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Introduction

1. Let R be a hyperbolic Riemann surface and gw(z) be the Green function

on R with its pole w in R. We denote by Jf{R) the totality of sequences

(zn)n=i of points in R not accumulating in R and

lim infM->co gw(zn) >0.

Clearly the family *β(R) is independent of the special choice of the pole w

and so Jf(R) is determined completely by the structure of R. We say that

R is regular (resp. irregular) if *&(R) = 0 (resp. *#"(/?) # 0 ) . It is well re-

cognized that for many problems, regular hyperbolic Riemann surfaces are more

manageable than irregular ones. Hence it is important to provide tools to

eliminate the irregularity in some sense. The main pourpose of this paper is

to show the following13

THEOREM 1. On any irregular hyperbolic Riemann surface R, there exists

a positive harmonic function u(z) satisfying the following three properties:

(1) u(z) is an Evans function on R, i.e. limM_>oo u(zn) = °° for any sequence

(2*)n=i belonging to the class J#(R);

(2) u(z) is quasi Dirichlet finite of the first order, i.e. there exists a finite

positive constant K such that DR{min(u(z), c))<,Kc for any poitiυe number c;

(3) u(z) is singular, i.e. the greatest harmonic minorant of minCwU), c) on

R is identically zero for any positive number c.

Here we make a remark to the property (1). Let (Rn)n=i be a normal ex-

haustion of R and set Ro =* 0. For a positive number a and a point w in R

and a non-negative integer n, we set
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206 MITSURU NAKAI

V(w,a, n) = (z*ΞR; gw(z)>a)-Rn (n = 0,l,2, . . . ) .

Then the property (1) is equivalent to the following property:

(V) limM-*» inί(u(z); 2G V(W, a, n)) = oo for any (w, a) such that V(wyat0)

is not a compact set in R.

In fact, let (zn)n»ι be in cβ"(R). Then there exists a positive integer n(tn)

such that (zn)n-n(m) is contained in Viw, 2"1 lim inf*-^ gw(zk), m) for any po-

sitive integer m. From this, it follows that (1') implies (1). Convrsely, assume

that (1) holds. If (10 is not true for some (w, a) with non-compact V(w, a, 0),

then there exists a sequence (zn)n=i of points in R such that there exists an

increasing sequence (kn)n=i of positive integers with z«e V(w, a, kn) and

(u(zn))n=i is bounded. Clearly (zn)n~i belongs to Jf(R) and so the bounded-

ness of (u(zn))n=i contradicts (1).

2. Let Rf be a parabolic Riemann surface and (i&)«=0 be a normal ex-

haustion of Rf such that R[ is a disc iz; | z | < l ) . Applying Theorem 1 to the

hyperbolic Riemann surface R = R1 - R'o which is clearly irregular, we get a

positive harmonic function u{z) on R satisfying (1). Let gw(z) be Green's

function on R = Rf — Rf

0 with its pole w in R. Then, since R! is parabolic,

inί{gw(z); z^R'-Rί)>0. Hence from (Γ), it follows that

lin^co Ίnf(u(z) z^K-R'n)- <*>.

This is equivalent to that u = oo continuously at the Alexandroff point of Rf.

Modifying «, it may be assumed that

(30 u(z) =0 continuously at each point of BRl,

From this (3) follows, since Rf is parabolic. We must remark that in the

present case, without assuming (2), properties (1) and (30 implies the more

precise properties than (2). In fact, for any c>0, since (z&R; u(z)<c) is

closure compact in R' and 1 *du = \ *du, we get

( *du)c.

Now by multiplying a suitable positive constant, we may assume | *du -2π.

Let
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) on R'~Rί;

where gf(z) is the Green function in R[ with its pole w in Ri Then since

^9i?o+9(J2-i?o)

the equation L{h- s) -h- s, where L is a normal linear operator of Sario [13],

has a solution on R' which is harmonic in R- (w) and has the same singularity

as s(z) at w and the Alexandroff point of Rf. Hence h(z) has the negative

logarithmic pole at w and h = °° continuously at the Alexandorff point of R1.

