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ON THE COHEN-MACAULAY PROPERTY OF Aίpt, p(2)t2]

FOR SPACE MONOMIAL CURVES

YUKIO NAKAMURA*

1. Introduction

Let A = k[X, Y, Z] and k[U] be polynomial rings over a field k and let /,

m and n be positive integers with gcd(/, m, n) = 1. We denote by p the defining

ideal of the space monomial curve x — u , y = u , and z = u . In other words, p

is the kernel of the λ -algebra homomorphism φ : A—• k[U] defined by φ (X) =

Uι, φ{Y) — Um, and φ(Z) = JJn. Let Rs(p) be a symbolic Rees algebra of p, i.e.,

Rs(P) ~ Σi>op t , where t is an indeterminate over A, and let S be an

A-subalgebra of Rs(p) generated by pt and p t , i.e., S = A[pt, p t ] . In this

paper we are mainly interested in the Cohen-Macaulay or Gorenstein property of S.

The research on the ring-theoretic property of S was begun by Herzog and

Ulrich [7], who show among many interesting results that, if p is self-linked, that

is p = (xv x2) '. p for some xlf x2 ^ p, then S is a Gorenstein ring. When p is not

self-linked, however, there are examples where S is Cohen-Macaulay but not

Gorenstein (cf. [7, Example 2.4]), and examples where S is not Cohen-Macaulay

(cf. [4, Example (3.8)]). The principal aim of this paper is to determine exactly

when S is Cohen-Macaulay. To state our main result, we assume that p is not a

complete intersection and choose a matrix M of the form

\Xaι Yh Zc

M =
χ a 2

(here aif b{ and ct are positive integers) so that the ideal p is generated by the 2

by 2 minors of M. We note that this choice is possible, see [5]. Then as was

shown in [7, Corollary 1.10], p is not self-linked if and only if either ax > a2, bλ

> b2 and cλ > c2 or aγ < a2i bγ < b2 and cγ < c2. If for simplicity we assume that

ax > a2, bι > b2, and cι > c2, then our main result can be stated as follows.
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1 8 0 YUKIO NAKAMURA

THEOREM 1.1. With the above notation the following two conditions are equiva-

lent.

(1) S = A[pt> p t ] is a Cohen-Macaulay ring.

(2) (a, - 2a2) (b, - 2b2) (cx - 2c2) > 0

When this is the case, the Cohen-Macaulay type of S is equal to three.

It follows from this theorem that 5 is never a Gorenstein ring, unless p is

either a complete intersection or a self-linked ideal. Goto, Nishida and Shimoda

have discovered that condition (2) in Theorem 1.1 implies condition (1) (cf. [4,

Theorem (3.1)]). Thus our contribution is to show that condition (2) is also neces-

sary for S to be a Cohen-Macaulay ring. We shall prove Theorem 1.1 in the next

section.

In section 3 we shall study certain projective space monomial curves. Let

B = k[X, Y, Z, W\ and k[U, V\ be polynomial rings over k and let Φ : B-*

k[U, V\ be the /c-algebra homomorphism defined by Φ (X) = £/', Φ (Y) =

UmV1"", Φ(Z) = UnVι'n, and Φ(W) = V\ where I > m, I > n and m Φ n. Let

P = Ker Φ and let T = B[Pt, P(2)t2] be a β-subalgebra of RS(P). We shall also

discuss the Cohen-Macaulay property of T and we get a result which is a projec-

tive analogy of Theorem 1.1 (see Theorem 3.7). The proof and some corollaries

will be given in section 3.

2. Proof of Theorem 1.1

Let A = k[X, Y, Z] and k[U] be polynomial rings over a field k. Let

φ:A—*k[U\ be the λ -algebra homomorphism defined by φ(X) = £/', φ(Y) =

Um, and φ(Z) = Un, where /, m, n are positive integers with gcd(/, m, n) = 1.

We denote Ker φ by p(l, m, n), then as is well-known, unless p(l, rn, n) is a

complete intersection, p(l, m, n) is generated by the maximal minors of a matrix

M of the form

[ γα\ \rh\ ycι
X Y Z
γb2 yC2 xrα2

with αv α2y bv b2, clf and c2 positive integers (cf. [5]).

