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1. Introduction

For any positive integer k let dk(n) denote the generalized divisor function, defined to
be the Dirichlet coefficients of ζ(s)k in the half-plane Re(s) > 1. The study of shifted
convolution sums

Dk(N, h) :=
∑

N<n�2N

dk(n)dk(n + h)

is of central importance in the analytic theory of numbers. The case k = 1 is trivial and
for k = 2 we have known since the work of Ingham [6] that

D2(N, h) ∼ 6
π2 σ−1(h)N log2 N

as N → ∞, for given h ∈ N, where σ−1(h) :=
∑

j|h j−1. Several authors have since
revisited this problem, achieving asymptotic formulae with h in an increasingly large
range compared with N . A detailed analysis of D2(N, h) via spectral methods can be

∗ Present address: College of Engineering, Mathematics and Physical Sciences, Harrison Building,
University of Exeter, North Park Road, Exeter EX4 4QF, UK (g.marasingha@exeter.ac.uk).

c© 2012 The Edinburgh Mathematical Society 551

https://doi.org/10.1017/S001309151100037X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151100037X


552 S. Baier and others

found in work of Motohashi [15]. The best results in the literature are due to Duke et
al . [3] and to Meurman [13].

In general it is expected that Dk(N, h) should be asymptotic to ck,hN log2k−2 N , for
a suitable constant ck,h > 0, uniformly for h in some range. However, such a description
has not yet been forthcoming for any k � 3, even when h is fixed. One motivation for
studying the sums Dk(N, h) is the deep connection that they enjoy with the asymptotic
behaviour of moments

Ik(T ) :=
∫ T

0
|ζ( 1

2 + it)|2k dt

as T → ∞. It is commonly believed that Ik(T ) ∼ ckT (log T )k2
as T → ∞ for a suitable

constant ck > 0. Keating and Snaith [11] have produced a conjectural interpretation of
ck using random matrix theory for Gaussian unitary ensembles. Just as for the sums
Dk(N, h), we have only succeeded in producing an asymptotic formula for Ik(T ) when
k = 1 [4] or k = 2 [5]. The relationship between moments of the Riemann zeta function
and the shifted convolution sums Dk(N, h) has been explored extensively by Ivić [8,9]
and, more recently, by Conrey and Gonek [2].

Focusing on the case k = 3, in which setting we write D(N, h) = D3(N, h), our aim
in this paper is to lend some theoretical support in favour of its expected asymptotic
behaviour. If ϕ(n) denotes the Euler totient function, then we set

H(s, q) :=
∑
d|q

µ(d)
ϕ(d)

dsGq/d,d(s),

with

Gk,d(s) :=
∑
e|d

µ(e)
es

g(s, ek) (1.1)

and

g(s, q) :=
∏
p|q

(
(1 − p−s)3

∞∑
j=0

d3(pj+vp(q))
pjs

)
.

Henceforth, vp(q) denotes the p-adic valuation of q. Next we define

P (x, q) :=
1

2πi

∫
|s|=1/8

ζ3(s + 1)H(s + 1, q)
(

x

q

)s

ds

= Ress=0 ζ3(s + 1)H(s + 1, q)
(

x

q

)s

(1.2)

by the Residue Theorem. Let cq(h) =
∑

d|h,q dµ(q/d) be the Ramanujan sum and let
ε > 0. Then the work of Conrey and Gonek [2, Equation (30) and Conjecture 3] predicts
that

D(N, h) =
∫ 2N

N

S(x, h) dx + O(N1/2+ε), (1.3)
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uniformly for 1 � h � N1/2, where

S(x, h) :=
∞∑

q=1

cq(h)
q2 P (x, q)2. (1.4)

Let

∆(N, h) := D(N, h) −
∫ 2N

N

S(x, h) dx.

We shall lend support to (1.3) by considering both the first and second moments of
∆(N, h) as h varies over some range that is small compared with N . Beginning with the
former, we shall establish the following result.

Theorem 1.1. Assume that 1 � H � N . Then∑
h�H

∆(N, h) � (H2 + H1/2N13/12)Nε.

The exponents appearing in this estimate can be improved slightly for certain ranges
of H. We shall not pursue this here, however. For N in the range N1/6+ε � H � N1−ε,
Theorem 1.1 gives an asymptotic formula for the average

G(N, H) :=
∑
h�H

D(N, h). (1.5)

It is interesting to relate Theorem 1.1 to the work of Ivić [8, Lemma 6], who deduces the
upper bound

I3(T ) � T 1+ε + T (α+3β−1)/2+ε

for the sixth moment of the Riemann zeta function on the critical line, where α, β ∈ [0, 1]
are constants such that α + β � 1 and an asymptotic formula of the shape∑

h�H

∆(N, h) � HαNβ+ε

is valid for 1 � H � N1/3. Theorem 1.1 affords the choices α = 1
2 and β = 13

12 , which yield
I3(T ) � T 11/8+ε. Unfortunately, this does not give any improvement over the well-known
bound for I3(T ) with exponent 5

4 + ε.
Turning to second moments, we shall establish the following result.

Theorem 1.2. Assume that N1/3+ε � H � N1−ε. Then there exists δ > 0 such that∑
h�H

|∆(N, h)|2 � HN2−δ.

It follows from Theorem 1.2 that the expected asymptotic formula

D(N, h) ∼
∫ 2N

N

S(x, h) dx
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holds for almost all h � H if N1/3+ε � H � N1−ε. Our proof of Theorem 1.2 is based
on Mikawa’s investigation [14] of twin primes. Here the Hardy–Littlewood circle method
is adapted to study the second moment of the analogous shifted convolution sum in
which d3(n) is replaced by the von Mangoldt function Λ(n). Our proof of Theorem 1.1
is simpler, being based on Perron’s Formula and a bound for the sixth moment of the
Riemann zeta function.

Notation

Our work will involve small positive parameters ε and δ, δ1, δ2, . . . . The value of ε will
be allowed to vary from line to line, and δ, δ1, δ2, . . . may depend on ε. All of the implied
constants in our work are permitted to depend at most on these parameters.

