N. Hasesaka and K. Hayasida Nagoya Math. J. Vol. 87 (1982), 261-271

ON THE L^p BOUND FOR DEGENERATE ELLIPTIC OPERATORS WITH TWO VARIABLES IN THE ILL POSED PROBLEM¹⁾

NOBUO HASESAKA AND KAZUYA HAYASIDA

1. Let Ω be an open set in the upper half plane $\{y > 0\}$, whose boundary is denoted by $\partial \Omega$. Let $\partial \Omega$ contain an open segment Γ lying on the x-axis.

We consider the following system of first order degenerating on y = 0:

(1.1)
$$[\partial_{\nu} + (\mu_j + i\kappa_j)y^{k_j}\partial_x]u_j = \sum_{k=1}^m b_{jk}(x, y)u_k^{2j},$$
$$j = 1, \dots, m,$$

where κ_j , μ_j are real constants and b_{jk} are in $L^{\infty}(\Omega)$, further k_j are nonnegative integers. It is assumed that $\kappa_j \neq 0$, that is, (1.1) is elliptic except at y = 0.

In this article we shall prove

THEOREM. There are constants C, k (0 < k < 1) and a rectangle Q in Ω , whose one side lies on Γ such that if $u_j \in C^1(\Omega) \cap C^0(\overline{\Omega})$ satisfies (1.1) in Ω , and

$$\|u_j\|_{L^\infty(\mathfrak{G})} \leq M (\leq 1), \qquad \|u_j\|_{L^p(\Gamma)} \leq \varepsilon (\leq M),$$

then it follows that

$$\|u_j\|_{L^p(Q)} \leq C \varepsilon^{1-k} M^k,$$

where $1 \leq p \leq \infty$ and C depends only on p, while Q, k are independent of p.

The proof is given in Section 3.

We see that our theorem holds more generally for the case of κ_j , μ_j

Received March 6, 1981.

¹⁾ This work has been supported by Grant-in-Aid for Co-operative Research A organized by the Ministry of Education, the Japanese Government.

²⁾ We write simply $\partial/\partial x = \partial_x$ and $\partial/\partial y = \partial_y$.

being analytic in $\overline{\Omega}$. Its proof is tedious and essentially the same as in this article. Hence we treat only the case of constant coefficients for the sake of simplicity.

The inequality (1.2) is a kind of Hadamard's three circle theorem, which is required in the ill posed problem, that is, in the non-well posed Cauchy problem of partial differential equations (see e.g. [2]).

L.E. Payne and D. Sather [3] obtained a L^2 -inequality of type (1.2) for Tricomi's equations arising in gas dynamics. His tool is the Jensen's inequality for convex functions. Our method is to yield Carleman's estimate with L^p -norm. We proceed along the work of T. Carleman [1] where it is treated for p = 1 and non-degenerate systems.

Recently, the L^p approach to unique continuation is achieved by J. C. Saut and B. Scheurer [4]. They consider Schrödinger's equations and improve Hörmander's L^2 estimates with weight.

We give an example of single equations for which our theorem is applicable. We consider the following equations with variable coefficients

(1.3)
$$\partial_y^2 u + a \partial_x \partial_y u + b \partial_x^2 u + B u = 0,$$

where B is an operator of first order.

Let λ_1 and λ_2 are the distinct roots of the quadratic equation $\lambda^2 + a\lambda + b = 0$. We set $v_1 = u_x$ and $v_2 = u_y$. Then (1.3) becomes

$$\partial_y egin{pmatrix} v_1 \ v_2 \ u \end{pmatrix} + egin{pmatrix} 0 & -1 & 0 \ b & a & 0 \ 0 & 0 & i \end{pmatrix} \partial_x egin{pmatrix} v_1 \ v_2 \ u \end{pmatrix} = \mathscr{B} \ .$$

