beta)}(Y) > 0$ $(\beta \ge 0)$. Alors

$$C_i^{(n+3)}(X\times Y)>0.$$

2. 3. Puisque $C_i^{(n)}(X) = 0$ pour tout ensemble X dans E_n , le théorème 1 n'assure pas que $C_i^{(n+\beta)}(X \times Y)$ est positive, pendant que le corollaire précédent montre que $C_i^{(n+\beta)}(X \times Y) > 0$ si $\underline{m}_n(X) > 0$ et si $C_i^{(3)}(Y) > 0$. A ce propos nous établirons le

Théorème 4. Soit X un ensemble de $\underline{m}_{\alpha}(X) > 0$ $(0 < \alpha \le n)$ dans E_n , et Y un ensemble de $C_i^{(\beta)}(Y) > 0$ $(\beta \ge 0)$ dans un espace métrique localement compact Ω . Alors

$$C_{i}^{(\alpha+\beta)}(X\times Y) \geq \begin{cases} c(X, \alpha, \beta) C_{i}^{(\beta)}(Y) & si \quad \beta \geq 0, \\ \frac{1}{c(X, \alpha, 0) - c'(X, \alpha, 0) \log \dot{C}_{i}^{(0)}(Y)} & si \quad \beta = 0, \end{cases}$$

où $c(X, \alpha, \beta)$ et $c'(X, \alpha, \beta)$ sont des constantes positives qui ne dépendent que de X, α et $\beta \ge 0$.

On a une même relation pour C_i^* .

D'abord nous citons le théorème 1 de [20] dans un cas particulier.

Lemme 3. Soit μ une mesure de masse totale unité à support compact dans E_n et soit $\mu(P,r)$ la μ -mesure de la boule B(P,r) de centre P et de rayon r. Pour tout entier k>0 nous désignons par A_k l'ensemble des points tel que chaque point P satisfasse à $\mu(P,r)>kr^{\alpha}$ pour un certain nombre r=r(P)>0. Alors la μ -valeur de $\bigcap A_k$ est nulle.

Nous allons démontrer le théorème. Soit $K \subset X$ un ensemble compact de $m_x(K)$ positive finie. Nous définissons une mesure pour les ensembles boréliens dans E_n par

$$\mu(B) = \frac{m_a(K \cap B)}{m_a(K)},$$

et définissons A_k comme ci-dessus; c'est un ensemble ouvert. En vertu du lemme 3 on trouve un A_{k_0} tel que

$$m_a(A_{k_0})<rac{m_a(K)}{2}$$
 .

L'ensemble $K_1 = K - A_{k_0}$ est compact et $m_{\alpha}(K_1) > m_{\alpha}(K)/2$. En chaque point P_1 de K_1 on a $\mu(P_1, r) \leq k_0 r^{\alpha}$ pour tout r > 0. Si on pose

$$\mu_1(B) = \frac{m_{\alpha}(K_1 \cap B)}{m_{\alpha}(K_1)}$$

et désigne par $\mu_1(P_1, r)$ la μ_1 -valeur de $B(P_1, r)$, on aura

$$\frac{\mu_1(P_1, r)}{r^a} \leq \frac{m_a(K)}{m_r(K_1)} \frac{\mu(P_1, r)}{r^a} \leq \frac{m_a(K)}{m_r(K_1)} k_0 < 2k_0;$$

c'est vrai en tout point P_1 de K_1 pour tout r > 0. Si la boule $B(P_1, r)$ contient un point $P'_1 \subseteq K_1$, la boule $B(P'_1, 2r)$ contient $B(P_1, r)$ et on trouve

$$\mu_1(P_1, r) < 2^{\alpha+1} k_0 r^{\alpha}$$

en chaque point P_1 de E_n pour tout r > 0. En utilisant cette relation, on a, en $P = (P_1, P_2)$ dans $E_n \times \Omega$, pour $\nu \in \mathfrak{F}_r$ quelconque

$$\begin{split} U^{\mu_1 \times \nu}_{\alpha + \beta}(P) &= \int_{\Omega} \int_{K_1} \frac{d\mu_1 d\nu}{(r^2 + \rho^2)^{(\alpha + \beta)/2}} \leq (\alpha + \beta) \int_{\Omega} d\nu \int_0^{\infty} \frac{r\mu_1(P_1, r)}{(r^2 + \rho^2)^{(\alpha + \beta)/2 + 1}} dr \\ &\leq (\alpha + \beta) 2^{\alpha + 1} k_0 \int_{\Omega} \frac{d\nu}{\rho^{\beta}} \int_0^{\infty} \frac{t^{\alpha + 1}}{(1 + t^2)^{(\alpha + \beta)/2 + 1}} dt \equiv c U^{\nu}_{\beta}(P_1) \quad \text{si} \quad \beta > 0, \end{split}$$

où c est une valeur positive qui dépend de F, α et β et donc de X, α et β . Puisque ν est arbitraire, il en résulte le théorème dans le cas $\beta > 0$.

Considérons le cas $\beta = 0$ et prenons $\delta > 0$. Si la distance de P_1 à K_1 est $\geq \delta$,

$$U_{\alpha}^{\mu_1 \times \nu}(P) \leq \frac{1}{\delta^{\alpha}}$$

en $P = (P_1, P_2)$. Si la distance est $< \delta$, en désignant par d le diamètre de K_1 , on a

$$\begin{split} U_{\alpha}^{\mu_{1} \times \nu}(P) &= \int_{\Omega} \frac{d\nu}{\{(\delta + d)^{2} + \rho^{2}\}^{\alpha/2}} + \alpha \int_{\Omega} d\nu \int_{0}^{\delta + d} \frac{r\mu_{1}(P_{1}, r)}{(r^{2} + \rho^{2})^{(\alpha/2) + 1}} dr \\ & \leq \frac{1}{(\delta + d)^{\alpha}} + \alpha 2^{\alpha + 1} k_{0} \int_{\Omega} d\nu \int_{0}^{\delta + d} \frac{r^{1 + \alpha}}{(r^{2} + \rho^{2})^{(\alpha/2) + 1}} dr \\ &= \frac{1}{(\delta + d)^{\alpha}} + \alpha 2^{\alpha + 1} k_{0} \int_{\Omega} d\nu \int_{0}^{(\delta + d)/2} \frac{t^{1 + \alpha}}{(1 + t^{2})^{(\alpha/2) + 1}} dt \\ & \leq \frac{1}{(\delta + d)^{\alpha}} + \alpha 2^{\alpha + 1} k_{0} \int_{\Omega} d\nu \int_{0}^{(\delta + d)/p} \frac{dt}{\sqrt{1 + t^{2}}} \\ & \leq \frac{1}{(\delta + d)^{\alpha}} + \alpha 2^{\alpha + 1} k_{0} \{\dot{U}_{0}^{\nu}(P_{2}) + \log(1 + \sqrt{2}) + \log^{-}(\delta + d)\}. \end{split}$$

Donc en tout point P de $E_n \times \Omega$

$$U_{\alpha}^{\mu_1 \times \nu}(P) \leq \frac{1}{\delta^{\alpha}} + \alpha 2^{\alpha+1} k_0 \left\{ \log \frac{1}{C_{\gamma}^{(0)}(Y)} + \log \left(1 + \sqrt{2} \right) + \log^{+} \left(\delta + d \right) \right\}.$$

On peut choisir $\delta > 0$ arbitrairement; par exemple, si on pose $\delta = d$,

$$C_{i}^{(a)}(X \times Y) \geq \frac{1}{\delta^{-a} + \alpha 2^{a+1} k_{0} \{ \log (1 + \sqrt{2}) + \log^{+}(2d) \} - \alpha 2^{a+1} k_{0} \log C_{i}^{+(0)}(Y)}$$

Ainsi le théorème est démontré.

On peut obtenir une même relation pour C_i^* de la même façon.

Enfin on pose

Question. Supposons que $C_i^{(\alpha')}(X) > 0$ pour tout $\alpha' < \alpha$ et que $C_i^{(\beta)}(Y) > 0$. Alors, $C_i^{(\alpha+\beta)}(X \times Y)$ est-elle toujours positive?

C'est le cas par le théorème 4 pour un ensemble $X \subset E_n$ de $\underline{m}_{\alpha}(X) > 0$ même si $C_i^{(\alpha)}(X) = 0$.

§ 3. Majoration de la capacité

3.1. La proposition 13 et l'égalité de (1.3) montrent qu'il arrive que, pour certains ensembles fermés $X, Y \subset E_1$,

$$\dim_c(X) + \dim_c(Y) < \dim_c(X \times Y).$$

Dans le paragraphe 4 on trouvera d'autres tels exemples qui montrent qu'il n'existe aucune limitation supérieure finie pour la dimension capacitaire des ensembles produits qui ne dépend que des dimensions capacitaires des ensembles composants. Donc nous ne pouvons pas trouver une majoration de la capacité des ensembles produits au moyen de la capacité ou de la mesure de Haussorff, sauf dans ertains cas particuliers dont nous allons nous occuper dans ce paragraphe.

Théorème 5. Soit $X \subset E_n$ $(n \ge 1)$ un ensemble borélien de $m_a(X) < \infty$ tel que la densité inférieure

$$d(P_1) = \lim_{r \to 0} \frac{m_{\alpha}(P_1, r)}{r^{\alpha}}$$

soit positive en tout point $P_1 \in X$, où $m_\alpha(P_1, r)$ signifie la m_α -mesure de la partie de X dans la boule $B(P_1, r)$. Soit Y un ensemble β -polaire $(\beta \ge 0)$ dans un espace métrique localement compact Ω . Alors $X \times Y$ est un ensemble $(\alpha + \beta)$ -polaire dans $E_n \times \Omega$.