Throughout this section we assume that p — p(l, rn, n) is not a complete in-

tersection. The purpose is to investigate the ring S = A[pt, p t ] . To begin with

we put
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e, = ZCl+C2 - Xa2Yb\ e2 =

(hence p — (elf e2, e3)A) and

a = minία^ a2), a3 —

b = minί^, b2}, b3 =

c = min{cr1; a2), c3 —

Then we have the following

- YhZc\ and e3 = - X"2ZC\

— a2, 0), a'3 = max{0, a2 — α j ,

— b2, 0}, b'3 = maxίO, b2 — bj,

— c2, 0), c3 — max{0, c2 — c j .

(2)
LEMMA 2.1 ([3], [10], [12]). There exists an element A ofp such that

XaΔ - YHZc'3e2

2 + F ^ Z ' V s = 0,
YbΔ - Xa'3Z%2

3

ZCΔ -

Xa*z\e2 = 0,
XaΎ\e3 - 0,

and we have p — p + (Δ).

Proof. See [3, Proposition 2.4], [3, Corollary 2.5], or [10, Lemma 2.3]. D

Let R = A[TV T2, T3, T4] and A[f\ be polynomial rings and let φ : R—>A[t]

be the A-algebra homomorphism such that φ(T,) — eft for i — 1,2,3, and

φ(T4) = At . Then / = Ker φ is a prime ideal in R with h t f i / = 3, and contains

the following five elements

f2 =
7\ + YhT2 + ZHT3,

, + ZC2T2 + X°2T3,

T, - YhZc'3T2 + Yb'3ZC3TxT3,

g2 = γ"τ, - x"'3zC3τ*
g3 = ZCT4 - χa*γb'*τt XaΎ"3T2T3.

We put / = (Λ, f2, glt g2, g3)R. These flt f2, gu g2, g3 are pfaffians with degree

four in the skew symmetric matrix.

0

- ZC'3T2

ZC'3T2

0

- X"3T3 - Yb

- Y"'3^ X"

4 Δ J

X"3T3

Yb

0

-zc

-xa

zc

0

- Yb3T,

ZC3T3

X"3TX

YhT2

0

Since A[Tιt T2, T3]/(fvf2) = R(p) (the Rees algebra of P), that is an integra do-

main (cf. [14, Theorem 3.6]), we get that fvf2, and gλ forms an i?-regular sequ-
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182 YUKIO NAKAMURA

ence. Hence by [1, Theorem 2.1] we have the following

LEMMA 2.2 ([4, Lemma (3.2)], [7]). R/I is a Gorenstein ring of dimension four.

We say that p is self-linked if there exist elements xlf x2 in p such that p —

(xv x2) :p. In [7, Corollary 1.10] it is proved on the local ring A = [[X, Y, Z]]

that conditions (1) and (2) of the following lemma are equivalent. But we need the

equivalence of these on A = k[X, Y, Z\.

LEMMA 2.3 ([7, Corollaryl.10]). The following conditions are equivalent.

(1) p is not a self-linked ideal.

(2) The matrix M satisfies one of the following conditions.

(a) ax > a2i bx > b2, and cί > c2.

(b) aγ < a2, bλ < b2, and cλ < c2.

Proof Up = I2(M) is self-linked, then so is pA = I2(M)A. By [7, Corollary

1.10] we have that condition (2) implies condition (1).

Next we assume that condition (2) is not satisfied. After elementary row and

column operations on M, we may assume that the components of the first column

of M are part of a minimal system of generators of I^M). So we suppose aγ < a2,

bι > b2 and construct a 2 by 3 matrix

N= M

Then the matrix obtained by deleting the last column of Λf is symmetric and

p = I2(N). We have by [15, Theorem 2.1] that p is self-linked. D

Let m = (X, Y, Z)R. Observing the generators flf f2, glf g2, g3 of /, we see

by Lemma 2.3 that/> is not self-linked if and only if / c m. Therefore we have by

the lemma stated below that p is self-linked if and only if / = /. Although the fol-

lowing lemma is proved in [4], we show the proof for the completeness of this pap-

er.

LEMMA 2.4 ([4, Lemma 3.3]). AssR R/I c {/, m} and IRj = JR7.