2. Estimation of G(N, H)

The following two sections deal with the proof of Theorem 1.1. To this end, we evaluate
separately the averages G(N, H), defined in (1.5), and

F (N, H) :=
∑
h�H

∫ 2N

N

S(x, h) dx. (2.1)

We begin with the more complicated evaluation of G(N, H). Changing the order of
summation, we get

G(N, H) =
∑

N<n�2N

d3(n)
∑
h�H

d3(n + h). (2.2)

Using Perron’s Formula, the inner sum in (2.2) can be expressed in the form

∑
h�H

d3(n + h) =
1

2πi

∫ c+iT

c−iT
ζ3(s)((n + H)s − ns)

ds

s
+ O

(
N1+ε

T

)
, (2.3)

where c = 1 + (log N)−1 and 2 � T � N . Shifting the line of integration and using the
Residue Theorem, we see that the integral is

Ress=1 ζ3(s)
(n + H)s − ns

s
+

1
2πi

( ∫
P1

+
∫

P2

+
∫ σ+iT

σ−iT

)
ζ3(s)((n + H)s − ns)

ds

s
, (2.4)

where 1
2 < σ < 1 is a parameter to be fixed later, P1 is the line segment connecting c− iT

and σ − iT and P2 is the line segment connecting σ + iT and c + iT .
For 1

2 � α � 1 and |t| � 1, Weyl’s subconvexity bound is ζ(α + it) � |t|(1−α)/3+ε.
Moreover, ζ(α ± iT ) � log T uniformly in 1 � α � c. Hence, for i = 1, 2, the integrals
over Pi in (2.4) are bounded by∫

Pi

ζ3(s)((n + H)s − ns)
ds

s
� Nε

T

∫ 1

σ

T 1−αNα dα � N1+ε

T
, (2.5)

where we take into account that 2 � T � N and N < n � 2N .
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Combining this with (2.2)–(2.4), we therefore obtain

G(N, H) = M(N, H) + E(N, H) + O

(
N2+ε

T

)
, (2.6)

where

M(N, H) :=
∑

N<n�2N

d3(n) Ress=1 ζ3(s)
(n + H)s − ns

s

and

E(N, H) :=
1

2πi

∫ σ+iT

σ−iT
ζ3(s)

∑
N<n�2N

d3(n)((n + H)s − ns)
ds

s
. (2.7)

We proceed by writing

M(N, H) =
∑

N<n�2N

d3(n)g(n),

with

g(x) := Ress=1 ζ3(s)
(x + H)s − xs

s
.

We note that g(x) � Hxε and g′(x) � Hxε−1. Partial summation yields

M(N, H) = g(2N)
∑

N<n�2N

d3(n) −
∫ 2N

N

g′(t)
∑

N<n�t

d3(n) dt.

The classical work of Voronoi [16, Theorem 12.2] yields

∑
n�t

d3(n) = Ress=1 ζ3(s)
ts

s
+ O(t1/2+ε).

From these results we deduce that

M(N, H) = g(2N)
(

Ress=1 ζ3(s)
(2N)s − Ns

s

)

−
∫ 2N

N

g′(t)
(

Ress=1 ζ3(s)
ts − Ns

s

)
dt + O(HN1/2+ε).

Integration by parts now reveals that

M(N, H) =
∫ 2N

N

g(t)
(

d
dt

Ress=1 ζ3(s)
ts − Ns

s

)
dt + O(HN1/2+ε). (2.8)

Employing the Taylor series expansion

(t + H)s − ts

s
= Hts−1 +

H2

2
(s − 1)ts−2 + · · ·
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and the Laurent series expansion for ζ3(s) about s = 1, we obtain

Ress=1 ζ3(s)
(t + H)s − ts

s
= H Ress=1 ζ3(s)ts−1 + O

(
H2 log t

t

)
,

where we keep in mind that H � N . Moreover,

d
dt

Ress=1 ζ3(s)
ts − Ns

s
= Ress=1 ζ3(s)ts−1 � tε.

Putting these facts together in (2.8), we obtain

M(N, H) = H

∫ 2N

N

(Ress=1 ζ3(s)ts−1)2 dt + O(H2Nε + HN1/2+ε). (2.9)

Our next task is to estimate E(N, H) in (2.7). Applying partial summation to the sum
over n, we see that

∑
N<n�2N

d3(n)((n + H)s − ns) =
∑

N<n�2N

((
1 +

H

n

)s

− 1
)

d3(n)ns

=
((

1 +
H

2N

)s

− 1
) ∑

N<n�2N

d3(n)ns

+ sH

∫ 2N

N

(
1 +

H

x

)s−1( ∑
N<n�x

d3(n)ns

)
dx

x2 .

It follows that
E(N, H) = E1(N, H) + E2(N, H), (2.10)

where

E1(N, H) :=
1

2πi

∫ σ+iT

σ−iT
ζ3(s)

((
1 +

H

2N

)s

− 1
)( ∑

N<n�2N

d3(n)ns

)
ds

s

=
1

4πiN

∫ H

0

∫ σ+iT

σ−iT
ζ3(s)

(
1 +

θ

2N

)s−1( ∑
N<n�2N

d3(n)ns

)
ds dθ

and

E2(N, H) :=
H

2πi

∫ 2N

N

∫ σ+iT

σ−iT
ζ3(s)

(
1 +

H

x

)s−1( ∑
N<n�x

d3(n)ns

)
ds dx

x2 .

For i = 1, 2 we may deduce that

Ei(N, H) � H

N
sup

N<x�2N

∫ T

−T

|ζ(σ + it)|3
∣∣∣∣ ∑

N<n�x

d3(n)nσ+it
∣∣∣∣ dt. (2.11)
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Next, we transform the inner sum over n in (2.11) with a further application of Perron’s
Formula, obtaining

∑
N<n�x

d3(n)ns =
1

2πi

∫ c1+2iT

c1−2iT
ζ3(s1 − s)(xs1 − Ns1)

ds1

s1
+ O

(
N1+σ+ε

T

)
, (2.12)

where s = σ + it and c1 = 1 + σ + (log N)−1. We shall shift the line of integration and
use the Residue Theorem, noting that we cross the pole of the zeta function at 1 since
|t| � T . In this way we see that the integral is

Ress1=1+s ζ3(s1 − s)
xs1 − Ns1

s1
+

1
2πi

( ∫
P3

+
∫

P4

+
∫ 2σ+2iT

2σ−2iT

)
ζ3(s1 − s)(xs1 − Ns1)

ds1

s1
,

(2.13)
where P3 is the line segment connecting c1 − 2iT to 2σ − 2iT and P4 is the line segment
connecting 2σ + 2iT to c1 + 2iT .

In the same way as (2.5), we see that∫
Pi

ζ3(s1 − s)(xs1 − Ns1)
ds1

s1
� N1+σ+ε

T

for i = 3, 4, where we take into account that |t| � T .
From (2.11) and (2.12), we deduce that

Ei(N, H) � A(N, H) + B(N, H), (2.14)

for i = 1, 2, where

A(N, H) := HN2σ−1
∫ T

−T

∫ 2T

−2T

|ζ(σ + it)|3|ζ(σ + i(t1 − t))|3 dt1
1 + |t1|

dt

and

B(N, H) := HNσ+ε

∫ T

−T

|ζ(σ + it)|3 dt

1 + |t| .

