ON THE COHOMOLOGICAL COMPLETENESS OF q-COMPLETE DOMAINS WITH CORNERS

KAZUKO MATSUMOTO

Abstract. We prove the vanishing and non-vanishing theorems for an intersection of a finite number of q-complete domains in a complex manifold of dimension n. When q does not divide n, it is stronger than the result naturally obtained by combining the approximation theorem of Diederich-Fornaess for q-convex functions with corners and the vanishing theorem of Andreotti-Grauert for q-complete domains. We also give an example which implies our result is best possible.

Introduction

Let D be a complex manifold of dimension n and let q be an integer with $1 \leq q \leq n$. A continuous function from D to \mathbb{R} is called q-convex with corners if it is locally a maximum of a finite number of q-convex functions. In [D-F] Diederich-Fornaess proved that every q-convex function with corners defined on D can be approximated by \tilde{q} -convex functions whole on D, where $\tilde{q} := n - [n/q] + 1$ and [x] denotes the integral part of x. They moreover showed that the number \tilde{q} is best possible for any (n,q), i.e., there exist an open subset D in \mathbb{C}^n and a finite number of q-convex functions $\varphi_1, \ldots, \varphi_s$ defined on D such that the function $\varphi := \max{\{\varphi_1, \ldots, \varphi_s\}}$ cannot be approximated by $(\tilde{q} - 1)$ -convex functions.

A complex manifold D is called q-complete (resp. q-complete with corners) if D has an exhaustion function which is q-convex (resp. q-convex with corners) on D. Combining the above theorem of Diederich-Fornaess with the theorem of Andreotti-Grauert ([A-G]) it follows at once that if D is q-complete with corners then D is cohomologically \tilde{q} -complete.

Now the following problem arises naturally.

PROBLEM. Is there a complex manifold which is q-complete with corners but not cohomologically $(\tilde{q} - 1)$ -complete?

Received May 15, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 32F10.

It is easy to find such examples if q divides n (cf. [S-V], [E-S], [M-1] and [M-2]). However, it seems that such an example is still unknown if q does not divide n.

The purpose of this article is to prove the following.

THEOREM. Let M be a complex manifold of dimension n and let D_1, \ldots, D_t be q-complete open subsets in M. Let \mathcal{F} be a coherent analytic sheaf on M such that $H^n(M, \mathcal{F}) = 0$. Then

$$H^{j}(D_{1} \cap \cdots \cap D_{t}, \mathcal{F}) = 0 \quad if \quad j \ge \widehat{q}_{t}.$$

Here

$$\widehat{q}_t := \min\{\widehat{q}, t(q-1)+1\}$$

and

$$\widehat{q} := n - \left[\frac{n-1}{q}\right] = \begin{cases} \widetilde{q} & \text{if } q \mid n \\ \widetilde{q} - 1 & \text{if } q \nmid n. \end{cases}$$

Moreover, the number \hat{q}_t in the above theorem is best possible for any (n, q, t). In particular, for any (n, q) there exist a finite number of q-complete open subsets D_1, \ldots, D_s in \mathbb{C}^n such that $H^{\hat{q}-1}(D_1 \cap \cdots \cap D_s, \mathcal{O}) \neq 0$, where \mathcal{O} denotes the sheaf of germs of holomorphic functions on \mathbb{C}^n (see §3).

The author, in general, does not know whether the cohomologically \hat{q} complete set $D_1 \cap \cdots \cap D_t$ in the above theorem is \hat{q} -complete, i.e., it has a \hat{q} -convex exhaustion function, even in the case $M = \mathbb{C}^n$.

§1. The key proposition

First we show the following proposition which is a key step to prove Theorem.

PROPOSITION 1. Let M be a topological space, let $\{D_1, \ldots, D_t\}$ be a family of open subsets in M and let S be a sheaf of Abelian groups on M. Let $p \in \mathbb{N}$ be fixed and suppose that for any k with $1 \leq k \leq t - 1$ the family $\{D_1, \ldots, D_t\}$ satisfies the condition

$$C(k,p) \qquad \begin{array}{l} H^{j}(D_{i_{1}} \cap \dots \cap D_{i_{k}}, \mathcal{S}) = 0\\ \text{for all } j \geq p \text{ and all } i_{1}, \dots, i_{k} \in \{1, 2, \dots, t\}. \end{array}$$

Then

(1)
$$H^{j}(D_{1} \cap \cdots \cap D_{t}, \mathcal{S}) \cong H^{j+t-1}(D_{1} \cup \cdots \cup D_{t}, \mathcal{S})$$
 if $j \ge p$;

(2)
$$H^{p-1}(D_1 \cap \cdots \cap D_t, \mathcal{S}) \twoheadrightarrow H^{p+t-2}(D_1 \cup \cdots \cup D_t, \mathcal{S})$$

Remark. The family $\{D_1, \ldots, D_t\}$ satisfies the condition C(k, p) for all k with $1 \le k \le t - 1$ if it satisfies only C(t - 1, p).