En effet, on peut supposer que X et Y sont relativement compacts dans E_n et Ω respectivement. Soit $\nu \in \mathfrak{F}_{\Omega}$ une mesure telle que $U^{\nu}_{\beta}(P_2) = \infty$ partout sur Y, et soit P_1 un point quelconque de X. Prenons $r_1 > 0$ tel que

$$\frac{m_{\alpha}^{r}(P_{1}, r)}{r^{\alpha}} > \frac{d(P_{1})}{2}$$

pour tout $r \in (0, r_1)$, et posons $\mu(B) = m_{\alpha}(B \cap X)$.

Lorsque la ν -mesure de P_2 est nulle, on a, en $P = (P_1, P_2) \in X \times Y$,

$$\begin{split} U_{\alpha+\beta}^{\mu\times\nu}(P) &= \int_{\Omega} d\nu \int_{\mathcal{X}} \frac{dm_{\alpha}(P_{1},\,r)}{(r^{2}+\rho^{2})^{(\alpha+\beta)/2}} = (\alpha+\beta) \int_{\Omega} d\nu \int_{0}^{\infty} \frac{m_{\alpha}(P_{1},\,r)\,r}{(r^{2}+\rho^{2})^{(\alpha+\beta)/2+1}}\,dr \\ & \triangleq \frac{(\alpha+\beta)\,d(P_{1})}{2} \int_{\Omega} d\nu \int_{0}^{r_{1}} \frac{r^{\alpha+1}}{(r^{2}+\rho^{2})^{(\alpha+\beta)/2+1}}\,dr \\ & \triangleq \frac{(\alpha+\beta)\,d(P_{1})}{2} \,U_{\beta}^{\nu}(P_{2}) \int_{0}^{r_{1}/d} \frac{t^{\alpha+1}}{(1+t^{2})^{(\alpha+\beta)/2+1}}\,dt \end{split}$$

si $\beta > 0$, où d est le diamètre du support S_{ν} . Si $\beta = 0$, on a

$$\begin{split} U_{\alpha}^{\mu \vee \nu}(P) & \geqq \frac{\alpha}{2} d(P_1) \int_{\Omega} d\nu \int_{0}^{r_1/\rho} \frac{t^{\alpha+1}}{(1+t^2)^{\alpha/2+1}} dt \\ & \trianglerighteq \frac{\alpha}{2} d(P_1) \int_{\rho \leq r_1} d\nu \int_{0}^{r_1/\rho} \frac{t^{\alpha+1}}{(1+t^2)^{\alpha/2+1}} dt \\ & \trianglerighteq \frac{\alpha d(P_1)}{2^{2+\alpha/2}} \int_{\rho \leq r_1} d\nu \int_{1}^{r_1/\rho} \frac{dt}{t} & \trianglerighteq \frac{\alpha d(P_1)}{2^{2+\alpha/2}} \int_{\Omega} \log \frac{r_1}{\rho} d\nu \\ & = \frac{\alpha d(P_1)}{2^{2+\alpha/2}} \left\{ U_{0}^{\nu}(P_2) + \log r_1 \right\}. \end{split}$$

Comme $U^{\vee}_{\beta}(P_2) = \infty$, $U^{\mu \times \nu}_{\alpha+\beta}(P) = \infty$ $(\beta \ge 0)$ en $P = (P_1, P_2) \in X \times Y$ si $\nu(\{P_2\}) = 0$.

Supposons ensuite que la ν -mesure de $P_2 \in Y$ soit positive: $\nu(\langle P_2 \rangle) = \nu_0 > 0$. Alors en $P_1 \times P_2 \in X \times Y$ on a, pour $\epsilon > 0$ quelconque,

$$\begin{split} U_{\alpha+\beta}^{\mu\times\nu}(P) & \geqq \nu_0 \int_X \frac{dm_\alpha(P_1, r)}{r^{\alpha+\beta}} \geqq \nu_0 \int_X \frac{dm_\alpha(P_1, r)}{(r+\varepsilon)^{\alpha+\beta}} \\ & = (\alpha+\beta) \nu_0 \int_0^\infty \frac{m_\alpha(P_1, r)}{(r+\varepsilon)^{\alpha+\beta+1}} dr \\ & \leqq \frac{(\alpha+\beta) \nu_0 d(P_1)}{2} \int_0^{r_1} \frac{r^\alpha}{(r+\varepsilon)^{\alpha+\beta+1}} dr \\ & = \frac{(\alpha+\beta) \nu_0 d(P_1)}{2\varepsilon^\beta} \int_0^{r_1/\varepsilon} \frac{t^\alpha}{(1+t)^{\alpha+\beta+1}} dt \to \infty \end{split}$$

lorsque $\varepsilon \to 0$ si $\beta > 0$. Si $\beta = 0$ on a encore

$$U_{\alpha}^{\mu+\nu}(P) \geq \alpha \nu_0 \int_0^{r_1} \frac{r^{\alpha}}{(r+\varepsilon)^{\alpha+1}} dr = \alpha \nu_0 \int_0^{r_1/\varepsilon} \frac{t^{\alpha}}{(1+t)^{\alpha+1}} dt \to \infty$$

lorsque $\varepsilon \to 0$, car

$$\int_0^\infty \frac{t^\alpha}{(1+t)^{\alpha+1}} dt = \infty.$$

Ainsi $U_{\alpha+\beta}^{\mu\times\nu}(P)=\infty$ en tout point de $X\times Y$ et donc $X\times Y$ est un ensemble $(\alpha+\beta)$ -polaire.

3. 2. Dans ce numéro on considère le cas particulier où X est un cube non-dégénéré dans E_n . Nous trouverons une majorante de $C_i^{(n+\beta)*}(X\times Y)$ au moyen de $C_i^{(\beta)*}(Y)$ et de la longueur des côtés de X.

On commence avec le

Lemme 4. Soit X un cube fermé de côté l dans E_n $(n \ge 1)$, et soit μ la mesure définie par $\mu(B) = m_n(B \cap X)/m_n(X)$ pour les ensembles boréliens B. Soit Ω un espace métrique localement compact et soit ν une répartition de masseunité dans Ω . Alors, en $P = (P_1, P_2) \in X \times S_{\nu}$, on a

$$U_{\alpha+\beta}^{\mu\times\nu}(P) \ge \begin{cases} c_n \{ U_{\beta}^{\nu}(P_2) - 1 \}^+ / (1 + l^2)^{(n+\beta)/2} & \text{si } \beta > 0, \\ nc_n \dot{U}_{\beta}^{\nu}(P_2) / (1 + l^2)^{n/2} & \text{si } \beta = 0, \end{cases}$$

où cn est une constante positive dépendant seulement de n.

Il est visible qu'il existe une constante c_n qui dépend seuelement de n telle qu'en tout point P_1 de X on ait

$$\mu(P_1, r) \geq c_n r^n / l^n$$

pour tout $r \in [0, l]$.

En premier lieu supposons que la ν -mesure de P_2 soit nulle. On aura en $P \in X \times S_n$

$$\begin{split} U_{n+\beta}^{\mu \times \nu}(P) & \geqq \int_{\Omega} d\nu \int_{0}^{l} \frac{d\mu(P_{1}, r)}{(r^{2} + \rho^{2})^{(n+\beta)/2}} \\ & = \int_{\Omega} d\nu \left\{ \frac{\mu(P_{1}, l)}{(l^{2} + \rho^{2})^{(n+\beta)/2}} + (n+\beta) \int_{0}^{l} \frac{\mu(P_{1}, r) r}{(r^{2} + \rho^{2})^{(n+\beta)/2+1}} dr \right\} \\ & \geqq \int_{\Omega} d\nu \left\{ \frac{c_{n}}{(l^{2} + \rho^{2})^{(n+\beta)/2}} + \frac{(n+\beta)}{l^{n}} \int_{0}^{l} \frac{c_{n} r^{n+1}}{(r^{2} + \rho^{2})^{(n+\beta)/2+1}} dr \right\} \\ & = \frac{c_{n}}{l^{n}} \int_{\Omega} d\nu \int_{0}^{l} \frac{n r^{n-1}}{(r^{2} + \rho^{2})^{(n+\beta)/2}} dr = nc_{n} \int_{\Omega} \frac{d\nu}{\rho^{\beta}} \int_{0}^{l} \frac{t^{n-1}}{(1 + l^{2} t^{2})^{(n+\beta)/2}} dt \\ & \geqq \frac{c_{n}}{(1 + l^{2})^{(n+\beta)/2}} \int_{\rho \stackrel{\mathcal{L}}{=} 1} \frac{d\nu}{\rho^{\beta}} \geqq \frac{c_{n}}{(1 + l^{2})^{(n+\beta)/2}} \left\{ U_{\beta}^{\nu}(P_{2}) - 1 \right\}^{+} \quad \text{si } \beta > 0, \end{split}$$

et si $\beta = 0$ on aura

$$U_n^{\mu\times\nu}(P) \geq \frac{nc_n}{(1+l^2)^{n/2}} \int_{\rho\leq 1} d\nu \int_1^{1/\rho} \frac{dt}{t} = \frac{nc_n}{(1+l^2)^{n/2}} \dot{U}_0^{\nu}(P_2).$$

Dans le cas où la ν -mesure de P_2 est positive, on peut montrer que $U_{n+\beta}^{\mu \times \nu}(P)$ = ∞ de la même manière que dans la démonstration du théorème précédent. Ainsi le lemme est démontré.

Remarque. Si le diamètre d de Y est fini, on peut montrer pour toute ν portée par Y que sur $X \times S_{\nu}$

$$U_{n+\beta}^{\mu \times \nu}(P) \ge k(n, \beta, l, d) U_{\beta}^{\nu}(P_2)$$
 pour $\beta > 0$,

où $k(n, \beta, l, d)$ est une constante positive qui dépend de n, β, l et d.

