ON BLOCK IDEMPOTENTS OF MODULAR GROUP RINGS

MASARU OSIMA

To the memory of TADASI NAKAYAMA

We consider a group G of finite order $g = p^a g'$, where p is a prime number and (p, g') = 1. Let Ω be the algebraic number field which contains the g-th roots of unity. Let K_1, K_2, \ldots, K_n be the classes of conjugate elements in G and the first $m(\leq n)$ classes be p-regular. There exist n distinct (absolutely) irreducible characters $\chi_1, \chi_2, \ldots, \chi_n$ of G. Let \mathfrak{o} be the ring of all algebraic integers of Ω and let \mathfrak{p} be a prime ideal of \mathfrak{o} dividing p. If we denote by \mathfrak{o}^* the ring of all \mathfrak{p} -integers of Ω , then \mathfrak{p} generates an ideal \mathfrak{p}^* of \mathfrak{o}^* and we have

$$\Omega^* = \mathfrak{o}^*/\mathfrak{p}^* \cong \mathfrak{o}/\mathfrak{p}$$

for the residue class field. The residue class map of 0^* onto Ω^* will be denoted by an asterisk; $\alpha \to \alpha^*$.

Let $\Gamma = \Gamma(G)$ be the modular group ring of G over \mathcal{Q}^* and let

$$Z = Z_1 \oplus Z_2 \oplus \cdots \oplus Z_s$$

be the decomposition of the center Z = Z(G) of Γ into indecomposable ideals Z_{σ} . Then the ordinary irreducible characters χ_i and the modular irreducible characters φ_{κ} of G (for p) are distributed into s blocks B_1, B_2, \ldots, B_s , each χ_i and φ_{κ} belonging to exactly one block B_{σ} . We determined in [6] explicitly the primitive orthogonal idempotents δ_{σ} of Z corresponding to B_{σ} in the following way. We set

$$b_{\alpha} = \sum_{\chi_i \in B_{\sigma}} z_i \chi_i(a_{\alpha}^{-1}) / g \qquad (a_{\alpha} \in K_{\alpha})$$

where $z_i = \chi_i(1)$. Let U_{κ} be the indecomposable constituent of the regular representation of G corresponding to the modular irreducible representation F_{κ} and denote by u_{κ} its degree. We see that $b_a = \sum_{\varphi_{\kappa} \in B_{\sigma}} u_{\kappa} \varphi_{\kappa}(a_a^{-1})/g \in \mathfrak{d}^*$ for *p*-regular

Received July 13, 1965.

classes K_{α} since $p^{\alpha} | u_{\kappa} (\kappa = 1, 2, ..., m)$. On the other hand $b_{\alpha} = 0$ for $m < \alpha \leq n$. Then we have

(1)
$$\delta_{\sigma} = \sum_{\alpha=1}^{m} b_{\alpha}^{*} K_{\alpha}$$

where the sum of the elements of K_{α} is also denoted by K_{α} . In what follows we shall call δ_{σ} the block idempotents of Γ associated with B_{τ} or simply the block idempotents of B_{σ} . Let B_{σ} be a block of defect d with defect group D. Then $b_{\alpha}^{*} = 0$ if the defect group D_{α} of K_{α} is not contained in any conjugate of D ([6], Theorem 4, see also [5]). Hence we obtain

(2)
$$\delta_{\sigma} = \sum_{D_{\alpha} \subseteq D} b_{\alpha}^* K_{\alpha} \qquad (1 \leq \alpha \leq m).$$

Here the notation $D_{\alpha} \subseteq D$ means that D_{α} is contained in some conjugate of D. In the special case where $p \nmid g$, there exist n modular irreducible characters of G. Further each χ_i forms a block B_{σ} of its own. Hence

(3)
$$\delta_i = \sum_{\alpha=1}^n (z_i \chi_i(a_\alpha^{-1})/g)^* K_\alpha$$

We consider the fixed block $B = B_{\sigma}$ of defect d with defect group D. If we define $\nu(s)$ by $p^{\nu(s)} || s$ for a rational integer s, then there exist characters $\chi_k \in B$ such that $\nu(z_k) = a - d$. We shall first prove that $l = \sum_{\alpha=1}^{m} \chi_k(a_{\alpha}^{-1}) \omega_k(K_{\alpha})$ $\equiv 0 \pmod{p}$ where $\omega_k(K_{\alpha}) = g_{\alpha} \chi_k(a_{\alpha})/z_k$ and g_{α} denotes the number of elements of K_{α} . The main purpose of this short note is to prove the following

THEOREM 1. Let δ be the block idempotent of B and let $\varepsilon = \sum_{\alpha=1}^{m} c_{\alpha}^{*} K_{\alpha}$ be an element of Z where $c_{\alpha} = \chi_{k}(a_{\alpha}^{-1})/l$. Then $\delta - \varepsilon$ belongs to the radical of Z.