Proof. By Lemma 2.2, we have / e Min^ R/I = AssΛ R/I. Choose ξ e

γbl~b2

0

1

X
1
0

1 1

0

0
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(Xa, Y\ZC)A\Ό g6 A M j μ f / Λ { m ) Q and write ξ = λγX
a + λ2Y

b + λ3Z\ where

λi e A We put g = λ^ + λ2g2 + λ3g3, then g = ξT4 - η with η e i4([7\, T2,

Γ3] and (Λ,/2, Γ 4 - ) ? / £ ) t f [ l / £ ] c / f l [ l / £ ] c JR[l/ξ]. Note that A Ή , Γ2,

T3] /(fι, f2) is an integral domain of dimension four and so (flt f2, T4 — η/ξ)

R[l/ξ] is a prime ideal in R[l/ξ] of height three. Therefore IR[l/ξ] =JR[1/

ξ] and this implies the assertions of Lemma 2.4. •

Here we note that, if p is not self-linked, then we have a primary decomposi-

tion of / of the form / = / Π Q, where Q is an m-primary ideal.

Let an = (X, Y, Z, Tl9 T2, T3, T4)R. The invariant dim^Ext^ (S/WIS, S)

with respect to S, we denote by r(S), is called Cohen-Macaulay type of S. It is

known that r(S) = μs(Ks), where Ks is the canonical module of S and βs ( )

denotes the minimal number of generators (cf. [6]). The following proposition is the

key in our proof of Theorem 1.1.

PROPOSITION 2.5. Suppose that p is not a self-linked ideal Then the following

conditions are equivalent.

(1) S = A[pt, p t ] is a Cohen-Macaulay ring.

(2) IRm ΓΊ R= (Xa, Yβ, Zr)R for some a, β, γ > 1.

When this is the case, r(S) = 3.

Proof. Let / = / Π Q be the primary decomposition of /, where Q is an

m-primary ideal. Note that [I : RJ] = Q and [/ :R Q] = J, and we have by

[9, Proposition 3.1] that S = R/J is a Cohen-Macaulay ring if and only if R/Q

is a Cohen-Macaulay ring. Thus condition (2) implies condition (1). Now Ks =

Horn*/, (R/J, R/I) = [I :RJ] /I = Q/I as ^-modules and lR (Q/I + ΏIQ )

= 1R(Q/3JIQ) = 3. Hence we get r(S) = 3.

Next we assume assertion (1), then R/Q is a Cohen-Macaulay ring. We may

assume that aλ > a2, 6X> b2, and cγ > c2 by Lemma 2.3. We put positive integers

a = min{tf2, a3} , β = min{b2, b3} , and γ = min{c2, c3) . Q = IRm Π R is con-

tained in (X , Y , Zr)R, since (Xa, Y , Zr)R is an m-primary ideal and con-

tains /. We shall show the opposite inclusion. Tlt T2, T3, T4 is a system of para-

meters of (R/Q)m and Tί9 T2, T31 T4 forms an (R/Q)^-regular sequence,

because r a d ( Q + (Tv T2, T3, T4)R) = SK. Thus we have (Tv T2, T3, TA)Rm Π

©sw = (^i» T2> T3> ̂ 4) = ©aw. a n d t h i s implies (7^, T2, Γ3, Γ4)i? Π Q = (Γ x, Γ2,

T3, T4)Q.

We regard i? as a graded ring with deg A" = deg F = deg Z = 0, deg T:

= deg Γ2 = deg T3 = 1, and deg T4 = 2. Then Q is a graded ideal, since / is
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generated by homogeneous elements. We can choose homogeneous elements uίt

u2,...,us^QΠR0 and vv v2,..., υt ^ Q Π Θ ^ i i?, which generate Q. Then q

= (Wj, u2,..., ws)A is an ideal of A and each v{ belongs to Q Π (Tl9 T2, T3, T4)R

= (7*!, Γ2> 3̂» ^ )Q and hence Q = qR + (Tv T2, T3, T4 )Q. By Nakayama's

lemma we have Q — qR.

We have Xa\ Yb\ ZCί e qR, since Λ = XaιTx + YhT2 + Z C l Γ 3 e ? Λ

Similarly

U β l , K*1, Z c \ I f l 2 , F*2, ZC 2, Z f l 3 , Yb\ ZC*)A c ί β

Therefore (Xα, F^, Z r)i? c: qR = Q, and thus we have Q = (Xa, Y*, Zr)R, as

required. D

Theorem 1.1 means that the Cohen-Macaulay property of 5 is determined by

the matrix M. In order to prove this theorem, we assume that p is not self-linked

and aι > a2, bλ > b2, and cx > c2. We put positive integers a = min{a2, a3}, β =

min{b2, b3}, γ = m\n{c2, c3}, and a matrix

U =
-xa

- r
3 — 7''TΛ rTy ^ 7 ^ 2 — T rr\2

1 1 2 Q </£ 1 O

LEMMA 2.6. The inequality (ax — 2a2){bι — 2b2)(cx — 2c2) > 0 holds if and

only if det U £ m.