Proof of Proposition 1. We shall prove the proposition by induction on $t \in \mathbb{N}$.

Step 1. When t = 1, (1) and (2) are trivial.

Step 2. When $t \ge 2$, it follows by Mayer-Vietories that the sequence

$$H^{j}(D_{1} \cap \dots \cap D_{t-1}, \mathcal{S}) \oplus H^{j}(D_{t}, \mathcal{S})$$

$$\longrightarrow H^{j}((D_{1} \cap \dots \cap D_{t-1}) \cap D_{t}, \mathcal{S})$$

$$\longrightarrow H^{j+1}((D_{1} \cap \dots \cap D_{t-1}) \cup D_{t}, \mathcal{S})$$

$$\longrightarrow H^{j+1}(D_{1} \cap \dots \cap D_{t-1}, \mathcal{S}) \oplus H^{j+1}(D_{t}, \mathcal{S})$$

is exact for each j. Since $\{D_1, \ldots, D_t\}$ satisfies C(t-1, p) and C(1, p) by assumption, we have

$$H^j(D_1 \cap \cdots \cap D_{t-1}, \mathcal{S}) = H^j(D_t, \mathcal{S}) = 0$$
 if $j \ge p$.

Therefore, if we put $E_i := D_i \cup D_t$ for $i = 1, 2, \ldots, t - 1$, then

- (3) $H^{j}(D_{1} \cap \cdots \cap D_{t}, \mathcal{S}) \cong H^{j+1}(E_{1} \cap \cdots \cap E_{t-1}, \mathcal{S})$ if $j \ge p$;
- (4) $H^{p-1}(D_1 \cap \cdots \cap D_t, \mathcal{S}) \twoheadrightarrow H^p(E_1 \cap \cdots \cap E_{t-1}, \mathcal{S}).$

In particular, this means that the proposition holds in the case t = 2.

Step 3. When $t \ge 3$, we assume that the proposition has been proved for $1, 2, \ldots, t - 1$. We first show the following.

LEMMA 1. Under the above situation, the family $\{E_1, \ldots, E_{t-1}\}$ satisfies the condition C(t-2, p+1).

Proof. We shall prove by induction that for any l with $1 \le l \le t - 2$ the family $\{E_1, \ldots, E_{t-1}\}$ satisfies the condition

$$C(l, p+1) \qquad \begin{array}{l} H^{j+1}(E_{i_1} \cap \dots \cap E_{i_l}, \mathcal{S}) = 0\\ \text{for all } j \ge p \text{ and all } i_1, \dots, i_l \in \{1, 2, \dots, t-1\}. \end{array}$$

K. MATSUMOTO

By the assumption of the proposition $\{D_1, \ldots, D_t\}$ satisfies C(t-1, p)and particularly C(1, p) and C(2, p). Since the proposition holds in the case t = 2 we have

$$H^{j+1}(E_{i_1}, \mathcal{S}) = H^{j+1}(D_{i_1} \cup D_t, \mathcal{S})$$

$$\cong H^j(D_{i_1} \cap D_t, \mathcal{S}) = 0 \quad \text{if} \quad j \ge p.$$

Therefore, $\{E_1, \ldots, E_{t-1}\}$ satisfies C(1, p+1).

Next let $2 \leq l \leq t-2$ and assume that the lemma has been proved for all m with $1 \leq m \leq l-1$. Then the family $\{E_{i_1}, \ldots, E_{i_l}\}$, where $i_1, \ldots, i_l \in \{1, 2, \ldots, t-1\}$, also satisfies the condition C(m, p+1) for all mwith $1 \leq m \leq l-1$. Moreover, since $\{E_1, \ldots, E_{t-1}\}$ satisfies C(l-1, p+1)by the inductive hypothesis and since the proposition holds for l,

$$H^{j+1}(E_{i_1} \cap \dots \cap E_{i_l}, \mathcal{S})$$

$$\cong H^{(j+1)+l-1}(E_{i_1} \cup \dots \cup E_{i_l}, \mathcal{S})$$

$$= H^{j+(l+1)-1}(D_{i_1} \cup \dots \cup D_{i_l} \cup D_t, \mathcal{S}) \quad \text{if} \quad j \ge p.$$