Théorème 6. Soit X un cube fermé de côté l dans E_n $(n \ge 1)$ et soit Y un ensemble dans un espace métrique localement compact Ω . Alors, avec la même constante c_n que dans le lemme précédent, on a

(3.1)
$$C_{i}^{(n+\beta)*}(X \times Y) \leq \frac{(1+l^{2})^{(n+\beta)/2}}{c_{n}\left\{\frac{1}{C_{i}^{(\beta)*}(Y)} - 1\right\}^{+}} \quad si \quad \beta \geq 0$$

et

(3.2)
$$C_{i}^{(n)*}(X \times Y) \leq \frac{(1+l^{2})^{n/2}}{nc_{n} \log \frac{1}{C_{i}^{(0)*}(Y)}} \qquad si \quad \beta = 0.$$

On a les mêmes inégalités pour Ce*.

En premier lieu supposons que $C_i^{(\beta)*}(Y) > 0$. Soit K un sous-compact de Y tel que $C_i^{(\beta)*}(K) > 0$. Soit $\varepsilon > 0$. Dans le cas $\beta > 0$, il existe, d'après la proposition 11, une répartition ν_0 de masse-unité telle que

$$U_{\beta}^{\nu_0}(P_2) \geqq \frac{V_{\beta}^*(K)}{1+\varepsilon} \quad \text{sur } K.$$

Notons $\mu(B) = m_n(B \cap X)/l^n$. Alors par le lemme précédent on a

$$U_{n+3}^{\mu \times \nu_0}(P) \ge c_n \langle U_3^{\nu_0}(P_2) - 1 \rangle^{\tau} / (1 + l^2)^{(n+\beta)/2}$$

Nous intégrons des deux côtés par rapport à une mesure $\nu \in \mathfrak{F}_{x \times y}$. Le théorème de Fubini donne lieu à

$$\begin{split} \int_{\Omega} U_{n+\beta}^{\nu} d(\mu \times \nu_0) &= \int_{\Omega} U_{n+\beta}^{\mu \times \nu_0} d\nu \geq c_n \Big\{ \int_{\Omega} U_{\beta}^{\nu_0} d\nu - 1 \Big\}^{\frac{1}{r}} / (1 + l^2)^{(n+\beta)/2} \\ & \geq c_n \Big\{ \frac{V_{\beta}^*(K)}{1+\varepsilon} - 1 \Big\}^{\frac{1}{r}} / (1 + l^2)^{(n+\beta)/2}. \end{split}$$

Il en résulte que

$$C_i^{(n+\beta)*}(X \times K) \leq \frac{(1+l^2)^{(n+\beta)/2}}{c_n \left\{\frac{1}{C_i^{(\beta)*}(Y)} - 1\right\}^+}.$$

Puisqu'un ensemble compact dans $X \times Y$ est contenu dans le produit de X et un certain ensemble compact dans Y, nous avons enfin

$$C_i^{(n+\beta)*}(X \times Y) \leq \frac{(1+l^2)^{(n+\beta)/2}}{c_n \left\{ \frac{1}{C_i^{(\beta)*}(Y)} - 1 \right\}^+}.$$

Considérons le cas où $C_i^{(\beta)*}(Y) = 0$. Alors tout sous-ensemble compact K de Y est β -polaire et, d'après le théorème S, S est S est S polaire, d'où S S est S est S est S polaire, d'où S S est S e

Dans le cas $\beta = 0$, on fait un raisonnement analogue en utilisant la proposition 1' dans 1.7 et on obtient (3.2).

Pour démontrer les inégalités pour la capacité extérieure, considérons un ensemble $Y_1 \subset Y$ qui est relativement compact dans Ω . Étant donné ε , $0 < \varepsilon < 1$, il existe un ensemble ouvert $G \supset Y_1$ tel que $C_i^{(\beta)*}(G) < C_e^{(\beta)*}(Y_1) + \varepsilon$ si $\beta > 0$ et $\overset{\cdot}{C}_i^{(0)*}(G) < \overset{\cdot}{C}_i^{(0)*}(Y_1) + \varepsilon$ si $\beta = 0$. Prenons un cube X_1 de côté $l + \varepsilon$ contenant X dans son intérieur. Alors $X_1 \times G$ contient $X \times Y_1$, et on a

$$C_e^{(n+\beta)*}(X \times Y_1) \leq C_i^{(n+\beta)*}(X_1 \times G)$$

$$\leq \frac{\{1 + (l+\varepsilon)^2\}^{(n+\beta)/2}}{c_n \left\{\frac{1}{C_i^{(\beta)*}(Y_1) + \varepsilon} - 1\right\}^+} < \frac{\{1 + (l+\varepsilon)^2\}^{(n+\beta)/2}}{c_n \left\{\frac{1}{C_e^{(\beta)*}(Y) + \varepsilon} - 1\right\}^+}$$

si $\beta > 0$ et

$$C_e^{(n)*}(X \times Y_1) \leq C_i^{(n)*}(X_1 \times G) \leq \frac{\{1 + (l+\epsilon)^2\}^{n/2}}{nc_n \log \frac{1}{\dot{C}_i^{(0)*}(Y) + \epsilon}}$$

si $\beta = 0$. Comme un sous-ensemble de $X \times Y$ qui est relativement compact dans $E_n \times \Omega$ est contenu dans un certain ensemble produit de forme $X \times Y_1$, on peut facilement en déduire les inégalités cherchées.

Remarque. Dans (3.1) et (3.2) les quantités à droite ne tendent pas vers 0 lorsque $l \to 0$. En effet, si on prend pour X un segment de longueur l, et pour Y un carré dans un plan, alors pour β , $0 \le \beta < 1$,

$$0 < C_i^{(1+\beta)*}(Y) \leq C_i^{(1+\beta)*}(X \times Y).$$

3. 3. On démontrera une généralisation du théorème de Deny-Lelong [10] cité dans l'introduction.

Théorème 7. soit X un cube fermé dans E_n $(n \ge 1)$ et soit Y un ensemble dans un espace métrique localement compact Ω . Alors $C_i^{(n+\beta)}(X \times Y) > 0$ si et seulement si $C_i^{(\beta)}(Y) > 0$ $(\beta \ge 0)$. Il en est même de C_e .

À cause de la proposition 5, il revient au même de considérer C et de considérer C^* . Le théorème 3 et la proposition 15 montrent que si $C_i^{(3)}(Y) > 0$ $(\beta \ge 0)$ alors $C_i^{(n+3)}(X \times Y) > 0$, et le théorème 6 et la proposition 15 assurent que si $C_i^{(\beta)*}(Y) = 0$ $(C_e^{(\beta)*}(Y) = 0$ resp.) alors $C_i^{(n+3)*}(X \times Y) = 0$ $(C_e^{(n+3)*}(X \times Y) = 0$ resp.). Il reste seulement à démontrer $C_e^{(n+3)}(X \times Y) > 0$ de l'hypothèse $C_e^{(3)}(Y) > 0$ $(\beta \ge 0)$.

Donc nous supposons que $C_e^{(\beta)*}(Y) > 0$ $(\beta \ge 0)$. Alors on peut trouver un ensemble $Y_1 \subset Y$ relativement compact dans Ω tel que $C_e^{(\beta)*}(Y_1) > 0$; si $\beta = 0$, d'après les propositions δ et δ et δ es propositions δ es propositions δ et δ es propositions δ et δ es propositions δ es propositions δ et δ es propositions δ es propositions δ et δ es propositions δ

$$C_{i}^{(n+\beta)*}(X_{0} \times G) \ge \gamma(n, \beta) \, l^{n} C_{i}^{(\beta)*}(G) \ge \gamma(n, \beta) \, l^{n} C_{e}^{(\beta)*}(Y_{1}) > 0 \quad \text{si } \beta > 0$$
et
$$C_{i}^{(n)*}(X_{0} \times G) \ge \gamma(n, 0) \, l^{n} \frac{1}{\log \frac{1}{C_{e}^{(0)*}(Y_{1})} + \log(1 + \sqrt{2}) + \log^{+}\{\gamma(n, 0) \, n l^{n}\}} > 0.$$

Cela étant, soit V un ensemble ouvert quelconque contenant $X \times Y_1$, et soit V_{P_1} la section de V de l'abscisse $P_1: V_{P_1} = \{P_2: (P_1, P_2) \in V\}$. Puisque X est compact, il est facile de voir que $G_1 = \bigcap_{P_1 \in X} V_{P_1}$ est un ensemble ouvert dans \mathcal{Q} . Evidemment G_1 contient Y et les inégalités ci-dessus sont vraies pour $X_0 \times G_1$. Ainsi $C_i^{(n+3)*}(V)$ qui est $\geq C_i^{(n+3)*}(X_0 \times G_1)$ possède une minorante positive finie qui ne dépend que de $C_e^{(3)*}(Y_1) > 0$, n et l. Puisque $C_e^{(n+3)*}(X \times Y) \geq C_e^{(n+3)*}(X \times Y_1) = \inf_{P_1 \in \mathcal{P}} C_i^{(n+3)*}(V)$, on conclut que $C_e^{(n+3)*}(X \times Y) > 0$.

§ 4. Dimension des ensembles produits

4.1. Soit X un compact dans un espace euclidien E_n et soit Y un compact dans un autre espace euclidien E_m . Le corollaire 2 du théorème 1 énonce que $\dim(X) + \dim(Y) \leq \dim(X \times Y)$.

Si on renferme X par un cube dans E_n , il résulte du théorème 6 que $\dim(X \times Y) \leq n + \dim(Y)$. Pour la même raison on a $\dim(X \times Y) \leq m + \dim(X)$, et donc

$$(4.2) \dim (X \times Y) \leq \min \{n + \dim (Y), m + \dim (X)\}.$$

Il est évident qu'il existe certains cas qui donnent lieu à l'égalité dans (4.1). Dans ce paragraphe on construira un exemple qui réalise l'égalité dans (4.2).