Proof We have

det t/= χa*-aγb'-'zc*-7TΪ + χa^aγb^zC3~rT"T3T4

hence det U & m if and only if one of the following conditions is satisfied.

(1) χ**-"γb*-'ze*-r = 1, (2) ^3-« F >2-* z c 3 -r = ^

By the definition of α, ^8, 7, condition (1) is equivalent to saying that a2 < a3i

b2 < b3, and c2 < c3. Further by the definition of a3, b3, c3, we have that condition

(1) and the following condition (1/ are equivalent.

(1/ a, - 2a2 > 0, b, - 2b2 > 0, and cγ - 2c2 > 0.
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Similarly (2), (3), (4) are equivalent to the following conditions (2)', (3)', (4)', re-

spectively.

(2/ aγ - 2a2 < 0, bλ - 2b2 > 0, and cγ - 2c2 < 0.

(3)' ax - 2a2 < 0, bx - 2b2 < 0, and cx - 2c2 > 0.

(4)r aγ - 2a2 > 0, bx - 2b2 < 0, and cx - 2c2 < 0.

This implies that the inequality (αx - 2a2) (bγ — 2b2) (q — 2c2) > 0 holds. D

Proof of Theorem 1.1. By Proposition 2.5 and Lemma 2.6 it is sufficient to

prove that detU&m if and only if IRm= tf", Yβ, Z7 )Rm. Note that by

Nakayama's lemma IRm = (Xa, Y\ Zr)Rm if and only if WRK= (Xa, Yβ,

ZΎ) ®R K, where K — Rm/mRm the residue field of m. We put a matrix

Sa2~a T Va3~a rp. rp v a 3 — (Xrp2
L i 4 A ^1^2 ^ - Ί

ΐ/" = T/* 1 "^^ V*2~^T Λ τ/ *3~^τ^2 T/^a"^^ τ/*3~^τ^ 'Γ1

κ J: i 9 2 i ! 1 i 2 •* 1A I ^ 2 ^ 3

then

We denote the i-th column vector of V by v{. We have υx ̂  mi?3 and TAv2 = T3v3

+ 7 > 4 + T2υ5. We have I®RK= (gl9 g2, g3) ®RK, since [glf g2, g3] = [Xa,

Y\ Z r ] [/and U=[ v3, vA, v5] . Therefore det U <έ m <ϊ (gu g2, g3) ® RK =

(Xa, Y\ Zr)®RK&I®RK= (Xa, Yβ, Z7) ®R K D

EXAMPLE 2.7 Let

px = p(n2 + 2n + 2,n2 + 2n+l,n+n + l)y where n > 2,

p2 = p(n2, n2 + 1, n2 + n + I), where n > 3,

/>3 = ̂ (w2 + w + 1, w2 + 2w - 1, 2w2 - 1), where w > 3.

(1) ([4, Example (3.7)]) S is a Cohen-Macaulay ring of r(S) = 3 for p = px or

P=P*
(2) S is not a Cohen-Macaulay ring for p = ?̂3.

Proo/. The prime ideals ^^ p2, and ^ 3 are respectively generated by the max-

imal minors of the matrices

χn γn z»+ll \χn γn p-lλ \χ» y* Z"

Y z x ]' [ Y z x \ an [ Y z x"'1
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Since each p{ is not self-linked, by Theorem 1.1 we get conclusions (1) and (2). •

3. The projective cases

In this section we study a projective analogy of Theorem 1.1. For this

purpose we need preliminaries, which are arguments on relations between

non-homogeneous and homogeneous elements (cf. [16, Chap. VII §5]).

Let A = k[Xl9 X2,..., Xn] and B = k[Y0, Yί9. . ., Yn] be polynomial rings.

We regard A and B as graded rings with the grading

rji = deg Xt = deg Y{ for i = 1,2,..., n and η0 = deg Fo,

where η0 > 0 and η0 divides η{ for any i (i = 1,2,. . ., n). For any polynomial

g — g(Y0, Ylt...t Yn) in B, we associate the polynomial iγQ(g) in A defined by

Then iYo: B^>A is a /c-algebra homomorphism.

Conversely for any non-zero polynomial f — f(Xv X2, . . . , Xn) in A, we

define its homogenized polynomial / in 5 as follows:

where ζ, = rji/r]0. Note that iγ (f) = f for 0 Φ f ^ A. When α is an ideal in A

we denote by α the ideal in B which is generated by { f\ f ^ α}. We can check

that, if b is a graded ideal in B and if Yo is a β/b-regular element, then

b = h(iYo(b)A).