Here A(N, H) bounds the contribution of the third integral on the right-hand side
of (2.13), and B(N, H) bounds the contributions from the remaining terms.

Since σ > 1
2 , we have

B(N, H) � HNσ+ε

by the familiar bound for the third moment of the Riemann zeta function. Next, using
the Cauchy–Schwarz inequality, we obtain

A(N, H) � HN2σ−1
∫ 2T

−2T

( ∫ T

−T

|ζ(σ + it)|6dt

)1/2( ∫ T

−T

|ζ(σ + i(t1 − t))|6 dt

)1/2 dt1
1 + |t1|

.

Now we choose σ = 7
12 . By [7, Equation (8.80)], we have the expected bound for the

sixth zeta moment on the line Re(s) = 7
12 . Hence,

A(N, H) � HN2σ−1T 1+ε � HN1/6+εT.
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It therefore follows that

A(N, H) + B(N, H) � HN1/6+εT + HN7/12+ε.

We shall balance this bound with the estimate in (2.6) by choosing T = H−1/2N11/12.
Combining this with (2.6), (2.9), (2.10) and (2.14) we now get the final asymptotic
formula

G(N, H) = H

∫ 2N

N

(Ress=1 ζ3(s)ts−1)2 dt + O(H2Nε + H1/2N13/12+ε). (2.15)

Here we have observed that HN7/12 � H1/2N13/12 for H � N .

3. Estimation of F (N, H)

It remains to evaluate F (N, H), defined in (2.1), and to estimate the difference∑
h�H

∆(N, h) = G(N, H) − F (N, H). (3.1)

We observe that

∑
h�H

S(x, h) =
∑
h�H

∞∑
q=1

cq(h)
q2 P (x, q)2

=
∑
q�H

( ∑
h�H

cq(h)
)

P (x, q)2

q2 +
∑
h�H

∑
q>H

cq(h)
q2 P (x, q)2. (3.2)

In § 7, we shall show that P (x, q) = P ∗(x, q), where P ∗(x, q) is defined as in (7.2).
Applying (7.3), we therefore obtain P (x, q) � (qx)ε. Using this and the fact that |cq(h)| �
(q, h), we deduce that

∑
h�H

∑
q>H

cq(h)
q2 P (x, q)2 � xε

∑
h�H

∑
q>H

(q, h)
q2−ε

� xε
∑
h�H

∑
d|h

∑
q>H
d|q

d

q2−ε

� xε
∑
h�H

∑
d|h

(
H

d

)−1+ε
d

d2−ε

� (xH)ε.

Next, we evaluate the first sum on the right-hand side of (3.2). An old result of Carmichael
[1] asserts that ∑

h�q

cq(h) = 0
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if q > 1. Hence, we see that

∑
h�H

cq(h) =

{
H + O(1) if q = 1,

O(q1+ε) if q > 1.

Putting all of this together, and using the definition of P (x, 1) in (1.2), we get
∑
h�H

S(x, h) = HP (x, 1)2 + O((xH)ε)

= H(Ress=1 ζ3(s)xs−1)2 + O((xH)ε).

This implies that

F (N, H) =
∑
h�H

∫ 2N

N

S(x, h) dx = H

∫ 2N

N

(Ress=1 ζ3(s)xs−1)2 dx + O(N1+ε).

Combining this with (2.15) and (3.1), we therefore conclude the proof of Theorem 1.1.

4. Activation of the circle method

Now we turn to the proof of Theorem 1.2. We shall mimic Mikawa’s [14] treatment of
the same problem for Λ(n) in place of d3(n). However, several of Mikawa’s arguments
need to be adjusted to the present situation, and additional complications will occur. In
this section, we describe the general set-up of the circle method.

We begin by observing that

D(N, h) =
∫ 1

0
|S(α)|2e(−αh) dα + O(hNε), (4.1)

where
S(α) :=

∑
N<n�2N

d3(n)e(nα).

Let Q1 := N δ and Q := N1/4 for a small parameter 0 < δ < 1
4 . We divide the integration

into major and minor arcs as follows. The major arcs are defined as

M :=
⋃

q�Q1

⋃
1�a�q
(a,q)=1

Iq,a, Iq,a :=
[
a

q
− 1

qQ
,
a

q
+

1
qQ

]
,

and the minor arcs are defined as

m := [Q−1, 1 + Q−1] \ M.

In the remainder of this paper we establish the following two results. Taken together
with (4.1), they imply Theorem 1.2.
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Proposition 4.1. Let 0 < η < 1 and let δ > 0 be sufficiently small. Then there exists
δ1 > 0 depending on η and δ such that uniformly for h � N1−η, we have∫

M

|S(α)|2e(−αh) dα =
∫ 2N

N

S(x, h) dx + O(N1−δ1).

Proposition 4.2. Let 0 < η < 1
3 and let δ > 0 be sufficiently small. Then there exists

δ2 > 0 depending on η and δ such that for N1/3+η � H � N1−η, we have

∑
h�H

∣∣∣∣
∫

m

|S(α)|2e(−αh) dα

∣∣∣∣
2

� HN2−δ2 .

Before we can state all the lemmas needed in our method, we need to introduce a
certain Dirichlet series and compute a related residue. Let k, q ∈ N and let χ be a
character modulo q. A function that will occur frequently in our analysis is the Dirichlet
series

Fk(χ, s) :=
∞∑

n=1

χ(n)d3(nk)
ns

, (4.2)

initially defined for Re(s) > 1. In the following, we convert this series into an Euler
product and show that it can be meromorphically continued to the half plane Re(s) > 0,
with a possible pole at s = 1, depending on whether the character χ is principal or not.

To start with, let Re(s) > 1. By Ak, we denote the set of integers whose prime divisors
all divide k. Obviously, we can factor Fk(χ, s) in the form

Fk(χ, s) = Ak(χ, s)Bk(χ, s), (4.3)

where

Ak(χ, s) :=
∑

n∈Ak

χ(n)d3(kn)
ns

, Bk(χ, s) :=
∑

(n,k)=1

χ(n)d3(n)
ns

.