Théorème 8. Etant donnés des enliers n et m et des nombres α , $0 < \alpha \le n$, et β , $0 < \beta \le m$, il existe un compact $X \subset E_n$ de dimension α et un compact $Y \subset E_m$ de dimension β tels que

$$\dim (X \times Y) = \min (n + \beta, m + \alpha).$$

Nous démontrerons ce théorème dans 4.3-4.5.

4. 2. Dans ce numéro nous répétons la définition, donnée dans [24], des ensembles de Cantor généralisés dans E_n ($n \ge 1$). D'abord nous nous occupons de E_1 .

Soient k_1, k_2, \ldots des nombres entiers supérieurs à 1 et soient p_1, p_2, \ldots des nombres finis quelconques également supérieurs à 1. On pose $l_q = 1/(k_q p_q)$. Soit I un intervalle de longueur d > 0. On enlève de I $(k_q - 1)$ intervalles de même longueur tels qu'il reste k_q intervalles de même longueur $l_q d$. On appelle cette opération la q-opération appliquée à I. On commence par appliquer l'1-opération à [0, 1], on applique la 2-opération à chacun des intervalles $I_{1\nu}$ $(1 \le \nu \le k_1)$ qui restent, puis on applique la 3-opération à chacun des intervalles $I_{2\lambda}$ $(1 \le \lambda \le k_1 k_2)$ qui restent, et ainsi de suite. On appellera l'ensemble limite restant un ensemble de Cantor généralisé dans E_1 , et le notera $F = F(k_q, p_q)$.

Dans $E_n = \{(x_1, \ldots, x_n)\}$, soit $F_j = F(k_q^{(j)}, p_q^{(j)})$ un ensemble de Cantor généralisé défini sur l'axe des x_j . Nous appellerons l'ensemble produit $F = F_1 \times \ldots \times F_n$ un ensemble de Cantor généralisé dans E_n $(n \ge 2)$. Il sera appelé symétrique si $F_1 = \ldots = F_n$.

Dans [24] l'auteur a démontré le théorème suivant :

Soit $F = F(k_q, p_q) \times \ldots \times F(k_q, p_q)$ un ensemble de Cantor généralisé symétrique dans E_n $(n \ge 1)$. Pour qu'il soit d' α -capacité nulle $(0 \le \alpha < n)$, il faut et il suffit que

$$(4.3) \qquad \sum_{q=1}^{n} \frac{(p_1 \cdot \cdot \cdot p_q)^{\alpha}}{(k_1 \cdot \cdot \cdot k_q)^{n-\alpha}} = \infty \qquad (0 < \alpha < n)$$

ou

$$(4.4) \qquad \qquad \sum_{q=1}^{\infty} \frac{\log p_q}{(k_1 \cdot \cdot \cdot k_q)^n} = \infty \qquad (\alpha = 0).$$

4.3. Démonstration du théorème 8. En premier lieu considérons le cas $\alpha < n$ et $\beta < m$. Prenons dans E_n un ensemble de Cantor généralisé symétrique $F = F(k_q, p_q) \times \ldots \times F(k_q, p_q)$ de dimension α , et prenons dans E_m $F' = F(k'_q, p'_q) \times \ldots \times F(k'_q, p'_q)$ de dimension β ; k_q , p_q , k'_q et p'_q seront déterminés ultérieurement. Les quantités pour F' correspondant à des quantités pour F seront notées avec l'accent f'. On peut supposer, sans limiter la généralité, que f'0 f'1 f'2. Nous allons évaluer la capacité d'ordre f'2, f'3 f'4 f'6 f'7.

Nous désignons les coordonnées dans E_n par x_1, \ldots, x_n et dans E_m par x'_1, \ldots, x'_m . Désignons par $\{I_q^{(j)}\}$ les intervalles qui restent lorsque la q-opération est appliquée sur l'axe des x_j , par λ_q leur longueur et par δ_q la longueur des intervalles enlevés lors de la q-opération;

$$\lambda_q = \frac{1}{k_1 \cdots k_q p_1 \cdots p_q}, \quad \delta_q = \lambda_{q-1} \frac{1 - p_q^{-1}}{k_o - 1} = \frac{p_q - 1}{k_1 \cdots k_{q-1} (k_q - 1) p_1 \cdots p_q}$$

Nous avons les quantités correspondantes et les relations analogues sur l'axe des $x'_{i'}$.

Soit μ une répartition de masse-unité sur $F \times F'$ et soit $U^{\mu}_{m+\alpha'}(P)$ le potentiel engendré par μ dans $F \times F'$. Nous posons

$$\mu(I_{q\nu_1}^{(1)} \times \ldots \times I_{q\nu_n}^{(n)} \times I_{q\nu_1'}^{(1)} \times \ldots \times I_{q\nu_m'}^{(m)}) = \mu_q(\nu_1, \ldots, \nu_n, \nu_1', \ldots, \nu_m').$$

Considérons les points $\{P_{\kappa}^{(q)}\}$, $\kappa=1,\ldots,k_1^n\cdots k_{q-1}^n(k_q-1)^nk_1'^n\cdots k_{q-1}'^m(k_q'-1)^m$ $\equiv M_q$, tels que la projection de chaque point sur tout axe coïncide avec un certain point placé au centre d'un intervalle qu'on enlève lors de la q-opération. On désigne par $(P_{\kappa}^{(q)},I_{qv_1}^{(1)}\times\ldots\times I_{qv_n}^{(n)}\times I_{qv_1'}^{(1)}\times\ldots\times I_{qv_n'}^{(n)})$ la distance de $P_{\kappa}^{(q)}$ à $I_{qv_1}^{(1)}\times\ldots\times I_{qv_n}^{(n)}\times I_{qv_n'}^{(n)}$. Si

$$\Delta_{\kappa}^{(q)}(\nu_{1}, \ldots, \nu_{n}, \nu'_{1}, \ldots, \nu'_{m}) \leq \rho(P_{\kappa}^{(q)}, I_{q\nu_{1}}^{(1)} \times \ldots \times I_{q\nu_{n}}^{(n)} \times I_{q\nu_{1}'}^{(1)'} \times \ldots \times I_{q\nu_{m'}}^{(m)'}),$$

on a

$$U^{\nu}_{m+a'}(P^{(q)}_{\kappa}) \leq \sum_{\nu_1, \ldots, \nu_{m-1}}^{k_1 \cdots k_q} \sum_{\nu_1, \ldots, \nu_{m'-1}}^{k_1 ' \cdots k_{q'}} \frac{\mu_q(\nu_1, \ldots, \nu_n, \nu'_1, \ldots, \nu'_m)}{\left\{ J^{(q)}_{\kappa}(\nu_1, \ldots, \nu_n, \nu'_1, \ldots, \nu'_m) \right\}^{m+a'}}$$

Posons u_q égal à la moyenne des valeurs $\{U_{m+\alpha'}(P_{\kappa}^{(q)})\}, \ \kappa=1,\ldots,M_q$. Alors

$$(4.5) u_{q} \leq \frac{1}{M_{q}} \sum_{\nu_{1}, \dots, \nu_{n}=1}^{k_{1} \dots k_{q}} \sum_{\nu_{1}', \dots, \nu_{n}'=1}^{k_{1}' \dots k_{q}'} \mu_{q}(\nu_{1}, \dots, \nu_{n}, \nu'_{1}, \dots, \nu'_{m}) \times \sum_{\kappa=1}^{M_{q}} \frac{1}{\left\{ d_{\kappa}^{(q)}(\nu_{1}, \dots, \nu_{n}, \nu'_{1}, \dots, \nu'_{m}) \right\}^{m+\alpha'}}.$$

Prenons un intervalle quelconque $I_{q\nu_1}^{(1)} \times \ldots \times I_{q\nu_n}^{(n)}$ dans E_n ; soit $I_{q-1,\,\pi_1}^{(1)} \times \ldots \times I_{q-1,\,\pi_n}^{(n)}$ l'intervalle qui le contient. Nous considérons les 3^n-1 intervalles $\{I_{q-1,\,p_1}^{(1)} \times \ldots \times I_{q-1,\,p_n}^{(n)}\}$ qui sont les voisins de $I_{q-1,\,\pi_1}^{(1)} \times \ldots \times I_{q-1,\,\pi_n}^{(n)}$. Si deux de ces 3^n cubes sont en face l'un de l'autre, nous faisons coïncider par translation les couches de profondeur λ_q , placées vis à vis et situées respectivement dans ces deux cubes; on obtient ainsi un intervalle de hauteur $2\lambda_{q-1}-\lambda_q$. On superpose de la même manière tous les couples de cubes qui se font face. Ainsi on obtient un cube A_1 de côté $3\lambda_{q-1}-2\lambda_q$ qui contient dans sa partie centrale le cube $I_{q-1,\,\pi_1}^{(1)} \times \ldots \times I_{q-1,\,\pi_n}^{(n)}$. Désignons par f(Q) la transformation qui coïncide sur chacun des 3^n cubes ci-dessus avec la translation indiquée; f(Q)=Q pour $Q \in I_{q-1,\,\pi_1}^{(1)} \times \ldots \times I_{q-1,\,\pi_n}^{(n)}$. Le cube A_1 contient $(3k_q-2)^n$ cubes de $\{I_{q21}^{(1)} \times \ldots \times I_{q3n}^{(n)}\}$ et leurs translatés.