This h(z) is the so called Eυans-Selbergs potential on R'. Hence Theorem 1

contains generalized Evans-Selberg s theorem (see Evans [2], Selberg [14],

Noshiro [12], Kuramochi [3], Nakai [8]).

3. Theorem 1 is a consequence of a more precise facts as mentioned below.

Let R be a hyperbolic Riemann surface and i?* be its Royden's compactiίication.

We denote by Γ = #* — R> which is called Royden's boundary of R. We denote

by A the totality of regular points in Γ with respect to the Dirichlet problem,

which is called (Royden's) harmonic boundary of R and J # 0 if and only if

R is hyperbolic. It will be seen that the Green function gw(z) on R can be

extended to the Green kernel g(p, q) on i?* such that g(z,p) is finitely conti-

nuous in (z,p) of RxΓ and g(z, w) = gw\z) and as the function of z, g(z,p)

{p G /?*) is a non-negative singular harmonic function on i ? - (p) and conti-

nuous on R*, We set

Γo = (p e Γ; g(z, P) > 0 on /?),

which is an Fσ-set in Γ and Γo # 0 if and only if R is irregular.

THEOREM 2. Assume that R is an irregular hyperbolic Riemann surface.

Then there exists a unit positive regular Borel measure μ on /?* satisfying the

following six properties:

(4) there exists a sequence (qn)n=ι of points in Γo such that μ{R* — (qn)%=i)
CO 00

= 0, i.e. μ = Σf/e^, where f/>0 and Σfc = l ond εQi is a unit point measure

at qil

(5) gμ(z) = 1̂ (2, q)dμ(q) is a positive harmonic function on /?;

(6) Diϊ(min(gμU), c))<2πc for any positive number c;
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(7) gii(z) is continuous on R*,

(8) gμ(p)= oo on Γ o ;

(9) gμ(p) = 0 on Δ.

4. In Chapter 1, we explain Royden's compactification and some of its

fundamental properties. In Chapter 2, we define Green kernel on Royden's

compactification and discuss its fundametal properties. In Chapter 3, we treat

transfinite diameters and modified TychebychefFs constants for subsets of R*

with respect to Green kernel. In Chapter 4, we complete the proofs of Theo-

rems 1 and 2.

5. Here we explain some notations and terminologies used in this paper.

Functions (resp. continuous functions) on a space (resp. a topological space)

considered in this paper are assumed to be mappings (resp. continuous map-

pings) of the space into the completed real line [-̂  °°, oo]. For two numbers

or functions a and b, we denote

aΓϊb = min(«, b) and aΌb = max(α, b).

Let R be an open Riemann surface and i?* be its Royden's compactification

(see Section 1.1). For a subset A in i?*, we denote by Ά (resp. 4̂) the totality

of inner point of A (resp. the closure of A) considered in j?*. For a set A

in i?*, we denote by 3 A the boundary of A relative to R (and not to R*)> i.e.

dA = (A - A) Π R. Hence d(A Π R) = dA. A normal exhaustion (Rn)n=o of R is

a sequence of closure compact subdomains Rn of R such that

CO

Rn+ι=>Rn and R={jRn
71 = 1

and R - Rn (n = 0, 1, 2, . . . ) have no component which is closure compact in

R and R-RQ is connected and each dRn consists of a finite number of mutually

disjoint analytic closed Jordan curves. If dRn consists of a finite number of

mutually disjont piece-wise analytic closed Jordan curves, then we say that

(Rn)%=i is a normal exhaustion of R with piece-wise analytic boundary. Finally,

for two a.c.T functions/ and g on an open set G in R (see Section 1.1), we

set Dirichlet inner product and Dirichlet integral by

df=^ \gmάf(z)\2dxdyy

respectively, where z = x 4- iy is a local parameter on R. If there is no afraid
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of confusion, we simply write D(f, g) and D(f) instead of DG(f, g) and D<?(/)

respectively.

1. Royden's compactification and some fundamental properties

1.1. A real vlaued function F(x,y) defined in (a,b)x(c,d) is said to be

absolutely continuous in the sense of Tonelli (abreviated as a.c.T) if F is con-

tinuous and if for any fixed y in (cy d) except a set of measure zero the function

x-+F(x, y) is absolutely continuous in the usual sense and the same is true if

x and y are interchanged and, further, — Fix, y) and ^F{x,y) are integrable in
ox όy

any compact subset of («, b) x (c, d). Since this notion is conformally invariant,

this notion can be easily carried over Riemann surfaces using local parameters.