Here

$$\mathscr{B} = egin{pmatrix} 0 \ -Bu \ v_2 + iv_1 \end{pmatrix}.$$

We write

$$U = egin{pmatrix} v_1 \ v_2 \ u \end{pmatrix}, \quad N = egin{pmatrix} 1 & 1 & 0 \ \lambda_1 & \lambda_2 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad H = egin{pmatrix} 0 & -1 & 0 \ b & a & 0 \ 0 & 0 & i \end{pmatrix} \ D = egin{pmatrix} -\lambda_1 & 0 & 0 \ 0 & -\lambda_2 & 0 \ 0 & 0 & i \end{pmatrix} ext{ and } V = N^{-1}U.$$

It is obvious that $N^{-1}HN = D$ and

262

$$\partial_{v}V + D\partial_{x}V = N^{-1}\mathscr{B} - N^{-1}(\partial_{v}N + H\partial_{x}N)V.$$

Particularly, we put $\lambda_1 = ic_1$ and $\lambda_2 = ic_2y^k$, where k is a positive integer and c_1 , c_2 are non zero real numbers. We can then apply our theorem to (1.3).

2. We define

$$S(x, y) = y + x^2 - \alpha \sum_{j=1}^m y^{2(k_{j+1})}$$
.

where α is a positive number depending on $\{\kappa_j\}$, $\{\mu_j\}$ and $\{k_j\}$, which will be determined later (see (3.3)).

First we have

LEMMA 1. There is a positive number ℓ_0 depending on α such that for any ℓ with $0 < \ell < \ell_0$, there exists a simple curve γ satisfying the properties:

- (i) The end points of γ are $(\ell, 0)$ and $(-\ell, 0)$.
- (ii) γ is contained in $\{y > 0\}$ except the end points.
- (iii) $S = \ell^2$ on γ .
- (iv) The length of γ is finite, more precisely, γ is of class C^1 .

(v) Let G_{ℓ} be the domain enclosed by γ and the segment $[-\ell, \ell]$. Then G_{ℓ} is contained in any given neighborhood of the origin for sufficiently small ℓ .

(vi) $S \leq \ell^2$ in G_{ℓ} .

Proof. Since S is an even function of x, it is sufficient to consider only in $x \ge 0$. The derivative $S_y(=\partial_y S)$ is independent of x. Hence we denote $S_y(x, y)$ simply by $S_y(y)$.

Taking ℓ_0 suitably, we see that for any ℓ with $0 < \ell < \ell_0$, there exists $y_\ell > 0$ satisfying

$$S(0, y_{\ell}) = \ell^2, \ S_{\nu}(y_{\ell}) > 0 \quad \text{and} \quad y_{\ell} \longrightarrow 0 \ (\ell \longrightarrow + 0).$$

By the theorem of implicit functions there is a C^1 -function $f_{\ell}(x)$ in a neighborhood of x = 0 such that $f_{\ell}(0) = y_{\ell}$ and $S(x, f_{\ell}(x)) = \ell^2$.

We show that the existence interval of f_{ℓ} is $[0, \infty)$. In fact, if it is not, we can find $x_0 > 0$ in such a way that the existence interval of f_{ℓ} is $[0, x_0)$. Since $f'_{\ell}(x) = -2x/S_{\nu}(f_{\ell}(x))$ in $[0, x_0)$, we see that $f'_{\ell}(x) \leq 0$ there. This means that f_{ℓ} is monotone decreasing on $[0, x_0)$. Hence $S_{\nu}(f_{\ell}(x_0 - 0))$ > 0, that is, f_{ℓ} is prolonged over x_0 . This is a contradiction. We see immediately that the point $(\ell, 0)$ is on the curve $y = f_{\ell}(x)$. Let $\gamma = \{(x, f_{\ell}(x)) | 0 \leq x \leq \ell\} \cup \{(x, f_{\ell}(-x)) | -\ell \leq x \leq 0\}$. Then (i), (ii), (iii) and (iv) hold. Noting that $y_{\ell} \to 0$ $(\ell \to +0)$ and f_{ℓ} is monotone decreasing, we see that (v) also holds. Lastly (vi) is evident by the fact that $S_{y} > 0$ in a neighborhood of the origin. This completes the proof.