Cela étant, soit $S_{q0}^{(q)} = S_{q0}^{(q)}(\nu_1, \ldots, \nu_n)$ la surface du cube de côté $\delta_q + \lambda_q$ dont les côtés sont à distance $\delta_r/2$ de $I_{q\nu_1}^{(1)} \times \ldots \times I_{q\nu_n}^{(n)}$ et pareils aux côtés de celui-ci, soit $A_{q1}^{(q)} = A_{q1}^{(q)}(\nu_1, \ldots, \nu_n)$ le cube fermé de côte $3(\delta_q + \lambda_q)$ dont les cêtés sont à distance $\delta_q/2 + (\delta_q + \lambda_q)$ de $I_{q\nu_1}^{(1)} \times \ldots \times I_{q\nu_n}^{(n)}$ et pareils aux côtés de celui-ci, soit $S_{q1}^{(q)} = S_{q1}^{(q)}(\nu_1, \ldots, \nu_n)$ sa surface, et ainsi de suite. Pour tout $k \geq 2k_q$, $S_{qk}^{(q)}$ contient A_1 strictement dans son intérieur. Nous employons la même notation $S_{qk}^{(q)}$ pour l'image réciproque de $S_{qk}^{(q)}$ par f(Q). Alors $S_{qk}^{(q)} = \phi$ pour $k \geq 2k_q$. A partir de $I_{q-1, \pi_1}^{(1)} \times \ldots \times I_{q-1, \pi_n}^{(n)}$, nous faisons le même procédé et définissons $A_{q-1, k}^{(q)}$ et $S_{qk}^{(q)}$, ensuite $A_{q-2, k}^{(q)}$ et $S_{q-2, k}^{(q)}$ jusqu'à $A_{1k}^{(q)}$ et $S_{1k}^{(q)}$. Nous définissons $A_{ik}^{(q)}$ et $S_{ik}^{(q)}$, $1 \leq i \leq q$, de la même manière dans E_m .

4.4. Choisissons maintenant une série k_1 , k_1' , k_2 , k_2' , . . . rapidement croissante; prenons, par exemple, $k_1=2$, $k_1'=k_1^{k_1}$, $k_2=k_1^{k_1'}$, . . . , et posons $p_q=k_q^{(n/\alpha)-1}$, $p_q'=k_q^{(m/\beta)-1}$ 9) Alors

$$\lambda_q = \frac{1}{\left(k_1 \cdot \cdot \cdot k_a\right)^{n/a}}, \qquad \lambda_q' = \frac{1}{\left(k_1' \cdot \cdot \cdot k_a'\right)^{m/3}},$$

et

⁹; C'est l'exemple donné par Besicovitch-Moran [4] dans le cas n = m = 1.

$$\frac{1}{(k_1 \cdot \cdot \cdot k_{q-1})^{n/\alpha} k_q} \leq \delta_q + \lambda_q \leq \frac{2}{(k_1 \cdot \cdot \cdot k_{q-1})^{n/\alpha} k_q},$$

$$\frac{1}{(k'_1 \cdot \cdot \cdot k'_{q-1})^{m/\beta} k'_q} \leq \delta'_q + \lambda'_q \leq \frac{2}{(k'_1 \cdot \cdot \cdot k'_{q-1})^{m/\beta} k'_q}.$$

Comme

$$\sum_{q=1}^{\infty} \frac{(p_1 \cdot \cdot \cdot p_q)^{\alpha}}{(k_1 \cdot \cdot \cdot k_q)^{n-\alpha}} = \sum_{q=1}^{\infty} 1 = \infty \qquad \left(\sum_{q=1}^{\infty} \frac{(p_1' \cdot \cdot \cdot p_q')^{\beta}}{(k_1' \cdot \cdot \cdot k_q')^{m-\beta}} = \infty \quad \text{resp.}\right)$$

et

$$\begin{split} \sum_{q=1}^{\infty} \frac{(p_1 \cdot \cdot \cdot p_q)^{\alpha_1}}{(k_1 \cdot \cdot \cdot k_q)^{n-\alpha_1}} &= \sum_{q=1}^{\infty} \frac{1}{(k_1 \cdot \cdot \cdot k_q)^{n-\alpha_1 - ((n/\alpha) - 1)\alpha_1}} \\ &= \sum_{q=1}^{\infty} \frac{1}{(k_1 \cdot \cdot \cdot k_q)^{n(1-\alpha_1/\alpha)}} < \infty \quad \left(\sum_{q=1}^{\infty} \frac{(p_1' \cdot \cdot \cdot p_q')^{\beta_1}}{(k_1' \cdot \cdot \cdot k_q')^{m-\beta_1}} < \infty \quad \text{resp.}\right) \end{split}$$

pour α_1 , $0 < \alpha_1 < \alpha$, quelconque (pour β_1 , $0 < \beta_1 < \beta$, quelconque resp.), la dimension de F (F' resp.) est égale à α (β resp.).

Nous allons voir que la capacité d'ordre $m + \alpha'$ de $F \times F'$ est positive. D'abord nous déterminons un entier r_q tel que

$$\begin{split} \frac{\delta_q'}{2} < \delta_q' + \lambda_q' < 2(\delta_q' + \lambda_q') < \dots < r_q(\delta_q' + \lambda_q') \\ \leqslant \frac{\delta_q}{2} < (r_q + 1)(\delta_q' + \lambda_q') < \dots \end{split}$$

Pour les $\{P_{\kappa}^{(q)}\}$ contenus dans le produit de $S_{q0}^{(q)} = S_{q0}^{(q)}(\nu_1, \ldots, \nu_n)$ et $A_{qrq}^{(q)}(\nu_1, \ldots, \nu_m)$, on pose

$$\Delta_{\kappa}^{(q)} = \frac{\delta_q}{2}$$
.

Pour ces points on fait la somme

$$\begin{split} \sum_{q0}^{(1)} &= \sum \frac{1}{(\mathcal{A}_{\kappa}^{(q)})^{m+\alpha'}} = 2^{n} \{ 2(r_{q}+1) \}^{m} \left(\frac{2}{\delta_{q}} \right)^{m+\alpha'} = 2^{n+m} \left(\frac{r_{q}+1}{r_{q}} \right)^{m} r_{q}^{m} \left(\frac{2}{\delta_{q}} \right)^{m+\alpha'} \\ &\leq 2^{n+2m} \frac{1}{(\delta_{q}' + \lambda_{q}')^{m+\alpha'}} \left(\frac{2}{\delta_{q}} \right)^{\alpha'} = \frac{2^{n+2m+\alpha'}}{(\delta_{q}' + \lambda_{q}')^{m+\alpha'} \delta_{q}^{\alpha'}} \,. \end{split}$$

Pour les autres $\{P_{\kappa}^{(q)}\}$ contenus dans $S_{q0}^{(q)} \times A_{q,2kq'}^{(q)\prime}$, on pose

$$\Delta_{\kappa}^{(q)} = (r_q + 1)(\delta_q' + \lambda_q'), (r_q + 2)(\delta_q' + \lambda_q'), \ldots,$$

Pour ces points on fait la somme

$$\sum_{q0}^{(2)} = \sum \frac{1}{(\mathcal{A}_{\kappa}^{(q)})^{m+\alpha'}} \leq 2^{n} \frac{\{2(r_{q}+2)\}^{m} - \{2(r_{q}+1)\}^{m}}{\{(r_{q}+1)(\delta'_{q}+\lambda'_{q})\}^{m+\alpha'}} + 2^{n} \frac{\{2(r_{q}+3)\}^{m} - \{2(r_{q}+2)\}^{m}}{\{(r_{q}+2)(\delta'_{q}+\lambda'_{q})\}^{m+\alpha'}} + \dots + 2^{n} \frac{\{2(2k'_{q}+1)\}^{m} - (4k'_{q})^{m}}{\{2k'_{q}(\delta'_{q}+\lambda'_{q})\}^{m+\alpha'}}.$$

Nous notons que $(s+1)^m - s^m \le (2^m - 1) s^{m-1}$ pour $s \ge 1$, et obtenons

$$\begin{split} \sum_{q_0}^{(2)} & \leq \frac{2^{n+m}(2^m-1)}{(\delta_q' + \lambda_q')^{m+\alpha'}} \sum_{s=r_q+1}^{2k_{q'}} \frac{1}{s^{\alpha'+1}} \leq \frac{2^{n+2m}}{(\delta_q' + \lambda_q')^{m+\alpha'}} \frac{1}{\alpha'} \left(\frac{1}{r_q^{\alpha'}} - \frac{1}{(2k_q')^{\alpha'}} \right) \\ & \leq \frac{2^{n+2m}}{\alpha'(\delta_q' + \lambda_q')^{m+\alpha'}} \left(\frac{r_q+1}{r_q} \right)^{\alpha'} \left(\frac{\delta_q' + \lambda_q'}{\delta_q/2} \right)^{\alpha'} \leq \frac{2^{n+2m+2\alpha'}}{\alpha'(\delta_q' + \lambda_q')^m \delta_q^{\alpha'}} \end{split}$$

Si on pose $\sum_{q0} = \sum_{q0}^{(1)} + \sum_{q0}^{(2)}$, on aura

$$\sum_{q0} < \frac{c}{\left(\delta_q' + \lambda_q'\right)^m \delta_q^{\alpha'}}$$

avec une constante $c = 2^{n+2m+2\alpha'}/\alpha'$.