On the other hand, $\{D_1, \ldots, D_t\}$ satisfies C(l, p) and C(l+1, p) because $l+1 \leq t-1$. Since the proposition holds for l+1,

$$H^{j+(l+1)-1}(D_{i_1} \cup \dots \cup D_{i_l} \cup D_t, \mathcal{S})$$

$$\cong H^j(D_{i_1} \cap \dots \cap D_{i_l} \cap D_t, \mathcal{S}) = 0 \quad \text{if} \quad j \ge p.$$

Hence we obtain

$$H^{j+1}(E_{i_1} \cap \dots \cap E_{i_l}, \mathcal{S}) = 0 \quad \text{if} \quad j \ge p,$$

which proves that $\{E_1, \ldots, E_{t-1}\}$ satisfies C(l, p+1) for all l with $1 \le l \le t-2$.

End of Proof of Proposition 1. If $t \ge 3$ and if $\{D_1, \ldots, D_t\}$ satisfies C(t-1,p) then $\{E_1, \ldots, E_{t-1}\}$ satisfies C(t-2,p+1), where $E_i := D_i \cup D_t$ for $i = 1, 2, \ldots, t-1$. Therefore, by the inductive hypothesis, we have

(5)
$$H^{j+1}(E_1 \cap \cdots \cap E_{t-1}, \mathcal{S}) \cong H^{j+t-1}(E_1 \cup \cdots \cup E_{t-1}, \mathcal{S}) \quad \text{if} \quad j \ge p;$$

(6)
$$H^p(E_1 \cap \cdots \cap E_{t-1}, \mathcal{S}) \twoheadrightarrow H^{p+t-2}(E_1 \cup \cdots \cup E_{t-1}, \mathcal{S}).$$

Notice here that $E_1 \cup \cdots \cup E_{t-1} = D_1 \cup \cdots \cup D_t$. Then we can obtain (1) and (2) by (3), (4), (5) and (6).

This completes the proof of the proposition.

§2. Proof of Theorem

Let M be a complex manifold of dimension n, let D_1, \ldots, D_t be qcomplete open subsets in M and let \mathcal{F} be a coherent analytic sheaf on Msuch that $H^n(M, \mathcal{F}) = 0$.

Since the intersection $D_1 \cap \cdots \cap D_t$ is q-complete with corners it follows from the theorem of Diederich-Fornaess and the theorem of Andreotti-Grauert that

$$H^j(D_1 \cap \dots \cap D_t, \mathcal{F}) = 0 \quad \text{if} \quad j \ge \widetilde{q}_t.$$

Here $\widetilde{q}_t := \min{\{\widetilde{q}, t(q-1)+1\}}$ and $\widetilde{q} := n - [n/q] + 1$.

We put

$$\widehat{q} := n - \left[\frac{n-1}{q}\right] = \begin{cases} \widetilde{q} & \text{if } q \mid n \\ \widetilde{q} - 1 & \text{if } q \nmid n. \end{cases}$$

For the proof of Theorem it is enough to prove the following.

LEMMA 2. Under the above situation,

$$H^{j}(D_{1} \cap \dots \cap D_{t}, \mathcal{F}) = 0 \qquad if \quad j \ge \widehat{q}.$$

Proof. We put $m := \lfloor n/q \rfloor$ and r := n - mq. Then n = mq + r and $0 \le r \le q - 1$. We shall prove the lemma by induction on $t \in \mathbb{N}$. First if $t \le m$,

$$t(q-1) + 1 \le m(q-1) + 1 = n - m + 1 - r = \tilde{q} - r.$$

If $q \mid n$ or r = 0 then $\tilde{q} - r = \tilde{q} = \hat{q}$; and if $q \nmid n$ or $r \ge 1$ then $\tilde{q} - r \le \tilde{q} - 1 = \hat{q}$. Hence if $t \le m$ we have $t(q-1) + 1 \le \hat{q} \le \tilde{q}$ and

$$\widetilde{q}_t := \min{\{\widetilde{q}, t(q-1)+1\}} = t(q-1) + 1 \le \widehat{q}.$$

Therefore, by the theorem of Diederich-Fornaess, the lemma holds if $t \leq m$.