A (real) Roydens algebra M(R) associated with a Riemann surface R is

the totality of real valued bounded continuous a.c.T functions f on R with

finite Dirichlet integrals DA/). This M(R) is a Banach algebra with the usual

algebraic operations and the norm | |/ | | = sup* I /1 + ylDR(f) ([5]).

A sequence (/«)«=i of functions on R is said to converge to a function /

on R in C- (or D-) topology if /« converges to / uniformly on each compact

subset of R (or Djί(/n-/)->0), in notation f=CAimnfn ( o r / = D-lim«/n).

We also say that (/«)«=! converges to / in B- (or BD-) topology if (/«)~=i is

bounded and converges to / in C-topology (or (/«)£=i converges to / in B- and

D topology), in notation/= BΛ\mn/n (or / = BDΛimnfn)- We remark that M(R)

is BD-complete ([5]).

We denote by MQ(R) the totality of functions in M(R) with compact support

in R. We also denote by MAR) the £Zλclosure of M0(R) in M(R). Clearly

MQ(R) and MA(R) are ideals of M(R). We also remark that M*(R) is BD-

complete.

The Royden's compactification R* of R is a unique compact Hausdorff space

containing R as its open and dense subset and each function can be continuously

extended to i?* and M{R) separates points in #*. The set Γ- R* - R is called

Royden's boundary oί R ([5], [1]). A part Δ of #* defined by
J=(p<=R*; f(p) = 0 for any / e MAR))

is called the harmonic boundary of R. This set Δ is a compact subset of Γ

and Δ^ίό if and only if R is hyperbolic ([6]). This set Δ is the totality of

regular points in Γ with respect to Dirichlet problem ([7]). It holds the follow-
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ing duality ([6])

MΔ(R) = (/e M{R) f vanishes on Δ).

1.2. For the application of Royden's compactification, the following four

facts play the fundamental role. From the definition of a.c.T function, we

have the following ([6], p. 69 in [1]) :

LEMMA 1.2.1. The algebra M(R) forms a vector lattice with lattice oper-

ations f U g and fΠg.

Since M{R) is a subalgebra of total algebra B{R*) of bounded continuous

functions on RΫ with M{R)^1 and M(R) separates points in /?*, by Weier-

strass-Stone's approximation theorem, we get:

LEMMA 1.2.2. The algebra M(R) is dense in B(R*) with respect to the

uniform convergence topology on 2?*.

LEMMA 1.2.3 (Kusunoki-Mori [5]). Let U be a subdomain of R sunch that

U Π J = 0 and dU consists of at most countable number of mutually disjoint

analytic Jordan curves not ending and not accumulating in R. Then the double

JJ of U along dU is a compact or parabolic Riemann surface.

LEMMA 1.2.4 (Nakai [6]). Suppose that u(z) is a harmonic function bounded

from below {or above) defined on a subdomain U of R such that dU {which may

be empty) consists of at most a countable number of Jordan curves not accumu-

lating in R. If u satisfies

lim miu=*z-+iu{z) > m {or lim s\x^v^z^ζu{z) < M)

at any point C in dUϋ (f/ίlJ), then u>m {or u<M) on U.

1.3. Since R is dense in #*, we may say that a function / defined on R

is continuous on R* if / is continuously extended to i?*. We say that a non-

negative function / on R is quasi Dirichlet finite on R if fΓ\c is a.c.T and

DR(fΠc)<°° for any positive number c. It is easy to see that otf\-\-$fa

(α, β>0) is quasi Dirichlet finite on R along with /i and /2.

LEMMA 1.3.1. If f is quasi Dirichlet finite continuous function on.R, then

f is continuous on R*.

Proof. For any w = l ,2 / Π n can be continuously extended to i?*.

We denote by fn the extended function. Let hip) - lim^oo fn{p), whose ex-
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istence is clear, since (fn)n=i is non-decreasing on i?*. Assume that h(po) < °°

(po&R*). Then there exists an n such that h(pa)<n. Since fn is continuous

at pOi there exists a neighborhood U of p0 in R* such that fn(p)<n (p&U).