For any non-negative integer k we set

(2.1)
$$t = y^{k+1}/(k+1) \quad (y \ge 0)$$

Let D be a semidisk in the upper half plane, whose center is the origin. Let ρ be the radius of D. We denote by D' the image of D with the mapping $(x, y) \rightarrow (x, t)$.

LEMMA 2. There is a constant $C(\rho)$ such that for any $(x', t') \in D'$, it holds

(2.2)
$$\iint_{D} \left((x - x')^2 + (t - t')^2 \right)^{-1/2} dx dy \leq C(\rho) \,,$$

where $C(\rho)$ depends only on ρ and $C(\rho) \rightarrow 0$ $(\rho \rightarrow 0)$.

Proof. We may assume that $\rho < 1/2$. Let us replace the integral domain D in (2.2) by the semidisk D_1 with radius 2ρ and with center O. Then the proof is reduced to the case of x' = 0 without loss of generality. From (2.1) we have

$$dy = (k+1)^{-\nu}t^{-\nu}dt \quad (\nu = k/(k+1)).$$

Hence (2.2) is equivalent to

(2.3)
$$\iint_{D_{1'}} t^{-\nu} (x^2 + (t-t')^2)^{-1/2} \, dx dt \leq C'(\rho)$$

for any $(0, t') \in D'_1$, where D'_1 is the image of D_1 by (2.1).

Evidently, D'_1 is contained in a semidisk with radius 2ρ and with the same center. And it is easily seen that $(x^2 + t^2)^{1/2} \leq (x^2 + (t - t')^2)^{1/2}$ for $t \leq t'/2$, and $|t - t'| \leq t$ for $t \geq t'/2$. Thus in order to prove (2.3), it is sufficient to show that

$$\iint_{D_2} |t|^{-
u} (x^2 + t^2)^{-1/2} \, dx dt \leq C''(
ho) \, ,$$

where $C''(\rho) \to 0$ $(\rho \to 0)$ and D_2 is a entire disk with radius 4ρ and with center O. However this is obvious by virtue of $0 < \nu < 1$ and by the polar coordinates transformation. The proof is complete.

264

We fix an integer q with $1 \leq q \leq m$ and we put

(2.4)
$$t = y^{k_q + 1} / (k_q + 1)$$

in place of (2.1). Let $c_q = (k_q + 1)^{1/(k_q+1)}$. Then S is written by

$$S(x, y) = c_q t^{1/(k_q+1)} + x^2 - \alpha c_q^{2(k_q+1)} t^2 - \alpha \sum_{j \neq q} c_q^{2(k_j+1)} t^{2(k_j+1)/(k_q+1)} .$$

For simplicity we rewrite

(2.5)
$$S(x, y) = c_q t^{1/(k_q+1)} + x^2 - \alpha c'_q t^2 - \alpha \sum_{j \neq q} d_q^{(j)} t^{2(k_j+1)/(k_q+1)}$$

Here we note that the coefficients c_q , c'_q and $d^{(j)}_q$ are positive.

Let $\alpha > 0$, $\beta > \gamma$ and $0 < \gamma \leq 1$. We set

$$h(t)=t^{r}-\alpha t^{\beta}.$$

Then it holds

LEMMA 3. There is a positive number δ depending on α , β and γ such that $h''(t) \leq 0$ if $0 < t < \delta$.

Proof. The proof is immediate from the equality

$$h^{\prime\prime}(t) = egin{cases} \gamma(\gamma-1)t^{\gamma-2}\{1-lphaeta\gamma^{-1}(eta-1)(\gamma-1)^{-1}t^{eta-\gamma}\} & (\gamma lpha 1) \ -lphaeta(eta-1)t^{eta-2} & (\gamma=1) \ . \end{cases}$$

Now we define

$$S_{
m l}(t) = c_q t^{{
m l}/{(k_q+1)}} - lpha \sum\limits_{j
eq q} d_q^{(j)} t^{2(k_j+1)/(k_q+1)} \, .$$

From Lemma 3 we see immediately

LEMMA 4. There is a positive number δ_0 such that

$$S_1''(t) \leqq 0$$
, if $0 < t < \delta_0$.