Ensuite nous déterminons un entier t_q tel que

$$\ldots < (r_q+1)(\delta_q'+\lambda_q') < \ldots < t_q(\delta_q'+\lambda_q') \leq \lambda_q + \delta_q < (t_q+1)(\delta_q'+\lambda_q') < \ldots$$

Pour tous $\{P_{\kappa}^{(q)}\}$ contenus dans le produit de $S_{q1}^{(q)}=S_{q1}^{(q)}(\nu_1,\ldots,\nu_n)$ et de $A_{qtq}^{(q)\prime}=A_{qtq}^{(q)\prime}(\nu_1',\ldots,\nu_m')$, nous posons

$$\Delta_{\kappa}^{(q)} = \delta_q + \lambda_q,$$

et, pour les autres $\{P_{\kappa}^{(q)}\}$ contenus dans $S_{q1}^{(q)} \times A_{q,2k_{q'}}^{(q)}$, nous posons

$$\mathcal{A}_{\kappa}^{(q)} = (t_a + 1)(\delta_a' + \lambda_a'), (t_a + 2)(\delta_a' + \lambda_a'), \dots$$

Pour tous ces points, nous faisons la somme

$$\begin{split} \sum_{q1} &= \sum \frac{1}{(\mathcal{A}_{\kappa}^{(q)})^{m+\alpha'}} \leqq \{(2 \cdot 2)^{n} - (2 \cdot 1)^{n}\} \frac{\{2(t_{q}+1)\}^{m}}{(\delta_{q}+\lambda_{q})^{m+\alpha'}} \\ &+ \{(2 \cdot 2)^{n} - (2 \cdot 1)^{n}\} 2^{m} \sum_{s=t_{q}+1}^{2k_{q'}} \frac{(s+1)^{m} - s^{m}}{\{s(\delta'_{q}+\lambda'_{q})\}^{m+\alpha'}} \\ &\leqq 2^{n+m} (2^{n}-1) \left\{ \frac{(t_{q}+1)^{m}}{(\delta_{q}+\lambda_{q})^{m+\alpha'}} + \frac{2^{m}}{(\delta'_{q}+\lambda'_{q})^{m+\alpha'}} \sum_{s=t_{q}+1}^{2k_{q'}} \frac{1}{s^{\alpha'+1}} \right\} \\ &< \frac{2c(2^{n}-1)}{(\delta'_{q}+\lambda'_{q})^{m}(\delta_{q}+\lambda_{q})^{\alpha'}} \,. \end{split}$$

Soit u_q le plus petit entier tel que $2k_q'(\delta_q' + \lambda_q') \le u_q(\delta_q + \lambda_q)$. Pour les points $\{P_{\kappa}^{(q)}\}$ contenus dans $A_{qu_q}^{(q)} \times A_{q,2k_q'}^{(q)}$, on a

$$\begin{split} \sum_{q} &= \sum_{q0} + \sum_{q1} + \ldots = \frac{c}{(\delta'_q + \lambda'_q)^m \delta_q^{\alpha'}} + \frac{2c(2^n - 1)}{(\delta'_q + \lambda'_q)^m (\delta_q + \lambda_q)^{\alpha'}} \\ &+ \frac{2c(3^n - 2^n)}{(\delta'_q + \lambda'_q)^m 2^{\alpha'} (\delta_q + \lambda_q)^{\alpha'}} + \ldots + \frac{2c\left((u_q + 1)^n - u_q^n\right)}{(\delta'_q + \lambda'_q)^m u_q^{\alpha'} (\delta_q + \lambda_q)^{\alpha'}} \\ & \leq \frac{c}{(\delta'_q + \lambda'_q)^m \delta_q^{\alpha'}} + \frac{c2^{n+1}}{n - \alpha'} \frac{u_q^{n-\alpha'}}{(\delta'_q + \lambda'_q)^m (\delta_q + \lambda_q)^{\alpha'}} \\ & \leq \frac{c}{(\delta'_q + \lambda'_q)^m \delta_q^{\alpha'}} + \frac{c}{n - \alpha'} 2^{4^{n-2\alpha'+1}} \frac{k_q^{'n-\alpha'}}{(\delta'_q + \lambda'_q)^{m-n+\alpha'} (\delta_q + \lambda_q)^n} \\ & \leq c(k'_1 \cdot \cdot \cdot k'_{q-1})^{m^2/\beta} k_q^{\prime m} \left\{ \frac{k_q^{n/\alpha-1} - 1}{k_1 \cdot \cdot \cdot k_{q-1} (k_q - 1)(k_1 \cdot \cdot \cdot k_q)^{n/\alpha-1}} \right\}^{-\alpha'} \\ &+ \frac{c2^{4^{n-2\alpha'+1}}}{n - \alpha'} k_q^{\prime n-\alpha'} (k'_1 \cdot \cdot \cdot k'_{q-1})^{m/\beta(m-n+\alpha')} k_q^{\prime m-n+\alpha'} (k_1 \cdot \cdot \cdot k_{q-1})^{n^2/\alpha} k_q^n \\ & \leq c_1 (k'_1 \cdot \cdot \cdot k'_{q-1})^{m^2/\beta} k_q^{\prime m} (k_1 \cdot \cdot \cdot k_{q-1})^{n^{\alpha'/\alpha}} k_q^{\alpha'} \\ &+ c_1 (k'_1 \cdot \cdot \cdot k'_{q-1})^{m/\beta(m-n+\alpha')} k_q^{\prime m} (k_1 \cdot \cdot \cdot k_{q-1})^{n^2/\alpha} k_q^n, \end{split}$$

où

$$c_1 = \max \left\{ c \left(\frac{2^{n/\alpha - 1}}{2^{n/\alpha - 1} - 1} \right)^{\alpha'}, \frac{c 2^{4n - 2\alpha' + 1}}{n - \alpha'} \right\}.$$

Puis, pour les points $\{P_{\kappa}^{(q)}\}$ contenus dans $(A_{q,\,2k_q}^{(q)}-A_{qu_q}^{(q)})\times A_{q,\,2k_{q'}}^{(q)\prime}$, on a

$$\sum_{q}' = \sum \frac{1}{(\mathcal{A}_{\kappa}^{(q)})^{m+\alpha'}} \leq \frac{(2k_{q}')^{m}2^{n}}{(u_{q}(\delta_{q}+\lambda_{q}))^{m+\alpha'}} \left\{ (2u_{q}+1)^{n} - (u_{q}+1)^{n} + \frac{(3u_{q}+1)^{n} - (2u_{q}+1)^{n}}{2^{m+\alpha'}} + \ldots + \frac{(v_{q}u_{q}+1)^{n} - ((v_{q}-1)u_{q}+1)^{n}}{(v_{q}-1)^{m+\alpha'}} \right\},$$

où v_q est le plus petit entier tel que $v_q u_q \ge 2 k_q$. Il vient que

$$\begin{split} \sum_{q}' & \leq \frac{(2 \, k_q')^m 2^n}{(u_q(\delta_q + \lambda_q))^{m + \alpha'}} \sum_{s=1}^{v_q - 1} \frac{\{(s+1) \, u_q + 1\}^n - (s u_q + 1)^n}{s^{m + \alpha'}} \\ & \leq \frac{(2 \, k_q')^m 2^n \, u_q^n}{(u_q(\delta_q + \lambda_q))^{m + \alpha'}} \sum_{s=1}^{v_q - 1} \frac{(s+2)^n - (s+1)^n}{s^{m + \alpha'}} \\ & \leq \frac{(2 \, k_q')^m 2^n \, u_q^{n - m - \alpha'}}{(\delta_q + \lambda_q)^{m + \alpha'}} 2^{2^{n-1}} \sum_{s=1}^{v_q - 1} s^{n - 1 - m - \alpha'}. \end{split}$$

On considère les trois cas: $n-m-\alpha'>0$, =0, <0. Nous aurons respectivement

$$\sum_{s=1}^{v_{q-1}} s^{n-1-m-\alpha'} \leq 1 + \frac{1}{n-m-\alpha'}, \quad 1 + \log v_q, \quad \frac{1}{m+\alpha'-\eta}.$$

Dans le premier cas

$$\sum_{q}' \leq \left(1 + \frac{1}{n - m - \alpha'}\right) \frac{2^{3n + m - 1} k_{q}' m_{q}^{n - m - \alpha'} v_{q}^{n - m - \alpha'}}{(\delta_{q} + \lambda_{q})^{m + \alpha'}}$$

$$\leq \left(1 + \frac{1}{n - m - \alpha'}\right) \frac{2^{3n + m - 1} k_{q}' m_{q}^{n - m - \alpha'} (2 k_{q})^{n - m - \alpha'}}{(\delta_{q} + \lambda_{q})^{m + \alpha'}}$$

$$\leq \left(1 + \frac{1}{n - m - \alpha'}\right) 2^{5n - m - 2\alpha' - 1} k_{q}' (k_{1} \cdot \cdot \cdot k_{q - 1})^{n/\alpha(m + \alpha')} k_{q}^{n}.$$

$$\leq 2^{5n - m - 2\alpha' - 1} \left(1 + \frac{1}{n - m - \alpha'}\right) (k_{1} \cdot \cdot \cdot k_{q - 1})^{n^{2}/\alpha} k_{q}^{n} k_{q}'^{m}.$$

Dans le deuxième cas on peut supposer que $\log v_q \ge 1$ et on obtient

$$\sum_{q}' \leq \frac{2^{m+3n} k_{q}'^{m}}{(\delta_{q} + \lambda_{q})^{n}} \log v_{q} \leq \frac{2^{m+3n} k_{q}'^{m}}{(\delta_{q} + \lambda_{q})^{n}} \log \frac{4 k_{q}}{u_{q}} \leq \frac{2^{m+3n} k_{q}'^{m}}{(\delta_{q} + \lambda_{q})^{n}} \log \frac{4 k_{q} (\delta_{q} + \lambda_{q})}{2 k_{q}' (\delta_{q}' + \lambda_{q}')}$$
$$\leq 2^{m+3n} k_{q}'^{m} (k_{1} \cdot \cdot \cdot k_{q-1})^{n^{2/a}} k_{q}^{n} \log \frac{2(k_{1}' \cdot \cdot \cdot k_{q-1}')^{m/\beta}}{(k_{1} \cdot \cdot \cdot k_{q-1})^{n/\alpha}}.$$

Dans le troisième cas

$$\sum_{q}' \leq \frac{2^{m+3n-1}}{m+\alpha'-n} \frac{1}{u_{q}^{m+\alpha'-n}(\delta_{q}+\lambda_{q})^{m+\alpha'}}$$

$$\leq \frac{2^{m+3n-1}}{m+\alpha'-n} \frac{1}{(\delta_{q}+\lambda_{q})^{n}\{2k_{q}'(\delta_{q}'+\lambda_{q}')\}^{m+\alpha'-n}}$$

$$\leq \frac{2^{4n-1-\alpha'}}{m+\alpha'-n} (k_{1}'\cdot \cdot \cdot k_{q-1}')^{m/\beta(m+\alpha'-n)}(k_{1}\cdot \cdot \cdot k_{q-1})^{n^{2/\alpha}} k_{q}^{n}.$$

La somme $\sum 1/(d_{\kappa}^{(q)})^{m+\alpha'}$ pour tous les $\{P_{\kappa}^{(q)}\}$ contenus dans $A_{q,2k_q}^{(q)} \times A_{q,2k_q'}^{(q)'}$ est égale à $\sum_q + \sum_q'$.