In the case where $p \nmid g$ we see easily that this fact coincides with the formula (3) since $l = g/z_k$ for every χ_k and rad Z = 0.

Let χ_i be any character of B and λ_i be the height of χ_i , that is, $\nu(z_i) = a - d + \lambda_i$ ($\lambda_i \ge 0$). Let K_{β} be *p*-regular classes with defect group $D_{\beta} = D$. Then $\omega_k(K_{\beta}) \equiv \omega_i(K_{\beta}) \pmod{p}$ and hence $g_{\beta}\chi_k(a_{\beta})/z_k \equiv g_{\beta}\chi_i(a_{\beta})/z_i \pmod{p}$. Then it follows from $g_{\beta}/z_k \equiv 0 \pmod{p}$ that

(4)
$$\chi_i(a_\beta) \equiv (z_i/z_k)\chi_k(a_\beta) \pmod{p^{\lambda_i}\mathfrak{p}}.$$

Since the modular irreducible characters of B can be expressed by the ordinary irreducible characters of B (restricted to p-regular elements) with integral

coefficients, we have for $\varphi_{\kappa} \in B$

$$\varphi_{\kappa} = \sum_{\chi_i \in B} r_{\kappa i} \chi_i.$$

Hence, by (4)

$$\varphi_{\kappa}(a_{\mathfrak{z}}) \equiv \sum_{\chi_i \in B} (\gamma_{\kappa i} z_i / z_k) \chi_k(a_{\mathfrak{z}}) \pmod{\mathfrak{p}}$$

and consequently

(5)
$$\varphi_{\kappa}(a_{\beta}) \equiv (f_{\kappa}/z_k)\chi_k(a_{\beta}) \pmod{\mathfrak{p}}$$

where $f_{\kappa} = \varphi_{\kappa}(1)$.

LEMMA 1. Let $\chi_k \in B$ be the character of height 0. Then $\sum_{\alpha=1}^m \chi_k(a_{\alpha}^{-1}) \omega_k(K_{\alpha}) \equiv 0 \pmod{\mathfrak{p}}$.

Proof. It follows from (5) that

$$b_{\beta} = \sum_{\substack{\varphi_{\kappa} \in B \\ \varphi_{\kappa} \in B}} u_{\kappa} \varphi_{\kappa}(a_{\beta}^{-1}) / g$$

$$\equiv \sum_{\substack{\varphi_{\kappa} \in B \\ \varphi_{\kappa} \in B}} (u_{\kappa} f_{\kappa} / g z_{k}) \chi_{k}(a_{\beta}^{-1}) \qquad (\text{mod } \mathfrak{p})$$

and hence

(6)
$$b_{\beta} \equiv (\sum_{\chi_{\mathfrak{g}} \in B} z_i^2/gz_k) \chi_k(a_{\mathfrak{g}}^{-1}) \pmod{\mathfrak{p}}$$

for *p*-regular classes K_{β} with defect group $D_{\beta} = D$. Since there exist *p*-regular classes K_{τ} with defect group $D_{\tau} = D$ such that $b_{\tau} \equiv 0 \pmod{\mathfrak{p}}$ and $\chi_k(\boldsymbol{a}_{\tau}^{-1}) \equiv 0 \pmod{\mathfrak{p}}$, we obtain from (6)

(7)
$$h = \sum_{\chi_i \in B} z_i^2 / g z_k \equiv 0 \pmod{\mathfrak{p}}.$$

It follows from (2) that

$$\sum_{D\beta=D} b_{\beta} \omega_k(K_{\beta}) \equiv 1 \qquad (\text{mod } \mathfrak{p})$$

since $\omega_k(K_{\alpha}) \equiv 0 \pmod{\mathfrak{p}}$ for *p*-regular classes K_{α} with defect group D_{α} properly contained in some conjugate of *D*. Then we have by (6) and (7)

(8)
$$h\sum_{D\beta=D} \chi_k(a_{\beta}^{-1})\omega_k(K_{\beta}) \equiv 1 \pmod{\mathfrak{p}}$$

Hence we see

$$\sum_{D_{\beta}=D} \chi_k(a_{\beta}^{-1}) \omega_k(K_{\beta}) \equiv 0 \qquad (\text{mod } \mathfrak{p}).$$

If $\omega_k(K_{\alpha}) \equiv 0 \pmod{\mathfrak{p}}$, then $D \subseteq D_{\alpha}$ and if D is properly contained in some con-

MASARU OSIMA

jugate of D_{α} , then $\chi_k(a_{\alpha}) \equiv 0 \pmod{\mathfrak{p}}$. Hence

$$\sum_{\alpha=1}^{m} \chi(a_{\alpha}^{-1}) \omega_k(K_{\alpha}) \equiv \sum_{D\beta=D} \chi_k(a_{\beta}^{-1}) \omega_k(K_{\beta}) \qquad (\bmod \ \mathfrak{p})$$

which proves the lemma.