LEMMA 3.1. L^ C = k[Ulf U2, . . . , C/J αnίί ί) = k[V0, Vl9 . . . , K J ^

polynomial rings. We regard D as a graded ring with deg Vo > 0, and teί ίVo : D~* C

be the k-algebra homomorphism as above. Suppose that Φ : B^> D is a homomorphism

of graded rings and that (p : A—• C is a ring homomorphism such that φ°iγ

 = ivo°Φ-

Then iyo(Keτ Φ)A = Ker <p.

Proof. Obviously, iYo (Ker Φ)A c Ker φ. Conversely, for any ξ ^ Ker φ,

Φ(hξ) is a homogeneous element in D and Φ(hξ) e Ker iVo = (V^ - l ) i ) . Hence

we have Φ(hξ) = 0 and £ = fV0(*© e iF o(Ker Φ)A D

The purpose of this section is to give an analogy of Theorem 1.1 for the

defining ideal P of a projective space monomial curve. The ideal P is given as
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follows:

Let B = k[X, Y, Z, W] and k[U, V\ be polynomial rings over a field k.

Let Φ:B-+k[U, VI be the /c-algebra homomorphism such that Φ (X) = ί/',

Φ(Y) = UmVι~m, Φ(Z) = UnVι~n, and Φ{W) = V1, where /, m, * are positive

integers with gcd (/, m, n) = 1, I > m, I > n, and with m Φ n. We denote by

P(/, m, n) the prime ideal Ker Φ in B. Then we have the following commutative

diagram with exact rows.

0 -> P(l,m,n) -> B = /c[Z, F , Z , PF] -^ /c[C7, V\

0 -> p(l,rn,n) -> A = A[Z, F , 2] -^ ft[J7]

where ?̂ is the map we defined in section 2. Moreover we regard B and /c[[/, V]

as graded rings with deg X = deg F = deg Z = deg W = I and deg U = deg V

= 1. Then we get the following corollary of Lemma 3.1.

COROLLARY 3.2. iw(P(l, rn, n))A = p(l, m, n).

For the prime ideal P — P(/, rn, n), we assume that B/P is not a complete

intersection but a Cohen-Macaulay ring. Then P is generated by the maximal

minors of a matrix M' of the form

w =
c2 χa2

where aλ + dl9 blf b2, clf c2, and a2 + d2 are positive integers (cf. [8], [13]). We
i. p — γCι+c2 _ ya2^rτd2γbι _ yθι+a2 ττjdx+d2 _ y ^ ^ C i , _ y&i+&2 _

XaιW ιZ°2, then P is generated by εx, ε2, and ε3.

Corollary 3.2 means that/) = /)(/, w, w) is generated by ^ ( ε j , z V ^ ) ' a n c ^

%(ε 3 ) . Hence the matrices M corresponding to p(l, m, n) and M' corresponding

to P(l, m, ή) have the same exponents aif bif and c{ for i — 1,2.

We put

d = minWi, rf2}, rf3 = m a x ί ^ — d2, 0}, d'3 = max{0, d2 — dλ},

(2)

section 2. Then there exists an element Γ of P and w

ing three relations by the same method as is in Proposition 2.1.

ε3 = 0,

V, = 0,

(2)

as is in section 2. Then there exists an element Γ of P and we have the follow-

X"WdΓ- Y"3Z%\ + Yb'3Zc\ε3 = 0,

ZCΓ- X"3WdΎ%\ + X"'WΎ\ε3 = 0.
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Morales and Simis gave the free resolution of B / P + CD and proved the follow-

ing lemma.

LEMMA 3.3 ([11, (2.1.2) Lemma]). Pω = P2 + (Γ).

From now on we regard B as a graded ring with deg X = deg Y = deg Z

= deg W= 1, so that εlf ε2, ε3 and Γ are homogeneous elements. Let

R' = fi[7\, Γ2, 73, Γ4] and β[f] be polynomial rings and let Ψ : R' '-> B[t] be

the β-algebra homomorphism such that

Ψ{Tt) = ett for i = 1,2,3 ¥(T4) = Π 2 .

We also regard i?' and ^[ ί ] as graded rings so that Ψis graded, i.e.,

deg Tt = deg ε, for z =1,2,3, deg Γ4 = d e g Γ , and deg t = 0.