We fix any t' with $0 < t' < \delta_0$ and we set

$$S_{\scriptscriptstyle 2}(t) = S_{\scriptscriptstyle 1}(t') + (t-t')S_{\scriptscriptstyle 1}'(t') - S_{\scriptscriptstyle 1}(t)\,.$$

Then we have

LEMMA 5. $S_2(t) \geq 0$ for $0 < t < \delta_0$ and $S_2(t') = 0$.

Proof. It is trivial that $S_2(t') = 0$. We see that $S'_2(t) = S'_1(t') - S'_1(t)$, $S''_2(t) = -S''_1(t) \ge 0$ by Lemma 4 and $S'_2(t') = 0$. Accordingly, $S'_2(t) \ge 0$ for $t' \le t < \delta_0$ and $S'_2(t) \le 0$ for $0 < t \le t'$, which proves the lemma.

LEMMA 6. Let $1 \leq p < \infty$, $0 \leq \nu < 1$ and let A_1 , $A_2 > 0$. We put

$$u(x, y) = \int_{-\infty}^{\infty} ((x - x')^2 + y^2)^{-1/2} f(x') \, dx'$$

for any $f \in L^p(\mathbb{R}^1)$ with supp. $f \subset (-A_1, A_1)$. Then it holds

$$\left(\int_0^1\int_{-A_2}^{A_2}|u(x,y)|^p y^{-\nu}\,dxdy\right)^{1/p}\leq C||f||_{L^p(R^1)}\,,$$

where C is independent of f.

Proof. We write $A_3 = A_1 + A_2$. The proof is obtained from the following Hausdorff-Young's inequality

$$\begin{split} \int_{-A_2}^{A_2} |u(x, y)|^p \, dx &\leq \left(\int_{-A_3}^{A_3} (x^2 + y^2)^{-1/2} \, dx \right)^p (\|f\|_{L^p(R^1)})^p \\ &\leq C y^{(\nu-1)/2} (\|f\|_{L^p(R^1)})^p \, . \end{split}$$

LEMMA 7. Let Γ be a curve of class C^1 with finite length. Let G be a bounded domain in the upper half plane. Then, if $0 \leq \nu < 1$ and $1 \leq p$ $< \infty$, we have

$$\iint_{_G} \Bigl(\int_{_\Gamma} \left((x - x')^2 + (y - y')^2
ight)^{-1/2} ds_{x,y}
ight)^p y'^{-
u} dx' dy' < \infty \, .$$

Proof. We write P = (x', y'), Q = (x, y) and dis $(P, \Gamma) = |P - R| (R \in \Gamma)$. First we prove

(2.6)
$$\int_{\Gamma} |P-Q|^{-\alpha} ds_{q} \leq C$$

for $0 < \alpha < 1$. When $P \in \Gamma$, the inequality is trivial. In general, (2.6) is reduced to the case of $P \in \Gamma$, because

$$|R - Q| \le |R - P| + |P - Q| \le 2|P - Q|.$$

From (2.6) we see

$$(\operatorname{dis}(P,\Gamma))^{lpha} \int_{\Gamma} |P-Q|^{-1} ds_{Q} = \int_{\Gamma} (\operatorname{dis}(P,\Gamma)/|P-Q|)^{lpha} |P-Q|^{lpha-1} ds_{Q}$$

$$\leq \int_{\Gamma} |P-Q|^{lpha-1} ds_{Q} \leq C_{1-lpha}.$$

Thus it holds

$$\int_{\Gamma} |P-Q|^{-1} ds_{\varrho} \leq C_{1-\alpha} (\operatorname{dis} (P, \Gamma))^{-\alpha} \, .$$

Therefore it is sufficient to prove

(2.7)
$$\iint_{G} (\operatorname{dis}(P,\Gamma))^{-\alpha p} y'^{-\nu} dx' dy' < \infty .$$

We can assume that Γ is written by y = f(x) $(a \leq x \leq b)$, without loss of generality. And it is sufficient to consider that P is close to Γ and the x coordinate of P is in $[a + \varepsilon_0, b - \varepsilon_0]$ for some $\varepsilon_0 > 0$. Let R = (x'', y''). Then we easily see

$$\mathrm{dis}\,(P, \varGamma) = |x' - x''| (1 + (f'(x''))^{-2})^{1/2}$$
 .

