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Abstract

The bichromaticity fi(B) of a bipartite graph B has been defined as the maximum order of a
complete bipartite graph onto which B is homomorphic. This number was previously determined
for trees and even cycles. It is now shown that for a lattice-graph Pm x Pm the cartesian product of
two paths, the bichromaticity is 2 + {mn/2}.

The bichromaticity of a connected bipartite graph B, written /3(B), has
been defined as the maximum order p = r + s of a complete bigraph K,_s onto
which B is homomorphic, no two points of B of different colors being sent to
the same point. This is the invariant for bigraphs corresponding to the
achromatic number of a graph G, defined by Harary and Hedetniemi (1970) as
the maximum order of a complete graph onto which G is homomorphic.

The majority of B is the color class of maximum cardinality /u. in B. It
was shown by the present authors (1977) that for a tree, /3 = 1 + JU. and for an
even cycle C2n, /3 = 1 + n if n is odd and 2+ n if n is even.

The terminology and notation of the book of Harary (1969) will be used.
The lattice-graph is the cartesian product Pm x Pn of two paths; it is obviously
bipartite. We now develop a formula for its bichromaticity. To do this, we
recall a basic but simple lemma proved in our previous paper.

LEMMA. If h:B —» Krs is a bicomplete homomorphism of a noncomplete
bigraph B onto Kr,s then rs g q and r + s g n + 1.

THEOREM. The bichromaticity of a lattice-graph is

(1) j3(P m xP n ) = 2 + {mn/2}.

PROOF. For the sake of convenience, we first introduce some notation.
Let A = {mn/2}. View Pm x Pn as a lattice having m rows and n columns,
where u,, is the point in row i and column /. As a connected bigraph, Pm x Pn
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has the unique color classes C and D, where without loss of generality C
contains all points vv in the same color class as vn and D all Vy in the same
color class as r12. Thus | C\ = A = fj.(Pm x Pn) and \D\ = [mn/2].

In order to show that the right side of (1) is a lower bound for )3(Pm x Pn),
we will define a bicomplete homomorphism / : Pm x Pn —> K(2, A ) as follows.
Let X, = {v,j:j odd, ^ 6 D} and X2 = {v,,:j even, vt,E D}, so D may be
partitioned D = Xt U X2. To describe the action of / on C, let all points in X!
be sent by / to one point v, and all points in X2 to another point w. On the
other hand, / leaves all points of C fixed. Then clearly f(PmxPn) =
K(2,{mn/2}), establishing the lower bound.

Our proof that the right side of (1) is also an upper bound for /3 (Pm x Pn),

(2) /3(Pm X P , ) S 2 + A,

is considerably more involved. In order to accomplish this, it is sufficient to
demonstrate the following proposition:

(P) If h: Pm x Pn —» Kr,s is a homomorphism for which r + s =
/3(Pm x P , ) , then r S 2 .

Once (P) has been verified, we have established (2) since s ^ fi = A. We
begin by giving a simple argument that the possibilities r = 3 and r = 4 lead to
contradictions. Later we shall see that r g 5 is also impossible.

Assume first that r = 3. The majority C must contain at least two of the
corner points of the lattice; call them v and w. Each such point has degree 2
and its image under h must have degree 3 since r = 3. Therefore such a point
is identified with at least one other point in C under h. We may then have
either v and w identified under h with different points or with the same point.
In both cases, the image of C under h will contain two fewer points than C,
that is,

sS A -2.

Thus as a bound for r + 5, we get

But this contradicts r + s = fi(Pm x P B ) g 2 + A , as the lower bound in (1) is
already verified.

Assume now that r = 4. Since s 2 r = 4, the number of points in the
lattice is at least 8. Thus C must contain at least three of the points on the
"boundary" of the lattice. Each of these three points has degree at most 3 and
the degree of its image under h is 4. Thus as above each of these three points
must be identified with other points in C by the homomorphism h. No matter
how this is done, the image of C under h will contain at least 3 fewer points
than C, so that
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SgA-3.

Again, we get as a bound

r + s^4 + A - 3 = A + 1,

contradicting /3(Pm x P n ) g 2 + A.
Having completed our consideration of the cases r = 3 and 4, we turn to

an analysis of the remaining possibility r g 5 . First we show that any lattice
satisfying the hypothesis of the lemma with r § 5 has at most 72 points. Using
this bound, it will then be shown that no such lattice can exist.

Applying the lemma to lattice-graphs, we have

(3) rsSq(Pmx Pn) = 2mn-m - n.

Because we have already established (3(Pm x P n ) s 2 + {mn/2}, we get

(4) r + s g A + 2 g y + 2.