LEMMA 3.4. Suppose Ψ is the map defined above corresponding to P = P(l, rn,

n) and φ is the map defined in section 2 corresponding to p = p (/, m, n).

%(Ker ?0i? = Ker ΪF.

Proo/. For the A -algebra homomorphisms iw \ R' —* R and iw : β [ ί ] —> A[t],

we have 0 ° % = %° ^ ^ Lemma 3.1 we get the proof of Lemma 3.4. •

In the following section, we discuss the Cohen-Macaulay property of the

algebra T = Im Ψ = B[Pt, P(2)t2].

LEMMA 3.5. Let P = P(l, rn, n) and p = p(l, m,n).IfT= B[Ptf Pωt2] is

a Cohen-Macaulay ring, then so is S = Alpt, p t ].

Proof. Since T is Cohen-Macaulay, we have proj.dim^ T = 3 and an

i?'-graded free resolution F.

do do dλ ψ

where FQ = R'. Since there is a natural identification ( i ? / [ l / f ί ^ ) 0 = R and since

Ker Ψ is a graded ideal in Rr, we have

ίV(Ker W) R= ((Ker f) ®R, R'[l/W\)».

We put G. = (F. ®R, R'[l/W\)0 and let 3 t be the differential map of G. induced

by d{. By Lemma 3.4 we have
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Kerφ= iw(KerW) R=

Hence the following sequence is exact and S = Im φ is Cohen-Macaulay.

D

We remark that a prime ideal Ker Ψ in R\ which is of hight three, contains

the following five elements

F2 =

YblT2 + ZCίT3,

T2 + X"2Wi2T3,

"WdT Y"3ZC'3T + Yb'zG, = xawaτ,- YHΓ*T; . , ^ M.3,
G2 = YbT4 - XaWd'ZC3T3

2 + Xa*WdzZc'*TγT2,

G3 = Z% - χa*wdΎb'*Tl + Xa'3WdΎb3T2T3.

We put Jf = Ker Ψ and Γ = (Flf F2, Gv G2, G3)R\ The following lemma

means that Γ and / ' have similar properties as we stated in Lemma 2.2 and

Lemma 2.4.

Although the proof of this lemma is given among the proofs of many other

results of [11, (2.2.1) Theorem], we show it briefly for the completeness of this

paper. We put m1 = (X, Y, Z)Rf and m2 = ( F , Z , W)R\

LEMMA 3.6 ([11, (2.2.1) Theorem]).

(1) R'/Γ is a Gorenstein ring of dimension five.

(2) Ass*, R'/Γ c {/', m i , m2} and Γ R'r = J'R'Γ.

Proof. (1) An ideal / ' is with htΛ/ Γ = 3 and generated by pfaffians of degree

four in the skew symmetric matrix

0

- ZC'3T2

Xa'3Wd'3T3

- Y"'3^

- τ 4

ZC'3T2

0

-Y"

xawd

- Z°3T3

TTQ, T TT d T -rb

Xa'3Wd3T3

Yb

0

-zc

- xa*wά3τ,
c

Yb'3\

-xa

zc

0

-Yb

wd
τ4

ZC3T3

χa*W

d*

0

(2) Choose ξ e (XaWd, Y", ZC)B\ U Q s A s S s , f i V r χ { m i , m 2 > Q, and by the same

method of Lemma 2.4 we get ΓR'Vl/ξ\ = J'R'[l/ξ]. This implies Γ R'r =

J' R',, and Ass s, R'/Γ c {/', m1( m2}. D

Remark. As can be seen from Lemma 3.6, / ' Φ / ' if and only if either / ' c

ntj or / ' / m 2 is satisfied. Furthermore by observing the generators of /', we can
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check that mι e Ass^ Rr/Γ if and only if the matrix Mf satisfies one of the fol-

lowing conditions.

(1) ax> a2> 0, bλ > b2, and cλ > c2.

(2) a2 > ax > 0, b2 > bu and c2 > cx.

Similarly m2 e Ass^ Rr /Γ if and only if the matrix AT satisfies one of the fol-

lowing conditions.

(1) dx> d2> 0, bλ > b2, and cx > c2.

(2) d2 > d1 > 0, b2 > bl9 and c2 > cv

Note that bu b2, cλ, and c2 are always positive because P is not a complete in-

tersection. Now we prove the converse of Lemma 3.5.

THEOREM 3.7. The following conditions are equivalent.