Let S be the point where the line being parallel to y-axis through P intersects Γ (see Figure 1). Evidently S = (x', f(x')) and we have

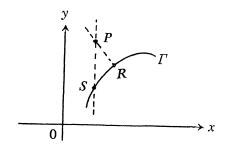


Figure 1

$$|P - S| = |y' - f(x')| = |y' - f(x'') - (x' - x'')f'(c)|$$

= |x' - x''||f'(x'')^{-1} + f'(c)|,

where c lies between x' and x''. Consequently, it holds

$$|P-S| \leq C \operatorname{dis}(P, \Gamma)$$
.

Hence (2.7) is equivalent to

$$\iint_{_G} |y'-f(x')|^{_{-lpha p}} y'^{_{-
u}} \, dx' dy' < \infty \; .$$

This inequality is correct for sufficiently small α , because the integral

$$\int_{0}^{1} |s - c|^{-\mu} s^{-\nu} ds \quad (0 \le c \le 1)$$

is finite and uniformly bounded with respect to c, if $\mu + \nu < 1$. This completes the proof.

3. In this section we give the proof of our theorem, following the

method of T. Carleman [1]. And in the final part of the proof we use the idea of F. John (page 559 in [2]), where the case of analytic functions with one complex variable was treated.

We may assume that the origin is in Γ . We choose a fixed ℓ such that $[-\ell, \ell] \subset \Gamma$, $G_{\ell} \subset \Omega$ and $\ell < \delta_0/2^{3}$.

Let q be any fixed integer with $1 \leq q \leq m$. For simplicity we write $\kappa = \kappa_q$, $\mu = \mu_q$, $k = k_q$ and $u = u_q$. And we write

$$[\partial_{y} + (\mu + i\kappa)y^{k}\partial_{x}]u = f.$$

It can be assumed that $\kappa > 0$, since the following argument is quite similar for the case of $\kappa < 0$.

We denote by G'_{ℓ} the image of G_{ℓ} with the transformation (2.4). Then (3.1) becomes

$$(3.2) \qquad \qquad [\partial_t + (\mu + i\kappa)\partial_x]u = g\,,$$

where $g = (k + 1)^{-\nu} t^{-\nu} f$ and $\nu = k/(k + 1)$.

Let (x', t') be any fixed point in G'_{ι} and let us set

$$\hat{\xi} = x - x' - \mu(t - t'), \qquad \eta = \kappa(t - t').$$

Then we see

$$x^2 - lpha C_q' t^2 = C_0 + C_1 \xi + C_2 \eta + C_3 \xi \eta + \xi^2 + \kappa^{-2} \mu^2 \eta^2 - lpha \kappa^{-2} C_q' \eta^2$$
,

where C_j are real constants depending on κ , μ , x', t', α and c'_q . We write

$$egin{aligned} &\xi^2 + \kappa^{-2} \mu^2 \eta^2 - lpha \kappa^{-2} c_q' \eta^2 &= rac{1}{2} (1 + \kappa^{-2} (lpha c_q' - \mu^2)) (\xi^2 - \eta^2) \ &+ rac{1}{2} (1 + \kappa^{-2} (\mu^2 - lpha c_q')) (\xi^2 + \eta^2) \,. \end{aligned}$$

Here let α be such that

$$(3.3) \qquad \max_{i} \left(\kappa_{j}^{2} + \mu_{j}^{2}\right) < \alpha c_{q}'$$

for any q. Then it follows

$$egin{aligned} S(x,y) &= x^2 - lpha c_q' t^2 + S_1(t) \ &= C_0' + C_1 \xi + C_2' \eta + C_3 \xi \eta + C_4 (\xi^2 - \eta^2) - C_5 (\xi^2 + \eta^2) - S_2(t) \,, \end{aligned}$$

where $C_5 > 0$. Hence we have

$$egin{aligned} S(x,y) &= Re[C_0' + (C_2' - iC_1)(\eta + i\xi) \ &- (C_4 + (i/2)C_3)(\eta + i\xi)^2] - C_5(\xi^2 + \eta^2) - S_2(t) \,. \end{aligned}$$

3) The number δ_0 is the same as in Lemma 5.