4.5. Nous continuerons et terminerons l'évaluation. Soit w_q le plus petit entier tel que $\delta'_{q-1}+\lambda'_{q-1} \leq w_q(\delta_q+\lambda_q)$, x_q le plus petit entier tel que $2(\delta_{q-1}+\lambda_{q-1}) \leq x_q(\delta_q+\lambda_q)$, ainsi de suite et enfin u'_q le plus petit entier tel que $2k_q(\delta_q+\lambda_q) \leq u'_q(\delta'_{q-1}+\lambda'_{q-1})$. Pour les points $\{P_\kappa^{(q)}\}$ contenus dans $A_{q,2k_q}^{(q)}\times (A_{q-1,2}^{(q)'}-A_{q-1,1}^{(q)'})$, nous posons

$$\Delta_{\kappa}^{(q)} = \delta_{q-1}' + \lambda_{q-1}', \qquad 2(\delta_{q-1}' + \lambda_{q-1}'), \ldots$$

et obtenons

$$\begin{split} \sum \frac{1}{(\mathcal{A}_{q}^{(q)})^{m+\alpha'}} & \leq 2^{m} (3^{m}-2^{m}) \left\{ \frac{k_{q}^{\prime m} w_{q}^{n}}{(\delta_{q-1}^{\prime}+\lambda_{q-1}^{\prime})^{m+\alpha'}} + \frac{k_{q}^{\prime m} (2^{n}-1^{n}) w_{q}^{n}}{2^{m+\alpha'} (\delta_{q-1}^{\prime}+\lambda_{q-1}^{\prime})^{m+\alpha'}} \right. \\ & + \ldots + \frac{k_{q}^{\prime m} ((u_{q}^{\prime}+1)^{n}-u_{q}^{\prime n}) w_{q}^{n}}{u_{q}^{\prime m+\alpha'} (\delta_{q-1}^{\prime}+\lambda_{q-1}^{\prime})^{m+\alpha'}} \right\} \\ & = \frac{2^{m} (3^{m}-2^{m}) k_{q}^{\prime m} w_{q}^{m}}{(\delta_{q-1}^{\prime}+\lambda_{q-1}^{\prime})^{m+\alpha'}} \left\{ 1 + \sum_{s=1}^{u_{q}^{\prime}} \frac{(s+1)^{n}-s^{n}}{s^{m+\alpha'}} \right\} \\ & \leq \frac{2^{m} (3^{m}-2^{m}) k_{q}^{\prime m} w_{q}^{m}}{(\delta_{q-1}^{\prime}+\lambda_{q-1}^{\prime})^{m+\alpha'}} (1 + 2^{n} \sum_{s=1}^{u_{q}^{\prime}} s^{n-1-m-\alpha'}). \end{split}$$

Pour les points $\{P_{\kappa}^{(q)}\}$ contenus dans $A_{q,2k_q}^{(q)} \times (A_{q-1,2}^{(q)} - A_{q-1,2}^{(q)})$ on aura

$$\sum \frac{1}{(d_{\alpha}^{(q)})^{m+\alpha'}} \leq \frac{2^{m}(4^{m}-3^{m})k_{q}^{\prime}mv_{q}^{\prime m}}{(\delta_{q-1}^{\prime}+\lambda_{q-1}^{\prime})^{m+\alpha'}} \left\{ \frac{2^{n}}{2^{m+\alpha'}} + 2^{n}\sum_{s=2}^{u_{q'}} s^{n-1-m-\alpha'} \right\}.$$

Et ainsi de suite.

Pour tous les $\{P_{\kappa}^{(q)}\}$ contenus dans $A_{q,2k_q}^{(q)} \times (A_{q-1,\,u_{q'+1}}^{(q)} - A_{q-1,\,1}^{(q)})$ nous aurons

$$\begin{split} \sum_{q=1}^{*} &= \sum \frac{1}{(\mathcal{A}_{s}^{(q)})^{m+a'}} \\ & \leq \frac{2^{m} k_{q}^{\prime m} w_{q}^{m}}{(\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime})^{m+a'}} \left[\left\{ (3^{\circ n} - 2^{m}) + (4^{m} - 3^{m}) 2^{n-m-a'} + \dots \right. \right. \\ & + \left. \left((u_{q}^{\prime} + 2)^{m} - (u_{q}^{\prime} + 1)^{m}) u_{q}^{\prime (n-m-a')} \right\} + \left\{ (3^{m} - 2^{m}) \sum_{s=1}^{u_{q'}} \right. \\ & + \left. \left(4^{m} - 3^{m} \right) \sum_{s=2}^{u_{q'}} + \dots + \left((u_{q}^{\prime} + 2)^{m} - (u_{q}^{\prime} + 1)^{m} \right) \sum_{s=u_{q'}}^{u_{q'}} \right\} s^{n-1-m-a'} \right] \\ & = \frac{2^{m} k_{q}^{\prime} w_{q}^{n}}{(\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime})^{m+a'}} \left\{ 2^{m} \sum_{s=1}^{u_{q'}} (s+1)^{m-1} s^{n-m-a'} + \sum_{s=1}^{u_{q'}} (s+2)^{m} s^{n-1-m-a'} \right. \\ & + \left. \left(u_{q}^{\prime} + 2 \right)^{m} u_{q}^{\prime} \right|_{n-1-m-a'} \right\} = \frac{2^{3m+n-a'+2} k_{q}^{\prime m} w_{q}^{n} u_{q}^{\prime} \right|_{n-a'}}{(n-\alpha')(\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime})^{m+a'}} \\ & \leq \frac{2^{4m+3n-3a'+2} k_{q}^{\prime m} k_{q}^{n-a'}}{(n-\alpha')(\delta_{q}^{\prime} + \lambda_{q}^{\prime})^{a'}(\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime})^{m}} \\ & \leq c_{2} (k_{1} \cdot \cdot \cdot \cdot k_{q-1})^{na'/a} k_{q}^{n} (k_{1}^{\prime} \cdot \cdot \cdot k_{q-2}^{\prime})^{m^{2}/3} k_{q-1}^{\prime m} k_{q}^{\prime m} \end{split}$$

avec $c_2 = 2^{4m+3n-3\alpha'+2}/(n-\alpha')$ pour assez grand q.

Pour les points $\{P_{\kappa}^{(q)}\}$ contenus dans $A_{q,2k_q}^{(q)} \times (A_{q-1,2k'q-1}^{(q)} - A_{q-1,u_{q'}+1}^{(q)})$ on a la somme

$$\begin{split} \sum_{q-1}^{*'} &= \sum \frac{1}{(\mathcal{A}_{\kappa}^{(q)})^{m+\alpha'}} \leq \frac{(2k_q)^n k_q^{\prime m}}{(u_q^{\prime}(\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime}))^{m+\alpha'}} \left\{ (2(u_q^{\prime} + 1) + 1)^m - (u_q^{\prime} + 2)^m \right. \\ &+ \frac{(3(u_q^{\prime} + 1) + 1)^m - (2(u_q^{\prime} + 1) + 1)^m}{2^{m+\alpha'}} + \ldots \\ &+ \frac{(v_q^{\prime}(u_q^{\prime} + 1) + 1)^m - ((v_q^{\prime} - 1)(u_q^{\prime} + 1) + 1)^m}{(v_q^{\prime} - 1)^{m+\alpha'}} \right\}, \end{split}$$

où v_{q-1}' est le plus petit entier tel que $v_{q-1}'u_{q-1}' \geqq 2\,k_{q-1}'$. Il vient que

$$\begin{split} \sum_{q-1}^{*'} & \leq \frac{2^{n} k_{q}^{n} k_{q}^{'m} 2^{m} 2^{2m}}{u_{q}^{'\alpha'} (\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime})^{m+\alpha'}} \sum_{s=1}^{vq'-1} \frac{1}{s^{\alpha'+1}} & \leq \frac{2^{n+3m} k_{q}^{n} k_{q}^{\prime m}}{\alpha' u_{q}^{\prime \alpha'} (\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime})^{m+\alpha'}} \\ & \leq \frac{2^{n+3m} k_{q}^{n} k_{q}^{\prime m}}{\alpha' (2 k_{q})^{\alpha'} (\delta_{q}^{\prime} + \lambda_{q})^{\alpha'} (\delta_{q-1}^{\prime} + \lambda_{q-1}^{\prime})^{m}} \\ & \leq \frac{2^{n+3m-\alpha'}}{\alpha'} (k_{1} \cdot \cdot \cdot \cdot k_{q-1})^{n\alpha'/\alpha} k_{q}^{n} (k_{1}^{\prime} \cdot \cdot \cdot \cdot k_{q-2}^{\prime})^{m^{2/3}} (k_{q-1}^{\prime} k_{q}^{\prime})^{m}. \end{split}$$

La some $\sum 1/(\Delta_{\kappa}^{(q)})^{m+a'}$ pour tous les $\{P_{\kappa}^{(q)}\}$ contenus dans $A_{q,2kq}^{(q)} \times A_{q-1,uq'+1}^{(q)}$ est égale à

$$\sum_{q=1}^* + \sum_{q=1}^{*'} \leq c_3 (k_1 \cdot \cdot \cdot k_{q-1})^{n\alpha'/\alpha} k_q^n (k_1' \cdot \cdot \cdot k_{q-1}')^{m^2/\beta} k_{q-1}'^m k_q'^m$$

où c_3 est une constante ne dépendant que de n, m, α , β et α' .