Next if $t \ge m + 1$ and if the lemma holds for $1, 2, \ldots, t - 1$, then for any k with $1 \le k \le t - 1$ the family $\{D_1, \ldots, D_t\}$ satisfies the condition

$$C(k,\hat{q}) \qquad \begin{array}{c} H^{j}(D_{i_{1}}\cap\cdots\cap D_{i_{k}},\mathcal{F})=0\\ \text{for all } j\geq \hat{q} \text{ and all } i_{1},\ldots,i_{k}\in\{1,2,\ldots,t\}. \end{array}$$

Hence by Proposition 1

$$H^{j}(D_{1} \cap \dots \cap D_{t}, \mathcal{F}) \cong H^{j+t-1}(D_{1} \cup \dots \cup D_{t}, \mathcal{F}) \quad \text{if} \quad j \ge \widehat{q}.$$

K. MATSUMOTO

Notice here that if $t \ge m+1$ and $j \ge \hat{q}$ then $j+t-1 \ge \hat{q}+m \ge \tilde{q}-1+m=n$.

Since the set $D_1 \cup \cdots \cup D_t$ is open in M and since $H^n(M, \mathcal{F}) = 0$ by assumption we have $H^n(D_1 \cup \cdots \cup D_t, \mathcal{F}) = 0$ (see Remark below). Therefore we obtain

$$H^{j}(D_1 \cap \dots \cap D_t, \mathcal{F}) = 0 \quad \text{if} \quad j \ge \hat{q},$$

which proves the lemma.

Theorem is the direct result of the above lemma and the theorem of Diederich-Fornaess (cf. $[D-F], \S 5$).

Remark. By the theorem of Greene-Wu ([G-W]), a connected complex manifold of dimension n is n-complete if and only if it is noncompact. Therefore, if D is noncompact complex manifold of dimension n then by the theorem of Andreotti-Grauert $H^n(D, \mathcal{F}) = 0$ for any coherent analytic sheaf \mathcal{F} on D. It is obvious that if $H^n(M, \mathcal{F}) = 0$ then $H^n(D, \mathcal{F}) = 0$ for any connected (and not necessarily noncompact) component D of M.

§3. Example

As in Section 2 we put n = mq + r. In \mathbb{C}^n , consider the complex linear subspaces defined by

$$L_i := \{ (z_1, \dots, z_n) \in \mathbb{C}^n \mid z_{(i-1)q+1} = \dots = z_{iq} = 0 \}$$

and put $D_i := \mathbb{C}^n \setminus L_i$ for i = 1, 2, ..., m. Then each D_i is q-complete but not (q-1)-complete (cf. [W]). If $q \nmid n$ or $r \geq 1$, we moreover put

$$L_{m+1} := \{ (z_1, \dots, z_n) \in \mathbb{C}^n \mid z_{mq+1} = \dots = z_n = 0 \}$$

and $D_{m+1} := \mathbb{C}^n \setminus L_{m+1}$. Then D_{m+1} is *r*-complete and particularly *q*-complete because r < q.

The number \hat{q}_t in Theorem is best possible for any (n, q, t), where

$$\widehat{q}_t := \min\{\widehat{q}, t(q-1)+1\} = \begin{cases} t(q-1)+1 & \text{if } t \le m\\ \widehat{q} & \text{if } t > m \end{cases}$$

and

$$\widehat{q} := n - \left[\frac{n-1}{q}\right] = \begin{cases} n-m+1 & \text{if } q \mid n \\ n-m & \text{if } q \nmid n. \end{cases}$$

In fact, we have the following.

110

111

EXAMPLE. Under the above notations, $H^{t(q-1)}(D_1 \cap \cdots \cap D_t, \mathcal{O}) \neq 0$ for t = 1, 2, ..., m. Moreover, $H^{n-m-1}(D_1 \cap \cdots \cap D_{m+1}, \mathcal{O}) \neq 0$ if $q \nmid n$.

In the example above, \mathcal{O} denotes the sheaf of germs of holomorphic functions on \mathbb{C}^n . The example is a part of the following.

PROPOSITION 2. Let $\alpha_0, \alpha_1, \ldots, \alpha_t$ and n_0 be integers such that $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_t = n_0 \le n$. In \mathbb{C}^n , consider the complex linear subspaces defined by

$$L_i := \{ (z_1, \dots, z_n) \in \mathbb{C}^n \mid z_{\alpha_{i-1}+1} = z_{\alpha_{i-1}+2} = \dots = z_{\alpha_i} = 0 \}$$

and put $D_i := \mathbb{C}^n \setminus L_i$ for $i = 1, 2, \dots, t$. Then

$$\begin{cases} H^{n_0-t}(D_1 \cap \dots \cap D_t, \mathcal{O}) \neq 0\\ H^j(D_1 \cap \dots \cap D_t, \mathcal{O}) = 0 & \text{if } j \ge n_0 - t + 1. \end{cases}$$

Proof. Since codim $L_i \leq n_0 - (t-1)$ each D_i is at least $(n_0 - t + 1)$ complete. Hence if we put $p := n_0 - t + 1$ then $H^j(D_i, \mathcal{O}) = 0$ for all $j \geq p$ and all i with $1 \leq i \leq t$.