Now we may write Ak and Bk as Euler products in the form

Ak(χ, s) =
∏
p|k

∞∑
j=0

χ(pj)d3(pj+vp(k))
pjs

, (4.4)

Bk(χ, s) =
∏
p|k

(
1 − χ(p)

ps

)3

L3(χ, s). (4.5)

Obviously, Ak(χ, s) can be analytically continued to the half plane Re(s) > 0, and
Bk(χ, s) can be meromorphically continued to the whole complex plane. Moreover,
Bk(χ, s) is holomorphic if χ is non-principal and has a pole at s = 1 if χ is principal. In
the latter case, when χ is the principal character χ0 modulo q, we have

Bk(χ0, s) =
∏
p|kq

(
1 − 1

ps

)3

ζ3(s). (4.6)

Furthermore, we have the following bounds.
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Lemma 4.3. Let k, q ∈ N. Let χ be a non-principal character modulo q. Then for
Re(s) > 1

2 we have
|Fk(χ, s)| � kε|L(χ, s)|3. (4.7)

Let χ0 be the principal character modulo q. Then for Re(s) > 1
2 and s �= 1 we have

|Fk(χ0, s)| � (kq)ε|ζ(s)|3. (4.8)

For j ∈ {0, 1, 2} we have

dj

djx
Ress=1 Fk(χ0, s)

xs

s
� (qkx)εx

xj
. (4.9)

Proof. We first deduce from (4.4) that

Ak(χ, s) �
∏
p|k

pνp(k)ε
∞∑

j=0

pjε

pj/2 =
∏
p|k

pνp(k)ε

1 − p−1/2+ε
� kε,

provided that ε � 1
4 . Moreover, if χ is a Dirichlet character modulo q and Re(s) > 1

2 , we
have ∏

p|k

(
1 − χ(p)

ps

)3

�
∏
p|k

(
1 +

1√
2

)3

� kε.

Similarly, if Re(s) > 1
2 , then

∏
p|kq

(
1 − 1

ps

)3

� (kq)ε.

Combining these estimates with (4.3), (4.5) and (4.6), we arrive at the first pair of
estimates in the statement of the lemma.

Let x > 0. To prove (4.9), we note that

xs = x

2∑
n=0

logn x

n!
(s − 1)n + (s − 1)3Rx(s),

where Rx(s) is an entire function in s. We have

Ress=1 Fk(χ0, s)
xs

s
=

1
2πi

∫
|s−1|=1/3

Fk(χ0, s)
xs

s
ds

=
1

2πi

2∑
n=0

∫
|s−1|=1/3

Fk(χ0, s)
s

(s − 1)n

n!
ds x logn x. (4.10)

The integral involving (s − 1)3Rx(s) vanishes since Fk(χ0, s) has a triple pole at s = 1.
We now have

dj

djx
Ress=1 Fk(χ0, s)

xs

s
=

1
2πi

2∑
n=0

∫
|s−1|=1/3

Fk(χ0, s)
s

(s − 1)n

n!
ds

dj

djx
x logn x
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for j ∈ {0, 1, 2}. It is clear that

dj

djx
x logn x � x1−j+ε.

Furthermore, using (4.8), we have, for |s − 1| = 1
3 and 0 � n � 2,

Fk(χ0, s)
s

(s − 1)n

n!
� (qk)ε|ζ(s)|3 � (qk)ε.

Here we have noted that ζ(s) is bounded above by an absolute constant for s with
|s − 1| = 1

3 . Inserting these bounds into (4.10), we arrive at (4.9). �

5. Technical results

In this section we record some of the key technical facts that will be called upon in our
method.

Lemma 5.1. Let 2 < ∆ < N/2. For arbitrary an ∈ C we have

∫
|β|�1/∆

∣∣∣∣ ∑
N<n�2N

ane(βn)
∣∣∣∣
2

dβ � ∆−2
∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆/2

an

∣∣∣∣
2

dt + ∆
(

sup
N<n�2N

|an|
)2

,

where the implied constant is absolute.

Proof. This is [14, Lemma 1] and is a form of the Sobolev–Gallagher inequality. �

The next two lemmas are modified versions of Lemmas 2 and 5 in [14], respectively,
where the role of Λ(n) is now taken by d3(n).

Lemma 5.2. Let k, q ∈ N, ∆, N > 1 and let χ be a character modulo q. Set δ(χ) = 1
if χ is principal and δ(χ) = 0 otherwise. Define

S(k, χ, ∆, N) =
∫ 2N

N

∣∣∣∣ ∑
x<n�x+∆

χ(n)d3(kn)−δ(χ) Ress=1
((x + ∆)s − xs)Fk(χ0, s)

s

∣∣∣∣
2

dx.

Let 0 < η < 5
12 be given. Then there exist positive δ and δ3 depending on η such that if

k, q � N δ and N1/6+η � ∆ � N1−η, we have

S(k, χ, ∆, N) � ∆2N1−δ3 . (5.1)

Proof. For k = q = 1, Ivić [9, Corollary 1] proved that there exists δ3 > 0 depending
on η such that if N1/6+η � ∆ � N1−η, we have

S(1, χ0, ∆, N) =
∫ 2N

N

∣∣∣∣ ∑
x<n�x+∆

d3(n) − Ress=1
((x + ∆)s − xs)ζ3(s)

s

∣∣∣∣
2

dx � ∆2N1−δ3 .

This is based on a bound for the sixth moment of the Riemann zeta function of the
expected order of magnitude on the line Re(s) = 7

12 , which we made use of in § 2.
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Ivić’s method can be easily generalized to yield (5.1). The only additional inputs are the
following. If χ is principal, then we use the bound (4.8). If χ is non-principal, then we
use the bound (4.7) and a bound for the sixth moment of L(χ, s) in place of ζ(s). Indeed,
for any given ε > 0, we have the bound∫ T

−T

|L(χ, 7
12 + it)|6 dt � T (NT )ε,

provided that q � N δ with δ > 0 small enough. The proof of this estimate is analogous
to the proof of the corresponding result for the Riemann zeta function and involves a
generalization of the Atkinson mean square formula for L-functions due to Meurman [12].

�

For the remainder of this section we suppose that α ∈ R is given and that there exist
coprime integers a, q such that |α − a/q| � q−2 and q < ∆ < N/2. Our next goal in this
section is a proof of the following result.

Lemma 5.3. Suppose that ∆ > N1/3 and let

J = J(α, ∆) :=
∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

d3(n)e(αn)
∣∣∣∣
2

dt.

Then there exist δ4 > 0 and F > 0 such that

J � (log N)F (∆N(N1/3 + ∆q−1/2 + (q∆)1/2 + q) + ∆2N1−δ4 + ∆3).