Nous continuons ce procédé. Dans le cas $m + \alpha' < n$ on a enfin

$$\begin{split} u_{q} & \leq c_{0} \Big\{ \frac{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m^{2}/3-m}}{(k_{1} \cdot \cdot \cdot k_{q-1})^{n(1-\alpha'/\alpha)}} \cdot \frac{k'_{q-1}^{m/3/3-m}}{k'_{q-\alpha'}^{n-\alpha'}} + \frac{(k_{1} \cdot \cdot \cdot k_{q-1})^{n^{2}/\alpha-n}}{(k'_{1} \cdot \cdot \cdot k'_{q-1})^{m}} \\ & + \frac{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m^{2}/3-m}}{(k_{1} \cdot \cdot \cdot k_{q-1})^{n(1-\alpha'/\alpha)}} + \frac{(k_{1} \cdot \cdot \cdot k_{q-2})^{n^{2}/\alpha-n}}{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m}} + \frac{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m^{2}/3-m}}{(k_{1} \cdot \cdot \cdot k_{q-2})^{n(1-\alpha'/\alpha)}} + \dots \Big\}, \end{split}$$

où c_0 est une constante qui dépend seulement de n, m, α , β et α' .

Dans le cas $m + \alpha' = n$,

$$\begin{split} u_{q} & \leq c_{0} \Big\{ \frac{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m^{2}/\beta - m}}{(k_{1} \cdot \cdot \cdot k_{q-1})^{n(1-\alpha'/\alpha)}} \cdot \frac{k'_{q-1}^{m^{2}/\beta - m}}{k_{q}^{n-\alpha'}} + \frac{(k_{1} \cdot \cdot \cdot k_{q-1})^{n^{2}/\alpha - n}}{(k'_{1} \cdot \cdot \cdot k'_{q-1})^{m}} \log (k'_{1} \cdot \cdot \cdot k'_{q-1}) \\ & + \frac{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m^{2}/\beta - m}}{(k_{1} \cdot \cdot \cdot k_{q-1})^{n(1-\alpha'/\alpha)}} + \frac{(k_{1} \cdot \cdot \cdot k_{q-2})^{n^{2}/\alpha - n}}{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m}} \log (k'_{1} \cdot \cdot \cdot k'_{q-2}) \\ & + \frac{(k'_{1} \cdot \cdot \cdot k'_{q-3})^{m^{2}/\beta - m}}{(k_{1} \cdot \cdot \cdot k_{q-2})^{n(1-\alpha'/\alpha)}} + \dots \Big\} = c_{0} \Big\{ \frac{(k'_{1} \cdot \cdot \cdot k'_{q-2})^{m^{2}/\beta - m}}{(k_{1} \cdot \cdot \cdot k_{q-1})^{n(1-\alpha'/\alpha)}} \frac{k'_{q-1}^{m^{2}/\beta - m}}{k'_{q}^{n-\alpha'}} \\ & + \sum \frac{q-1}{(k'_{1} \cdot \cdot \cdot k'_{1})^{m^{2}/\alpha - n}} \log (k'_{1} \cdot \cdot \cdot k'_{1}) + \sum \frac{q-1}{(k'_{1} \cdot \cdot \cdot k'_{1-1})^{m^{2}/\beta - m}}{(k_{1} \cdot \cdot \cdot k'_{1})^{n(1-\alpha'/\alpha)}} \Big\}. \end{split}$$

Le premier cas revient à ce cas.

Dans le cas $m + \alpha' > n$,

$$egin{aligned} u_q & \leq c_0 \Big\{ rac{(k_1' \cdot \cdot \cdot k_{q-2}')^{m^2/\beta - m}}{(k_1 \cdot \cdot \cdot k_{q-1})^{n(1-lpha'/lpha)}} \, \, rac{k_{q-1}'^{n^2/\beta - m}}{k_q^{n-lpha'}} \, + \sum^{q-1} rac{(k_1 \cdot \cdot \cdot k_i)^{n^2/lpha - n}}{(k_1' \cdot \cdot \cdot k_i')^{m(n+\beta - m-lpha')/eta}} \\ & + \sum^{q-1} rac{(k_1' \cdot \cdot \cdot k_{i-1}')^{m^2/\beta - m}}{(k_1 \cdot \cdot \cdot k_i)^{n(1-lpha'/lpha)}} \Big\} \, . \end{aligned}$$

Dans tous les cas le premier terme à droite tend vers zéro et les deux séries sont convergentes lorsque $q \to \infty$, car $k_i' = k_i^{k_i}$, $k_{i+1} = k_i'^{k_i'}$, $\alpha' < \alpha$ et $m + \alpha' < n + \beta$. Par conséquent, les moyennes $\{u_q\}$, $q = 1, 2, \ldots$, sont uniformément bornées par une valeur finie c^* . Par suite pour chaque q il existe κ_q tel que $U^{\mu}_{m+\alpha'}(P^{(q)}_{\kappa q}) < c^*$. On en déduit que la capacité d'ordre $m + \alpha'$ de $F \times F'$ est positive. En effet, si $C_e^{(m+\alpha')}(F \times F') = 0$, il existerait d'après la proposition 10 une répartition μ_0 sur $F \times F'$ telle que $U^{\mu_0}_{m+\alpha'}(P) = \infty$ en chaque point de $F \times F'$. Puisque $P^{(q)}_{\kappa q}$ vient arbitrairement voisin de $F \times F'$ lorsque $q \to \infty$, $U^{\mu_0}_{m+\alpha'}(P^{(q)}_{\kappa q}) \to \infty$ avec q, ce qui est absurde. Ainsi $C_e^{(m+\alpha')}(F \times F') > 0$.

Enfin, si $n+\beta \ge m+\alpha$ et $\alpha=n$, alors $\beta=m$; on peut prendre pour F et F' un cube dans E_n et un cube dans E_m respectivement. Si $\alpha < n$ et $\beta=m$, nous prenons un ensemble de dimension α dans E_n pour F, par exemple un ensemble de Cantor généralisé choisi dans 4.4, et un cube dans E_m pour F'. Alors la dimension de $F \times F'$ est $m+\alpha$ d'après le théorème 6. Ainsi le théorème est complètement démontré.

BIBLIOGRAPHIE

- [1] N. Aronszajn and K. T. Smith: Functional spaces and functional completion, Ann. Inst. Fourier, 6 (1956), pp. 125-185.
- [2] A. S. Besicovitch: Concentrated and rarefied sets of points, Acta Math., 62 (1933), pp. 289-300.
- [3] A. S. Besicovitch: On existence of subsets of finite measure of sets of infinite measure, Indag. Math., 14 (1952), pp. 339-344.
- [4] A. S. Besicovitch and P. A. P. Moran: The measure of product and cylinder sets, J. Lond. Math. Soc., 20 (1945), pp. 110-120.
- [5] N. Bogoliouboff et N. Kryloff: La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. Math., 38 (1937), pp. 65-113.
- [6] L. Carleson: On a class of meromorphic functions and its associated exceptional sets, Thèse, Uppsala (1950).
- [7] G. Choquet: Theory of capacities, Ann. Inst. Fourier, 5 (1955), pp. 131-295.
- [8] G. Choquet: Les noyaux réguliers en théorie du potentiel, C. R. Acad. Sci. Paris, 243 (1956), pp. 635-638.
- [9] R. O. Davies: Subsets of finite measure in analytic sets, Indag. Math., 14 (1952), pp. 488-489.
- [10) J. Deny et P. Lelong: Étude des fonctions sousharmoniques dans un cylindre ou dans un cône, Bull. Soc. Math. France, 75 (1947), pp. 89-112.
- [11] H. G. Eggleston: The Besicovitch dimension of cartesian product sets, Proc. Camb. Phil. Soc., 46 (1950), pp. 383-386.
- [12] H. G. Eggleston: A correction to a paper on the dimension of cartesian product sets, ibid., 49 (1953), pp. 437-440.
- [13] H. Federer: Some integralgeometric theorems, Trans. Amer. Math. Soc., 77 (1954), pp. 238-261.
- [14] G. Freilich: On the measure of cartesian product sets, ibid., 69 (1950), pp. 232-275.
- [15] G. Freilich: Two-dimensional measure in 3-space, Proc. Amer. Math. Soc., 6 (1955), pp. 631-633.
- [16] F. Hausdorff: Dimension und äusseres Mass, Math. Ann., 79 (1919), pp. 157-179.
- [17] S. Kametani: Positive definite integral quadratic forms and generalized potentials, Proc. Imp. Acad. Japan, 20 (1944), pp. 7-14.
- [18] S. Kametani: On Hausdorff's measure and generalized capacities with some of their applications to the theory of functions, Jap. J. Math., 19 (1945), pp. 217-257.
- [19] S. Kametani: Progrès recent de la théorie du potentiel, Mathématiques modernes I, Tokyo (1950), pp. 62-105, (en japonais).

- [20] S. Kametani: A note on a metric property of capacity, Natur. Sci. Rep. Ochanomizu Univ., 4 (1953), pp. 51-54.
- [21] J. M. Marstrand: The dimension of Cartesian product sets, Proc. Camb. Phil. Soc., 50 (1954), pp. 198-202.
- [22] P. A. P. Moran: Additive functions of intervals and Hausdorff measure, ibid., 42 (1946), pp. 15-23.
- [23] P. A. P. Moran: On plane sets of fractional dimensions, Proc. Lond. Math. Soc., 51 (1949), pp. 415-423.
- [24] M. Ohtsuka: Capacité d'ensembles de Cantor généralisés, Nagoya Math. J., 11 (1957), pp. 151-160.
- [25] J. Randolph: On generalizations of length and area, Bull. Amer. Math. Soc., 42 (1936), pp. 268-274.

Institut de Mathématiques Université de Nagoya