We set $l = \sum_{\alpha=1}^{m} \chi_k(a_{\alpha}^{-1}) \omega_k(K_{\alpha})$ and $c_{\alpha} = \chi_k(a_{\alpha}^{-1})/l$ and consider the element $\xi = \sum_{\alpha=1}^{m} c_{\alpha} K_{\alpha}$ of the center of the ordinary group ring of G. Then

$$\omega_k(\boldsymbol{\xi}) = \sum_{\alpha=1}^m \chi(\boldsymbol{a}_{\alpha}^{-1}) \omega_k(K_{\alpha})/l = 1$$

and hence for any $\chi_i \in B$ we have $\omega_i(\xi) \equiv 1 \pmod{\mathfrak{p}}$. On the other hand, for any $\chi_j \notin B$

$$\omega_j(\boldsymbol{\xi}) = \sum_{\alpha=1}^m \chi_k(\boldsymbol{a}_{\alpha}^{-1}) \, \omega_j(K_{\alpha})/l = 0$$

because $\sum_{\alpha=1}^{m} g_{\sigma} \chi_{k}(a_{\alpha}^{-1}) \chi_{j}(a_{\alpha}) = 0$. This implies that if we set $\varepsilon = \sum_{\alpha=1}^{m} c^{*} K_{\alpha}$, then $\delta - \varepsilon \in \operatorname{rad} Z$. This completes the proof of Theorem 1.

If $d_{\alpha} > d$ where d_{α} denotes the defect of K_{α} , then $\chi_k(a_{\alpha}) \equiv 0 \pmod{p}$ and hence $c_{\alpha}^* = 0$. Further if $d_{\alpha} = d$ and D_{α} is not conjugate to D, then $\omega(K_{\alpha}) \equiv 0 \pmod{p}$ and $\chi_k(a_{\alpha}) \equiv 0 \pmod{p}$. Thus we have also $c_{\alpha}^* = 0$. It follows from (6), (7) and (8) that $b_{\beta}^* = c_{\beta}^*$ for all *p*-regular classes K_{β} with defect group $D_{\beta} = D$.

LEMMA 2. Let Q be the normal p-subgroup of G. Then the block idempotent δ of B with defect group D is given by

$$\delta = \sum_{\substack{Q \subseteq D \alpha \subseteq D}} b_{\alpha}^* K_{\alpha} \qquad (1 \leq \alpha \leq m).$$

Proof. We see that $b_{\alpha}^* = 0$ for *p*-regular classes K_{α} such that Q is not contained in D_{α} ([6]). This, combined with (2) proves the lemma.

THEOREM 2. Let B be the block of G with normal defect group D. Then

$$\boldsymbol{\varepsilon} = \sum_{D_{\boldsymbol{\beta}}=D} \boldsymbol{c}_{\boldsymbol{\beta}}^* K_{\boldsymbol{\beta}} \qquad (1 \leq \boldsymbol{\beta} \leq \boldsymbol{m})$$

is the block idempotent of B where $c_{\beta} = \chi_k(a_{\beta}^{-1})/l$ and $l = \sum_{D_{\beta}=D} \chi_k(a_{\beta}^{-1}) \omega_k(K_{\beta})$.

Proof. It follows from Lemma 2 that
$$\delta = \sum_{D_{\beta}=D} b_{\beta}^* K_{\beta}$$
. Then $\delta = \varepsilon$ since b_{β}^*

432

 $=c_{\beta}^{*}$ for all *p*-regular classes K_{β} with defect group $D_{\beta} = D$.

Now let B_1 be the principal block of G which contains the principal character $\chi_1 = 1$ and let δ_1 be its block idempotent. Obviously we may choose χ_1 as the character χ_k in Theorem 1. We then have l = v where v denotes the number of p-regular elements in G. If Q is a p-Sylow subgroup of G, then $v \equiv u \pmod{p}$ where u denotes the number of p-regular elements in the centralizer $C_G(Q)$. Hence

$$\varepsilon_{\mathbf{I}} = (1/\boldsymbol{v})^* \sum_{\alpha=1}^m K_{\alpha} = (1/\boldsymbol{u})^* \sum_{\alpha=1}^m K_{\alpha}.$$

If Q is normal in G, then we see by Theorem 2 that

(9)
$$\varepsilon_1 = (1/u)^* \sum_{D\beta = Q} K_\beta \qquad (1 \leq \beta \leq m)$$

is the block idempotent δ_1 of B_1 ([7]).

Some applications of our results will be presented elsewhere.

References

- R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung, I, Math. Zeits.
 63 (1956), 406-444.
- [2] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung, II, Math. Zeits. 72 (1959), 25-46.
- [3] R. Brauer, Some applications of the theory of blocks of characters of finite groups, I, J. Alg. 1 (1964), 152-167.
- [4] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block. Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 361-365.
- [5] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, London, 1962.
- [6] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4 (1955), 175-188.
- [7] M. Osima, On a theorem of Brauer, Proc. Japan Acad. 40 (1964), 795-798.

Osaka University