268

For $\tau \geq 0$ we set

$$egin{aligned} \varPhi(\eta+i\xi) &= rac{1}{\eta+i\xi} \exp\left[- au(C_0'+(C_2'-iC_1)(\eta+i\xi))
ight. \ &- (C_4+(i/2)C_3)(\eta+i\xi)^2)
ight]. \end{aligned}$$

Then it is obvious that

$$(\partial_{\eta}+i\partial_{\xi})\Phi=0.$$

We remark that the following two equations are equivalent:

$$[\partial_t + (\mu + i\kappa)\partial_x]Z = 0$$
, $(\partial_\eta + i\partial_{\epsilon})Z = 0$.

Hence if we put $\psi(x, t; x', t') = \Phi(\eta + i\xi) \exp(\tau S(x, y))$, we obtain

(3.4) $[\partial_t + (\mu + i\kappa)\partial_x](\psi e^{-\kappa S}) = 0.$

Since

$$egin{aligned} &(\eta+i\xi)\psi(x,\,t;\,x',\,t')=\exp{(\,-\, au[C_5(\xi^2+\,\eta^2)\,+\,S_2(t)])}\,\cdot\ &\ &\exp{(\,-\,i au[C_2'\xi\,-\,C_1\eta\,-\,2C_4\xi\eta\,-\,rac{1}{2}C_3(\eta^2\,-\,\xi^2)])}\,, \end{aligned}$$

it follows from Lemma 5 that

$$|\psi| \leqq 1/|\eta+i\xi|\,, \quad \lim_{\eta+i\xi o 0} (\eta+i\xi)\psi = 1\,.$$

If we set $\varphi = ue^{-s}$, (3.2) becomes

$$(\partial_{\eta}+i\partial_{\xi})arphi+ auarphi\cdot(\partial_{\eta}+i\partial_{\xi})S=\kappa^{-1}ge^{- au S}\,.$$

Let ω be a disk with center (x', t') and with sufficiently small radius. Multiplying the both sides of the above equality by ψ , we integrate it over $G'_{\ell} - \omega$. By Green's formula and by (3.4) we get

$$-\int_{\partial G_{\ell'-\partial \omega}}\varphi \psi d\xi + i\int_{\partial G_{\ell'-\partial \omega}}\varphi \psi d\eta = \kappa^{-1} \iint_{G_{\ell'-\omega}}g \psi e^{-\tau S} d\xi d\eta,$$

where the boundaries are oriented to the positive direction. Letting the radius of $\omega \to 0$, we see

$$\int_{\partial \omega} \varphi \psi(d\xi - id\eta) \to - 2\pi \varphi(x', t') \, .$$

Therefore it follows that

$$\varphi(x',t') = -\frac{1}{2\pi} \left[\int_L \varphi \psi \, dx + \int_{\gamma'} \varphi \psi(dx - (\mu + i\kappa)dt) + \iint_{G_{\ell'}} g \psi e^{-\tau S} \, dx dt \right],$$

where $L = \{(x, 0) | |x| \leq \ell\}$ and γ' is the image of γ by (2.4).

Hereafter we denote simply by C the constant independent of τ and $\{u_j\}$. Letting t' be the image of y' with (2.4), we estimate the integral

$$\iint_{G_{\ell}} |\varphi(x',t')|^p \, dx' dy' \, .$$

First we see

$$\iint_{_{G_\ell}} \left| \int_{_L} \varphi \psi dx
ight|^p dx' dy' \leq C \iint_{_{G_\ell'}} \Bigl(\int_{_L} ((x-x')^2 + t'^2)^{-1/2} | \varphi(x,0) | dx \Bigr)^p \cdot t'^{-
u} dx' dt'^{_{4/2}}$$

(by Lemma 6)

$$\leq C(\|\varphi(\cdot,0)\|_{L^p(L)})^p$$
.