The proof of this lemma requires some auxiliary results, namely slightly modified
versions of Lemmas 6–8 in [14]. Let f and g be sequences such that |f(n)| � log n and
|g(n)| � d5(n). Moreover, let U, V, C > 0 and define

J1 :=
∫ 2N

N

∣∣∣∣∣
∑

t<mn�t+∆
U�m�2U

g(n)e(αmn)

∣∣∣∣∣
2

dt,

J2 :=
∫ 2N

N

∣∣∣∣∣
∑

t<dl�t+∆
C�l�2C

( ∑
mn=d

U�m�2U
V �n�2V

g(n)

)
e(αdl)

∣∣∣∣∣
2

dt,

J3 :=
∫ 2N

N

∣∣∣∣∣
∑

t<mn�t+∆
U�m�2U

f(m)g(n)e(αmn)

∣∣∣∣∣
2

dt.

Then we have the following bounds.

Lemma 5.4. There exists F > 0 such that

J1 � (log N)F (∆N(∆q−1/2 + (q∆)1/2) + ∆2(N/U)2 + ∆3).
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Proof. This is [14, Lemma 6] with the summation condition m � U being replaced
by U � m � 2U . The proof is similar. �

Lemma 5.5. There exist δ4 > 0 and F > 0 such that

J2 � (log N)F (∆N(∆q−1/2 + (q∆)1/2) + ∆3) + ∆2(N1−δ4 + N7δ4U3/2V 4).

Proof. This is [14, Lemma 7] with an extra summation condition C � l � 2C included
and the summation conditions m � U and n � V being replaced by U � m � 2U and
V � n � 2V . The proof is similar. �

Lemma 5.6. If U < ∆, then there exists F > 0 such that

J3 � ∆N(log N)F

(
U +

∆

q
+

∆

U
+ q

)
.

Proof. This is [14, Lemma 8]. �

We now turn to the proof of Lemma 5.3. To prove his corresponding result [14,
Lemma 5], with Λ(n) in place of d3(n), Mikawa employed a Vaughan-type decompo-
sition of Λ due to Heath-Brown. Instead, we use here the much simpler decomposition
d3 = 1 ∗ 1 ∗ 1.

Proof of Lemma 5.3. For N � n � 3N , we may split d3(n) =
∑

abc=n 1 into
O((log N)3) terms of the form

dA,B,C(n) =
∑

A�a�2A
B�b�2B
C�c�2C

abc=n

1,

with 1
8N � ABC � 3N . Using the Cauchy–Schwarz inequality, it follows that

J � sup
A�B�C
ABC=N

(log N)9
∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

dA,B,C(n)e(αn)
∣∣∣∣
2

dt.

Our argument can be split into the following three cases.

Case 1. Let N δ4 � A � N1/3. We may write

∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

dA,B,C(n)e(αn)
∣∣∣∣
2

dt =
∫ 2N

N

∣∣∣∣ ∑
t<mn�t+∆
A�m�2A

hB,C(n)e(αmn)
∣∣∣∣
2

dt,

with
hB,C(n) :=

∑
B�b�2B
C�c�2C

bc=n

1.
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Now Lemma 5.6 with f = 1 and g = hB,C yields the existence of F > 0 such that

∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

dA,B,C(n)e(αn)
∣∣∣∣
2

dt � ∆N(log N)F

(
A +

∆

q
+

∆

A
+ q

)

� ∆N(log N)F (N1/3 + ∆q−1 + ∆N−δ4 + q).

Case 2. Let A � N δ4 and C � N1/2+δ4/2. We have

∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

dA,B,C(n)e(αn)
∣∣∣∣
2

dt =
∫ 2N

N

∣∣∣∣ ∑
t<mn�t+∆
C�m�2C

hA,B(n)e(αmn)
∣∣∣∣
2

dt. (5.2)

Now Lemma 5.4 with g = hA,B yields the existence of F > 0 such that

∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

dA,B,C(n)e(αn)
∣∣∣∣
2

dt

� (log N)F (∆N(∆q−1/2 + (q∆)1/2) + ∆2(N/C)2 + ∆3)

� (log N)F (∆N(∆q−1/2 + (q∆)1/2) + ∆2N1−δ4 + ∆3).

Case 3. Let A � N δ4 and 1
8N1/2−3δ4/2 � B � C � N1/2+δ4/2. By (5.2) and the

definition of hA,B , we have

∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

dA,B,C(n)e(αn)
∣∣∣∣
2

dt =
∫ 2N

N

∣∣∣∣∣
∑

t<mn�t+∆
C�m�2C

( ∑
A�u�2A
B�v�2B

uv=n

1

)
e(αmn)

∣∣∣∣∣
2

dt.

Lemma 5.5 with g = 1 yields the existence of F > 0 such that

∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆

dA,B,C(n)e(αn)
∣∣∣∣
2

dt

� (log N)F (∆N(∆q−1/2 + (q∆)1/2) + ∆3) + ∆2(N1−δ4 + N7δ4A4B3/2)

� (log N)F (∆N(∆q−1/2 + (q∆)1/2) + ∆3) + ∆2N1−δ4 ,

provided that δ4 < 1
51 .

There are no remaining cases. Combining everything therefore leads to the statement
of Lemma 5.3. �

Throughout the following, let χ0,n be the principal character modulo n. In our treat-
ment of the major arcs, we shall have to approximate the term

T (q, x, ∆) :=
∑
k|q

µ(q∗)
ϕ(q∗)

∑
x/k<m�(x+∆)/k

χ0,q∗(m)d3(mk),
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with q∗ = q/k, by a simpler term of the form∑
x<m�x+∆

pq(m),

where pq(m) is a certain nicely behaved function. The remainder of this section is devoted
to the computation of this function.

Using Lemma 5.2 we shall aim to approximate T (q, x, ∆) in mean square by

T0(q, x, ∆) :=
∑
k|q

µ(q∗)
ϕ(q∗)

Ress=1
1
s

((
x + ∆

k

)s

−
(

x

k

)s )
Fk,q∗(s), (5.3)

where
Fk,q∗(s) = Fk(χ0,q∗ , s), (5.4)

in the notation of (4.2). Let

pk,q∗(x) :=
d
dx

Ress=1
xsFk,q∗(s)

s
. (5.5)

Then

Ress=1
1
s

((
x + ∆

k

)s

−
(

x

k

)s )
Fk,q∗(s) =

1
k

∫ x+∆

x

pk,q∗

(
t

k

)
dt.