(1) T = B[Pt, P(2)t2] is a Cohen-Macaulay ring for P = P(l, m, n).

(2) AlpJ, pλ t ] and A[p2t, p2 t ] are Cohen-Macaulay rings, where pι =

p(l, my n) and p2 = p(l, I — m, I — n).

When this is the case, the Cohen-Macaulay type of T is given by

rCO =lifΓ = Γ

= 3ifΓΦJ'.

Proof We assume condition (1), then B[Pt, P t ] is also Cohen-Macaulay

for P = P(l, I — rn, I — n). By Lemma 3.5 we get assertion (2).

Next assume condition (2). If / ' = / ' , then T is Gorenstein by Lemma 3.6.

When Ass^ R'/Γ = {/', m j , we have a primary decomposition of / ' of the

form Γ = Jf Π Q, where Q is a graded tr^-primary ideal. Since / ' = [Γ :R, Q],

by [9, Proposition 3.1] it is sufficient to prove that Rf /Q is Cohen-Macaulay. Let

/ and / be ideals in R = A[Tlf Γ2, T3, T4] defined by pλ as is in section 2. By

Corollary 3.2 we have iw(Γ) = I and by Lemma 3.4 we have iw(J') = / . Note

that iw (Q)R is an (X, Y, Z) i?-primary ideal. Now (/'/?'[ 1 /W])o =

( Γ Rf [1/W])<> Π (QR'[l/W\)0 and there is a natural identification (R'[l/W\)0

= R, thus we have I = J f) iw(Q)R. By Proposition 2.5 we have iw{Q)R~

(X , Y , Z )R for some α, /3, j ^ 1, since AVpιtypx t ] is Cohen-Macaulay.

Further, W is an I?V(?-regular element, hence

Q = h(iw(Q)R) = h«Xa, Y\ Zr)R) = (Z α , F ' , Zr)R',
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therefore Rf / Q is Cohen-Macaulay. When this is the case, we have

Kτ = Honv^CRV/', R'/Π = [/' :R,J']/Γ = Q/Γ,

as i?'-modules. Hence r(7) = μR,(Q/Γ) = μR,(Q) = 3.

When Ass^ Rf /Γ — {/, m2}, the proof follows from the above discussion by

replacing X for W oί B because A[p2t, p2 t ] is Cohen-Macaulay.

When AssR, R' /Γ = {/, mlf m2}, then we have the primary decomposition

of Γ of the form Γ — Jf Π Qx Π Q2, where each Qf is a graded m r primary ideal.

Since iw(Γ) = iw(Jf) Π %(0i)» a s c a n be seen from the above discussion, we get

Qλ = (Xa, Y\ Zr)Rf for some a, β, γ > 1. On the other hand, since ix(Γ) =

iχ<J') Π ix(Q2), we have Q2 = (W^5, F ^ , Z 7 " ) ^ for some δ, β', f > 1. Note

from the above remark one of the following conditions occurs.

( i ) ax > a2, bx > b2, cx > c2, and dλ > d2.

( i i ) aγ < a2, bλ < b2, cx > ί:

If assertion (i) is satisfied, as can be seen from the proof of Proposition 2.5, we

have β = min{δ2, b3} = β' and γ = min{ί:2, c3} = f. Therefore Qλ Π Q2 =

(XaW\ Yβ, Zr)R' and R'/Q1 Π Q2 is Cohen-Macaulay. It follows that R'/J' is

Cohen-Macaulay, since [Γ \R, / '] = Qx Π Q2. When this is the case, we have

Kτ = RomR,/Γ(RWJ\ R'/Π = [Γ:R,J']/Γ = Q1 Π Q2//'

andr(7) = μAQ^ Π (?2) = 3 . D

By the proof of Theorem 3.7, we can determine the Cohen-Macaulay type of

T in terms of the matrix Mf.

COROLLARY 3.8. Suppose T is a Cohen-Macaulay ring and the matrix Mr satis-

fies bλ > b2. Then

r(T) = 3 if dι > a2 > 0 and bx > b2 and cx > c2, or

dλ > d2 > 0 and bx > b2 and cx > c2,

= 1 otherwise.

Finally we consider the self-linked property of P.

COROLLARY 3.9. If P is a self-linked ideal, then T is a Gorenstein ring.