And in virtue of Lemma 7 we have

$$egin{aligned} &\iint_{G_\ell} \Bigl| \int_{T'} arphi \psi(dx-(\mu+i\kappa)dt) \Bigr|^p dx' dy' \ &\leq \iint_{G_\ell'} \Bigl(\int_{T'} |arphi| ((x-x')^2+(t-t')^2)^{-1/2} ds_{x,\iota} \Bigr)^p \cdot t'^{-
u} dx' dt' \ &\leq C (\|arphi\|_{L^\infty(\gamma)})^p \,. \end{aligned}$$

Finally Lemma 2 and Hausdorff-Young's inequality give

$$\iint_{G_\ell} \left| \iint_{G_\ell'} g \psi e^{- au S} \, dx dt
ight|^p dx' dy' \leqq C(\ell)^p (\|f e^{- au S}\|_{L^p(G_\ell)})^p$$

Combining the above inequalities we obtain

$$\|\varphi\|_{L^{p}(G_{\ell})} \leq C(\|\varphi\|_{L^{p}(L)} + \|\varphi\|_{L^{\infty}(\eta)} + C(\ell)\|fe^{-\tau S}\|_{L^{p}(G_{\ell})}).$$

Setting $\varphi_j = u_j e^{-\tau S}$ ($\tau \ge 0$) for each u_j of (1.1), we conclude that

(3.5)
$$\sum_{j=1}^{m} \|\varphi_{j}\|_{L^{p}(G_{\ell})} \leq C \left(\sum_{j=1}^{m} \|\varphi_{j}\|_{L^{p}(L)} + \sum_{j=1}^{m} \|\varphi_{j}\|_{L^{\infty}(\gamma)} \right)$$

for small ℓ if necessary.

If we put $\tau = \log (M/\varepsilon)^{1/\ell^2}$, it holds

$$\| arphi_j \|_{L^\infty(q)} \leq M \exp((-\ell^2) \log{(M/arepsilon)^{1/\ell^2}}) = arepsilon$$
 ,

 $\mathbf{270}$

 $\leq \epsilon$. Hence by virtue of (3.5) it follows that

$$\sum\limits_{j=1}^m \| arphi_j \|_{L^p(G_\ell)} \leq C arepsilon$$
 .

Let ℓ' be any fixed with $0 < \ell' < \ell$. It is obvious that $G_{\ell'} \subset G_{\ell}$ and $S \leq \ell'^2$ in $G_{\ell'}$. Hence we have

$$\sum_{j=1}^m \|u_j\|_{L^p(G_{\ell'})} = \sum_{j=1}^m \|\varphi_j e^{\tau S}\|_{L^p(G_{\ell'})} \leq C \varepsilon e^{\tau \ell'^2} = C \varepsilon \exp(\log(M/\varepsilon)^{\ell'^2/\ell^2}).$$

Therefore setting $k = (\ell'/\ell)^2$ (< 1), we obtain

$$\sum_{j=1}^m \|u_j\|_{L^p(G_{\ell'})} \leq C \varepsilon^{1-k} M^k \, .$$

This completes the proof.

References

- T. Carleman, Sur un probleme d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendentes, Arkiv Mat., 26B (1938), 1-9.
- [2] F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585.
- [3] L. E. Payne and D. Sather, On some improperly posed problems for the Chaplygin equation, J. Math. Anal. Appl., 19 (1967), 67-77.
- [4] J. C. Saut and B. Scheurer, Un théorème de prolongement unique pour des opérateurs elliptiques dont les coefficients ne sont pas localement bornés, C. R. Acad. Sci. Paris, 290 (1980), 595-598.

Department of Mathematics Faculty of Science Kanazawa University Kanazawa, 920 Japan