By combining inequalities (3) and (4), we find

However, the usual inequality between the arithmetic mean and the geomet-
ric mean implies at once that m + n g V2mn. This inequality combined with
the preceding one immediately gives

2mn ~ V 2 m n ^ mn „
r ~ 2

For convenience, let us write y = V(mn). It then follows directly that

(5) 2 r 2 . - 4 r g ( r - 4 ) y 2 + 2V2y.

We now discuss the problem in two cases: r g 6 and r = 5.

CASE 1. r § 6 . Here (5) gives

2 r > 2r2 - 24 g 2r2 - Ar g y2

so that

(6) r

Furthermore
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implies

This gives

Combining this

Then we have

(7)

r2;

with (9),

s-

§ 2mn - m — n < 2mn •

rSiV2y

we find

,- mn

5>^r-V2y.

= 2y2.

But

2y2 = 2mn > 2mn — m — n ̂  rs >( V 2 y I —r=,
\2 / V2

where the last inequality follows from (6) and (7). Hence we get V m n = y <
6V2, so that mn < 72.

CASE 2. Suppose r = 5. Then (5) gives y < 6 so that mn < 36.
Now Cases 1 and 2 have shown that under the hypothesis of (P) with

r g 5, the lattice-graph Pm x Pn can have at most 72 points. As a first step in
showing that such lattices cannot in fact exist, we prove that these lattices
having r g 5 must have at least 20 points. By the condition that r g 5, there
exists a homomorphism d : P m x P , ^ Krs with s g r g 5 and (3(PmxPn) =
r + s g 10. We now view I: a s a sequence of elementary homomorphisms.
Since p(Kr,s)^ 10 and each elementary homomorphism reduces the number
of points in the lattice-graph by one, we see that h is composed of a sequence
of at most mn - 10 elementary homomorphisms. We note further that since
each elementary homomorphism fixes all but two points, the maximum
number of points in Pm x Pn not fixed by h is 2(mn - 10). Now assume that
mn < 20 or in other words that 2(mn - 10) < mn. This means that at least one
point v of Pm x Pn is left fixed by h. Its degree in h(Pm x Pn) is then at most its
degree in Pm x Pn. That is,

5 ̂  degree of /i(u) in Kr,s S degree of D in Pm x P, s 4.

a contradiction which shows that mn § 20.
The next step will be to prove that a lattice satisfying the hypotheses of

(P) with r g 5 can have at most 16 points. This combined with mn g 20 gives
the final contradiction to r g 5 and proposition (P) will then be proved. Note
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first that as the maximum degree satisfies A(Pm x Pn)g4, each point of C
must experience at least one identification under h if r § 5. In fact, each point
of C must have as many identifications as the smallest multiple of 4 greater
than or equal to r. Therefore

sSA/{r/4}.

Now the conditions mn<12 and r&5 give s S= 18 as an upper bound.
Furthermore if r § 13, then s § 9, contradicting r S s . We thus conclude
5 S r S 1 2 .

We now get an upper bound for mn in terms of r by showing
mn S 2(r — 2)/(l — l/{r/4}). Suppose this last inequality is false. Then using
r g 5 and manipulating this inequality routinely, we get

r + A/{r/4}<2 + A.

But by the above discussion, the left side is at least as large as r + s. Therefore

r+s<2+ A.

This contradicts /3(Pm x Pn) = r + 5 since the lower bound /3(PmxP,)g
2 + A has already been established.

As before, the homomorphism h is composed of at most mn - (r + s)
elementary homomorphisms. Since r + s g 2r, we get

mn - (r + s) S 2((r - 2)/(l - l/{r/4})) - 2r.

Thus we have for an upper bound for the number of points not fixed by h,

2(mn - (r + s)) S 4((r - 2)/(l - l/{r/4})) - 4r.

The right side assumes the maximum 16 among the integers r satisfying
5 S r S 12. But this implies that if the lattice has more than 16 points, it has at
least one fixed point under h. As observed previously, this contradicts the fact
that each point in h(Pm xPn)= Krs has degree at least 5. Therefore we
conclude that if r s 5, then mn g 16, yielding the long awaited contradiction.
The statement (P) is now proved and the theorem follows.

Conclusion and unsolved problems

1. For the cylinder C2n x Pm we have the following partial result.

( 3 + mn if 31 n or 3 )( n with n even and m odd

2 + mn or 3 + mn otherwise

We conjecture that "otherwise" always yields /3 = 2 + mn.
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2. For the "torus-graph" C2n
 x C2m we have shown that

/3(C2n x C2m) = mn + i, where i = 2, 3, or 4. However, we have not been
successful in specifying the conditions which distinguish these three values.

We believe that a method for determining the bichromaticity of bigraphs
may often be successfully developed in two stages. First, inequalities arising
from the lemma may be used to give bounds on the parameters r and s.
Second, an ad hoc argument depending on the class of bigraphs in question
will then yield an exact or "nearly" exact formula for the bichromaticity.
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