Hence, we may write

T0(q, x, ∆) =
∫ x+∆

x

pq(t) dt,

where

pq(t) :=
∑
k|q

µ(q∗)
ϕ(q∗)k

pk,q∗

(
t

k

)
. (5.6)

From (4.9), it follows that

pk,q∗(x) � (kq∗x)ε, p′
k,q∗(x) � (kq∗x)ε

x
. (5.7)

This, together with

ϕ(q∗) 	 q∗

log log 10q∗ , (5.8)

implies that

pq(n) � (qn)ε

q
. (5.9)

Armed with these formulae we may approximate the above integral by a sum. For x in
the range N � x < x + ∆ � N we see that

T0(q, x, ∆) =
∑

x<n�x+∆

pq(n) + O

(
(qN)ε

q

)
. (5.10)
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6. Treatment of the major arcs

Now we investigate the major arcs. Let α ∈ Iq,a and write α = a/q + β. Then we have

S(α) =
∑

N<n�2N

d3(n)e
(

an

q

)
e(βn).

Splitting the sum according to the value of (n, q), we obtain

S(α) =
∑
k|q

∑
N<n�2N
(n,q)=k

d3(n)e
(

an

q

)
e(βn) =

∑
k|q

∑
N/k<m�2N/k

(m,q∗)=1

d3(mk)e
(

am

q∗

)
e(βmk),

where q = q∗k. Let τ(χ) denote the Gauss sum associated to a Dirichlet character. Then
for (a, r) = 1 we have the familiar identity

e

(
a

r

)
=

1
ϕ(r)

∑
χ mod r

χ(a)τ(χ̄),

relating additive to multiplicative characters (see, for example, [10, Equation (3.11)]).
Applying this, we may write

S(α) =
∑
k|q

1
ϕ(q∗)

∑
χ mod q∗

τ(χ̄)χ(a)
∑

N/k<m�2N/k

χ(m)d3(mk)e(βmk).

We write S(α) = a + b + c, where

a :=
∑

N<m�2N

pq(m)e(βm), (6.1)

b :=
∑
k|q

1
ϕ(q∗)

∑
χ mod q∗

χ�=χ0,q∗

τ(χ̄)χ(a)
∑

N/k<m�2N/k

χ(m)d3(mk)e(βmk), (6.2)

and

c :=
∑
k|q

µ(q∗)
ϕ(q∗)

∑
N/k<m�2N/k

χ0,q∗(m)d3(mk)e(βmk) −
∑

N<m�2N

pq(m)e(βm). (6.3)

Furthermore, set∫
M

|a|2 dα = A2,

∫
M

|b|2 dα = B2,

∫
M

|c|2 dα = C2.

Using the Cauchy–Schwarz inequality, we obtain∫
M

|S(α)|2e(−hα) dα =
∫

M

|a|2e(−hα) dα + O(A(B + C) + B2 + C2). (6.4)

To estimate the error term in (6.4), we need bounds for A, B and C, which are provided
by the following lemmas.
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Lemma 6.1. Let ε > 0. Then we have A2 � N1+ε.

Proof. Expanding |a|2 and integrating, we obtain

A2 �
∑

q�Q1

1
qQ

∑
1�a�q
(a,q)=1

∑
N<m�2N

p2
q(m)+

∑
q�Q1

∑
1�a�q
(a,q)=1

∑
N<m1�2N

∑
N<m2�2N

m1 �=m2

∣∣∣∣pq(m1)pq(m2)
m1 − m2

∣∣∣∣.

Now, inserting the estimate (5.9), we easily arrive at our desired result. �

Lemma 6.2. Let δ > 0 be sufficiently small. Then there exists δ5 > 0 depending on
δ such that B2 � N1−δ5 .

Proof. By the definition of the major arcs, we have

B2 =
∑

q�Q1

∑
1�a�q
(a,q)=1

∫
|β|�1/(qQ)

∣∣∣∣∣
∑
k|q

1
ϕ(q∗)

∑
χ mod q∗

χ�=χ0,q∗

τ(χ̄)χ(a)

×
∑

N/k<m�2N/k

χ(m)d3(mk)e(βmk)

∣∣∣∣∣
2

dβ.

Writing
1

φ(q∗)
=

√
q∗

φ(q∗)
1√

φ(q∗)q∗

and applying the Cauchy–Schwarz inequality twice, we obtain

B2 �
∑

q�Q1

∑
1�a�q
(a,q)=1

gq

∑
k|q

∑
χ mod q∗

χ�=χ0,q∗

∫
|β|�1/(qQ)

∣∣∣∣ ∑
N/k<m�2N/k

χ(m)d3(mk)e(βmk)
∣∣∣∣
2

dβ,

where
gq :=

∑
k|q

q∗

ϕ(q∗)
� qε,

using (5.8). Now applying Lemma 5.1 with a change of variables, we get

B2 �
∑

q�Q1

∑
1�a�q
(a,q)=1

gq

×
∑
k|q

∑
χ mod q∗

χ�=χ0,q∗

(
k

(qQ)2

∫ 2N/k

N/k

∣∣∣∣ ∑
x<m�x+qQ/(2k)

χ(m)d3(mk)
∣∣∣∣
2

dx + qQNε

)
.

Applying Lemma 5.2 and summing all relevant variables, we get the bound

B2 � Q3+ε
1 N1−δ3 + Q4+ε

1 Q.

This is satisfactory if δ < min{ 1
3δ3,

3
16}. �
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Lemma 6.3. Let δ > 0 be sufficiently small. Then there exists δ6 > 0 depending on
δ such that C2 � N1−δ6 .

Proof. First we observe that

∑
k|q

µ(q∗)
ϕ(q∗)

∑
N/k<m�2N/k

χ0,q∗(m)d3(mk)e(βmk)

=
∑

N<n�2N

∑
k|(n,q)

µ(q∗)
ϕ(q∗)

χ0,q∗

(
n

k

)
d3(n)e(βn).

Therefore, inserting the above into (6.3), we get that

c =
∑

N<n�2N

(and3(n) − pq(n))e(βn),

where

an =
∑

k|(n,q)

µ(q∗)
ϕ(q∗)

χ0,q∗

(
n

k

)
. (6.5)

Hence, we have
C2 =

∑
q�Q1

∑
1�a�q
(a,q)=1

I(q, a), (6.6)

with

I(q, a) :=
∫

|β|<1/(qQ)

∣∣∣∣ ∑
N<n�2N

(and3(n) − pq(n))e(βn)
∣∣∣∣
2

dβ.