Proof Let P = P(l, rn, n), pγ— p(l, rn, n), and p2 = p (I, I — rn, I — n).
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Now there exist βlf β2 e P such that P2 <= (βl9 β2). We put a{ = iw (ft) for

i — 1,2, then px <z (alf a2) in A — k[X, Y, Z] and alf a2 e pv Now px is a

prime ideal, therefore it follows that pγ = (av a2) \px or pγ = (αL, α 2 ). Hence

A[pιt, px t ] is Gorenstein. Similarly, A[^ 2 ^ ^2 ^ ] is Gorenstein. Hence by Lem-

ma 2.3, Theorem 3.7, and Corollary 3.8, we have the proof. D

The converse of Corollary 3.9 does not hold in general.

EXAMPLE 3.10. Let P = P ( l l , 5, 2). Then T is a Gorenstein ring but P is

not a self-linked ideal.

Proof. The defining ideal P is generated by the maximal minors of the matrix

γ Z2 W3

Since a = d = 0, we get that Γ = J' and r(7) = 1.

We put π = (X, Y, Z, W)B and assume that P = I2 (AT) is self-linked.

Note that the statement of [7, Theorem 1.1] is true for the ring Bn and the ideal

PBn, even if dim Bn — 4. Thus there exists a 2 by 3 matrix N — (ntj)

(riij e Bn) such that I2(N) = Bn and Σu wi^n — 0, where Mr = (m o ). Hence

and

Xnn + Y2n12 +Z3n13 +Yn21 + Z2n22 + W3n23 = 0,

Y(Ynl2 + n21) + Z2(Zn13 + n23) - - (Xnn + W3n23).

Since X, Y, Z , FT is a J5n-regular sequence, we have Ynu + n21 ^ (X, Z , WO,
7 3

+ w22 e (X, F , WO and Xwn + W n23 ^ (Y, Z). Hence « n , w21, w22 and *23

ΠJBΠ, and /2(Λ0 e nS n , which is a contradiction. D

REFERENCES

1 ] D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions
and some structure theorem for ideals of codimension 3, Amer. J. Math., 99 (1977),
447_485.

[ 2 ] S. Goto, K. Nishida and Y. Shimoda, The Gorensteinness of symbolic Rees algebras
for space curves, J. Math. Soc. Japan, 43 (1991), 465-481.

[ 3 ] S. Goto, K. Nishida and Y. Shimoda, The Gorensteinness of the symbolic blow-ups
for certain space monomial curves, to appear in Trans. Amer. Math. Soc.

[ 4 ] S. Goto, K. Nishida and Y. Shimoda, Topics on symbolic Rees algebras for space
monomial curves, Nagoya Math. J., 124 (1991), 99-132.

https://doi.org/10.1017/S0027763000004360 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004360


COHEN-MACAULAY PROPERTY 193

[ 5 ] J. Herzog, Generators and relations of abelian semigroups and semigroups ring,
Manuscripta Math., 3 (1970), 175-193.

[ 6 ] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lec-
ture notes in Math., 238, Springer-Verlag.

[ 7 ] J. Herzog and B. Ulrich, Self-linked curve singularities, Nagoya Math. J., 120
(1990), 129-153.

[ 8 ] Y. Kamoi, Defining ideal of a Cohen-Macaulay semigroup ring, Comm. Alg., 20
(1992), 3163-3189.

[ 9 ] E. Kunz, Almost complete intersections are not Gorenstein ring, J. Alg., 28 (1974),
111-115.

[10] M. Morimoto and S. Goto, Non-Cohen-Macaulay symbolic blow-ups for space
monomial curves, to appear in Proc. Amer. Math. Soc.

[11] M. Morales and A. Simis, The second symbolic power of an arithmetically Cohen-
Macaulay monomial curves in P , to appear in Comm. Alg.

[12] P. Schenzel, Examples of Noetherian symbolic blow-up rings, Rev. Roumaine Math.
Pures Appl, 33(1988), 4, 375-383.

[13] L. Robbiano and G. Valla, Some curves in P are set-theoretic complete intersec-
tions, in Lecture Notes in Math., 997, Springer-Verlag.

[14] G. Valla, On the symmetric and Rees algebras of an ideal, Manuscripta Math., 30,
(1980), 239-255.

[15] G. Valla, On the set-theoretic complete intersection, in Lecture Notes in Math.,
1092, Springer-Verlag.

[16] O. Zariski and P. Samuel, Commutative Algebra, Vol. II. Van Nostrand 1960.

Department of Mathematics
Tokyo Metropolitan University
Minami Ohsawa 1-1
Hachioji, Tokyo, 192-03
Japan

https://doi.org/10.1017/S0027763000004360 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004360