We shall now prove by induction that for any k with $1 \le k \le t - 1$ the family $\{D_1, \ldots, D_t\}$ satisfies the condition

$$C(k,p) \qquad \begin{array}{l} H^{j}(D_{i_{1}} \cap \dots \cap D_{i_{k}}, \mathcal{O}) = 0 \\ \text{for all } j \geq p \text{ and all } i_{1}, \dots, i_{k} \in \{1, 2, \dots, t\}. \end{array}$$

First $\{D_1, \ldots, D_t\}$ satisfies C(1, p). Next if it satisfies C(k-1, p) where $k \ge 2$, it follows from Proposition 1 that

$$H^{j}(D_{i_{1}} \cap \dots \cap D_{i_{k}}, \mathcal{O}) \cong H^{j+k-1}(D_{i_{1}} \cup \dots \cup D_{i_{k}}, \mathcal{O}) \quad \text{if} \quad j \ge p.$$

Since $D_{i_1} \cup \cdots \cup D_{i_k} = \mathbb{C}^n \setminus (L_{i_1} \cap \cdots \cap L_{i_k})$ and since $\operatorname{codim} (L_{i_1} \cap \cdots \cap L_{i_k}) \leq n_0 - (t-k) = p+k-1$, the set $D_{i_1} \cup \cdots \cup D_{i_k}$ is at least (p+k-1)-complete. Hence for any k with $1 \leq k \leq t-1$ we have

$$H^{j}(D_{i_{1}} \cap \dots \cap D_{i_{k}}, \mathcal{O}) = 0 \quad \text{if} \quad j \ge p,$$

which implies that $\{D_1, \ldots, D_t\}$ satisfies C(t-1, p).

Therefore, by Proposition 1 we obtain

(7)
$$H^{j}(D_{1} \cap \cdots \cap D_{t}, \mathcal{O}) \cong H^{j+t-1}(D_{1} \cup \cdots \cup D_{t}, \mathcal{O})$$
 if $j \ge p_{2}$

(8) $H^{p-1}(D_1 \cap \cdots \cap D_t, \mathcal{O}) \twoheadrightarrow H^{p+t-2}(D_1 \cup \cdots \cup D_t, \mathcal{O}).$

K. MATSUMOTO

On the other hand,

$$\begin{cases} H^{n_0-1}(D_1 \cup \dots \cup D_t, \mathcal{O}) \neq 0\\ H^j(D_1 \cup \dots \cup D_t, \mathcal{O}) = 0 & \text{if } j \ge n_0 \end{cases}$$

because $D_1 \cup \cdots \cup D_t = \mathbb{C}^n \setminus (L_1 \cap \cdots \cap L_t)$ and $\operatorname{codim} (L_1 \cap \cdots \cap L_t) = n_0$. Since $p := n_0 - t + 1$ we thus obtain

$$\begin{cases} H^{n_0-t}(D_1 \cap \dots \cap D_t, \mathcal{O}) \neq 0\\ H^j(D_1 \cap \dots \cap D_t, \mathcal{O}) = 0 & \text{if } j \ge n_0 - t + 1. \end{cases}$$

This completes the proof of the proposition.

Acknowledgement. The author expresses her sincere thanks to the referee for the useful comment.

References

- [A-G] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193–259.
- [D-F] K. Diederich and J. E. Fornaess, Smoothing q-convex functions and vanishing theorems, Invent. Math., 82 (1985), 291–305.
- [E-S] M. G. Eastwood and G. V. Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv., 55 (1980), 413–426.
- [G-W] R. E. Greene and H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), 25 (1975), 215–235.
- [M-1] K. Matsumoto, Pseudoconvex domains of general order in Stein manifolds, Mem. Fac. Sci. Kyushu Univ., 43 (1989), 67–76.
- [M-2] _____, Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds, J. Math. Soc. Japan, 48 (1996), 85–107.
- [S-V] G. Sorani and V. Villani, q-complete spaces and cohomology, Trans. Amer. Math. Soc., 125 (1966), 432–448.
- [W] K. Watanabe, Pseudoconvex domains of general order and vanishing cohomology, Kobe J. Math., 10 (1993), 107–115.

Department of Applied Mathematics Osaka Women's University Daisen-cho, Sakai 590-0035 Japan kazuko@appmath.osaka-wu.ac.jp