Lemma 5.1 yields

I(q, a) � 1
(qQ)2

∫ 2N

N

∣∣∣∣ ∑
t<n�t+qQ/2

(and3(n) − pq(n))
∣∣∣∣
2

dt

+ qQ
(

sup
N<n�2N

|and3(n) − pq(n)|
)2

� 1
(qQ)2

∫ 2N

N

∣∣∣∣ ∑
t<n�t+qQ/2

(and3(n) − pq(n))
∣∣∣∣
2

dt + qQNε, (6.7)

where the last estimate comes from using (5.9) and an � nε. Employing (5.10), we have∣∣∣∣ ∑
t<n�t+qQ/2

(and3(n) − pq(n))
∣∣∣∣
2

=
∣∣∣∣ ∑

t<n�t+qQ/2

and3(n) − T0

(
q, t,

qQ

2

)
+ O

(
(qN)ε

q

)∣∣∣∣
2

�
∣∣∣∣ ∑

t<n�t+qQ/2

and3(n) − T0

(
q, t,

qQ

2

)∣∣∣∣
2

+ O

(
(qN)ε

q2

)
.
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Note that
∑

k|q µ2(q∗)/ϕ2(q∗) � 1. Now using (5.3), (6.5) and the Cauchy–Schwarz
inequality, we deduce that the first term in the last line is bounded by

∑
k|q

∣∣∣∣ ∑
t/k<m�t/k+qQ/(2k)

χ0,q∗(m)d3(mk)−Ress=1
1
s

((
1
k

(
t+

qQ

2

))s

−
(

t

k

)s )
Fk,q∗(s)

∣∣∣∣
2

.

Reinserting our work back into (6.7), we see after a change of variables that

I(q, a) � qεN1+ε

q4Q2 + qQNε

+
∑
k|q

k

(qQ)2

∫ 2N/k

N/k

∣∣∣∣ ∑
x<m�x+qQ/(2k)

χ0,q∗(m)d3(mk)

− Ress=1
1
s

((
x +

qQ

2k

)s

− xs

)
Fk,q∗(s)

∣∣∣∣
2

dt.

We are now in a position to apply Lemma 5.2 to the integral on the right-hand side. This
gives

I(q, a) � N1−δ3 +
N1+ε

q4Q2 + qQNε � N1−δ3 ,

since q � N δ � N1/4 and Q = N1/4. Now, inserting the above estimate into (6.6) and
summing all the relevant variables, we arrive at our desired result if δ < 1

2δ3. �

From (6.4) and Lemmas 6.1–6.3, we obtain the following result.

Lemma 6.4. Let δ > 0 be sufficiently small. Then there exists δ7 > 0 depending on
δ such that, uniformly for h, we have∫

M

|S(α)|2e(−hα) dα =
∫

M

|a|2e(−hα) dα + O(N1−δ7).

We now turn to the computation of

Z(h) :=
∫

M

|a|2e(−hα) dα, (6.8)

where a is given by (6.1). By the definition of the major arcs, we have

Z(h) =
∑

q�Q1

∑
1�a�q
(a,q)=1

∫
|β|�1/qQ

∣∣∣∣ ∑
N<m�2N

pq(m)e(βm)
∣∣∣∣
2

e

(
− h

(
a

q
+ β

))
dβ

=
∑

q�Q1

cq(−h)
∫

|β|�1/qQ

∣∣∣∣ ∑
N<m�2N

pq(m)e(βm)
∣∣∣∣
2

e(−hβ) dβ,

where cq(m) is the Ramanujan sum.
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Expanding the square in our expression for Z(h) and using (5.6), we have

Z(h) =
∑

q�Q1

cq(−h)
∑
k1|q

∑
k2|q

µ(q/k1)µ(q/k2)
ϕ(q/k1)k1ϕ(q/k2)k2

×
∫

|β|�1/qQ

∑
N<n1�2N

∑
N<n2�2N

pk1,q/k1

(
n1

k1

)
pk2,q/k2

(
n2

k2

)
e(β(n1 − n2 − h)) dβ

=
∑

q�Q1

cq(−h)
∑
k1|q

∑
k2|q

µ(q/k1)µ(q/k2)
ϕ(q/k1)k1ϕ(q/k2)k2

{ ∫ 1

0
· · · dβ −

∫ 1−1/qQ

1/qQ

· · · dβ

}

= Σ1(h) − Σ2(h), (6.9)

say. It easily follows that

Σ1(h) =
∑

q�Q1

cq(−h)
∑
k1|q

∑
k2|q

µ(q/k1)µ(q/k2)
ϕ(q/k1)k1ϕ(q/k2)k2

×
∑

N+h<n�N

pk1,q/k1

(
n

k1

)
pk2,q/k2

(
n − h

k2

)
. (6.10)

Next we turn to the estimation of

Σ2(h) =
∑

q�Q1

cq(−h)
∑
k1|q

∑
k2|q

µ(q/k1)µ(q/k2)
ϕ(q/k1)k1ϕ(q/k2)k2

×
∫ 1−1/qQ

1/qQ

( ∑
N<n1�2N

pk1,q/k1

(
n1

k1

)
e(βn1)

×
∑

N<n2�2N

pk2,q/k2

(
n2

k2

)
e(−βn2)

)
e(−βh) dβ.

Using partial summation, (5.7) and the familiar bound
∑

s<n�t

e(βn) � ‖β‖−1, (6.11)

where ‖α‖ is the distance of α to the nearest integer, we obtain the estimate

∑
N<n�2N

pk,q/k

(
n

k

)
e(±βn) � (qN)ε‖β‖−1.

Since |cq(−h)| � ϕ(q), it follows that Σ2(h) � NεQ1Q � N3/4, since δ < 1
4 . Combining

this with (6.9), we obtain
Z(h) = Σ1(h) + O(N3/4), (6.12)

uniformly for h ∈ N.
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7. Computation of the singular series

We now show that our main term Σ1(h) in (6.10) can be approximated by the integral
on the right-hand side of the estimate in Proposition 4.1. Throughout this section, we
assume that q � N δ and ki|q for i = 1, 2, and that 0 < δ < 1

4 and 0 < η < 1. In the
following, we shall frequently make use of (5.7), (5.8) and the inequality |cq(−h)| � (q, h)
without further mention.

The innermost sum on the right-hand side of (6.10) is∑
N+h<n�2N

pk1,q/k1

(
n

k1

)
pk2,q/k2

(
n − h

k2

)

=
∑

N<n�2N

pk1,q/k1

(
n

k1

)
pk2,q/k2

(
n − h

k2

)
+ O(hNε)

=
∑

N<n�2N

pk1,q/k1

(
n

k1

)
pk2,q/k2

(
n

k2

)
+ O(hNε)

=
∫ 2N

N

pk1,q/k1

(
x

k1

)
pk2,q/k2

(
x

k2

)
dx + O(hNε).

It follows that

Σ1(h) =
∑

q�Q1

cq(−h)
q2

∫ 2N

N

( ∑
k|q

µ(q/k)q
ϕ(q/k)k

pk,q/k

(
x

k

))2

dx + O

(
Nε

∞∑
q=1

h(q, h)
q2

)
.

We note that uniformly for h � N1−η, we have

Nε
∞∑

q=1

h(q, h)
q2 � N1−δ8

for some δ8 > 0 depending on η, if 2ε < η. Moreover, we can extend to infinity the sum
over q � Q1 in the main term, with acceptable error depending on δ and η. Combining
everything, we obtain

Σ1(h) =
∫ 2N

N

S
∗(x, h) dx + O(N1−δ9),

where δ9 depends on η and δ and

S
∗(x, h) :=

∞∑
q=1

cq(−h)
q2

( ∑
k|q

µ(q/k)q
ϕ(q/k)k

pk,q/k

(
x

k

))2

.

We proceed to show that
S

∗(x, h) = S(x, h), (7.1)

where the right-hand side is defined as in (1.4). To begin with we write

S
∗(x, h) =

∞∑
q=1

cq(−h)
q2 P ∗(x, q)2,
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where

P ∗(x, q) :=
∑
d|q

µ(d)d
ϕ(d)

pq/d,d

(
xd

q

)
. (7.2)

In particular, it follows from (5.7) that

P ∗(x, q) � (qx)ε, (7.3)

which is not of importance in the rest of this section but was used in § 3. Recalling the
definition of pk,q∗ from (5.5), we have

pq/d,d(y) =
d
dt

Ress=1
tsFq/d,d(s)

s

∣∣∣∣
y

= Ress=1

((
d
dt

ts

s

)∣∣∣∣
y

Fq/d,d(s)
)

= Ress=1 ys−1Fq/d,d(s).

Making the change of variables s → s + 1, we obtain

P ∗(x, q) =
∑
d|q

µ(d)d
ϕ(d)

Ress=1

(
xd

q

)s−1

Fq/d,d(s)

= Ress=0

∑
d|q

µ(d)ds+1xs

ϕ(d)qs
Fq/d,d(s + 1).

Hence,

P ∗(x, q) = Ress=0 ζ3(s + 1)H∗(s + 1, q)
(

x

q

)s

,

where

H∗(s, q) :=
∑
d|q

µ(d)
ϕ(d)

dsG∗
q/d,d(s)

and

G∗
q/d,d(s) :=

Fq/d,d(s)
ζ3(s)

.

For the proof of (7.1), it remains to show that G∗
q/d,d(s) = Gq/d,d(s), in the notation of

(1.1). It suffices to check this equation for prime powers q = pα, α ∈ N. We recall (4.3),
(4.6) and (5.4).

Case 1. If d = 1, then

G∗
q/d,d(s) = G∗

q,1(s) =
Fpα,1(s)
ζ3(s)

= (1 − p−s)3
∞∑

j=0

d3(pj+α)
pjs

= Gq,1(s) = Gq/d,d(s).
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Case 2. If d = pα, then

G∗
q/d,d(s) = G∗

1,q(s) =
F1,pα(s)
ζ3(s)

= (1 − p−s)3 = G1,q(s) = Gq/d,d(s).

Case 3. If d = pβ with 1 � β � α − 1, then

G∗
q/d,d(s) =

Fpα−β ,pβ (s)
ζ3(s)

= (1 − p−s)3d3(pα−β) = Gq/d,d(s).

In this way we see that Gq/d,d(s) and G∗
q/d,d(s) match up in all cases. Combining the

facts in this section, we obtain the following estimate.

Lemma 7.1. There exists δ10 > 0 depending on η and δ such that, uniformly for
h � N1−η, we have

Σ1(h) =
∫ 2N

N

S(x, h) dx + O(N1−δ10).

Combining Lemma 6.4, (6.8), (6.12) and Lemma 7.1 proves Proposition 4.1.

8. Treatment of the minor arcs

This last section is concerned with the proof of Proposition 4.2, following precisely
Mikawa’s treatment. Expanding the square, rearranging the order of summation and
integration, and using the bound (6.11), we have

∑
h�H

∣∣∣∣
∫

m

|S(α)|2e(−αh) dα

∣∣∣∣
2

�
∫

m

∫
m

|S(α1)|2|S(α2)|2 min
(

H,
1

‖α1 − α2‖

)
dα1dα2.

(8.1)
Set ∆ := HN−δ11 with 0 < δ11 < η. We split the right-hand side of (8.1) into I1 + I2,
with

I1 :=
∫

m

∫
m

|α2−α1|>1/∆

|S(α1)|2|S(α2)|2 min
(

H,
1

‖α1 − α2‖

)
dα2 dα1,

I2 :=
∫

m

∫
m

|α2−α1|�1/∆

|S(α1)|2|S(α2)|2 min
(

H,
1

‖α1 − α2‖

)
dα2 dα1.

Using orthogonality and the estimate d3(n) � nε, we see that

I1 � HN−δ11

( ∫ 1

0
|S(α)|2 dα

)2

� HN2−δ11/2. (8.2)

Furthermore, we have

I2 � H

∫
m

|S(α)|2
( ∫

|β|�1/∆

|S(α + β)|2 dβ

)
dα. (8.3)
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In view of Lemma 5.1, the inner integral here is∫
|β|�1/∆

|S(α + β)|2 dβ � ∆−2
∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆/2

d3(n)e(αn)
∣∣∣∣
2

dt + ∆Nε.

Now, by Dirichlet’s Theorem and the definition of the minor arcs, if α ∈ m, there exist
a and q such that ∣∣∣∣α − a

q

∣∣∣∣ � q−2, (a, q) = 1, Q1 < q � Q.

From Lemma 5.3, the definitions of ∆, Q1, Q and the assumption N1/3+η � H � N1−η,
it now follows, uniformly for α ∈ m, that

∆−2
∫ 2N

N

∣∣∣∣ ∑
t<n�t+∆/2

d3(n)e(αn)
∣∣∣∣
2

dt � N1−δ12 ,

provided that δ12 < min{ 1
2δ, δ4, η − δ11,

1
24}. Combining this with (8.3), we therefore

obtain

I2 � HN1−δ12

∫ 1

0
|S(α)|2 dα � HN2−δ12/2.

Proposition 4.2 now follows on inserting this estimate into (8.1), together with (8.2).
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