If w>w, then (/ίlw)nw = /ΠΛ on /?. Hence fmΠn^fn on i?*. Thus

fm(p) Πw =fn(p) <n (j£>e U) implies that fm(p) -fn{p) in C/and so by making

w / ° o , we get hip) -fn(p) in Z7. Thus h is continuous at i>0. Next suppose

that h(po) = °°. Then for any c>0, there exists an fn such that fn(po)>c.

Since /* is continuous on R*, there exists a neighborhood V of ^o such that

Mp)>c on F. As h>fn on i?*, so h(p)>c (p& V). This shows that h is

continuous at po. Hence h is continuous on ft*. Clearly M2) = lim^oo fn(z) =

limn̂ oo 7(2) Πw=/W on i?. Thus /ί is a continuous extention of /. In other

words, / is continuous on R*.

1.4. We prove three more lemmas which plays an important role in our

paper.

LEMMA 1.4.1. Let (ψn)n=i be a sequence in M*(R) such that φ - BΛimnψn

on R and ψ is a.c.T on R and limrt DK{<Pn~ ψ) = 0 for each compact subset K

of RandDR(ψn)<A< 00 (n = l, 2, . . . ). Then ψ belongs to MA(R) and Dsiψtf)

= limΛ D{ψnJ) for each f in M{RΫ\

Proof. Let (Rn)n=o be a normal exhaustion of R. We take a continuous

function <pn on R such that

ί ψn on RQ;

φn = ] harmonic in Ri — RQ

1 0 on R-Ri,

n = 1, 2, . . . , 00, where we set fm = ψ. Then clearly ψn e M0(R) c MΔ(/?). Let

<pf

n = φn- φn and <ff -ψ ~ </>M. Then ^ή and ^' satisfy the assumption of Lemma

1.4.1. If the conclusion of Lemma 1.4.1 is valid for ψ'n and <p', then the same

is true for ψn and ^. Hence to prove our lemma, we may assume without loss

of generality that ψ = ψn = 0 on Ro (n = 1, 2, . . . ) .

Let /^(R) be the real Hubert space of all real first order measurable differ-

entials a such that ]|αrl!2 = j j a Λ ** < 00. We denote (*, j9) = jj^α: Λ */9. Notice

2> Mr. M. Kawamura proved that this Lemma is true without assuming that Ψ is a.c.
T and
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that df<ΞΓ\R) if fe=M(R). Then (*) Λ

M

= 1 cΓ 2 (/?) and \\dψnf<A (n = l,2,

. . . ) . Hence by the weak compactness of bounded set in the Hubert space,

any subsequence of (dφn)%=i possesses a waekly convergent subsequence. We

show that the weak limit of any weakly convergent subsequence is dψ. If this

can be shown, then we can conclude that (dψn)Z=i itself converges weakly to dψ.

Assume that (dψnk)t=i is wearkly convergent. Then β-+limk{βt dψnk) is a

bounded linear functional on Γ2(R). By the reflexivity of the Hubert space,

there exist an a in Γ2(R) such that for any β<=Γ2(R), (β, a) = linu(0, dψnk).

Assume that β = 0 outside Rm. Then

I (βy dψ - dψnk) \<\\β\\- Wdφ - dψnk\\Rm = \\β\UDBm{φ-φnk) -> 0

ask/™. Thus (β, dψ) = lim*(/3, dψnjc). Hence (βtdφ-cc) = 0 for any β e Γ2(R)

with β = 0 outside Rm. This shows that a = dψ on i?m. Since # m is arbitrary,

a-dψ on i? and linu ^ M f c = J ^ (weakly).

Hence we obtain that limndψn = dψ (weakly) and in particular, l im n D B (^n,/)

= Dϋ(^,/)for any / in M(R) and Dχ(ψ)<°°. As φ~B-\imψn, so ^ is con-

tinuous on R and so ψ e M(R).

Finally we prove that ψ^MA{R). Let um be continuous on i? such that

Um-

ψ = Q on R

harmonic in R

ψ on i?-i?
m .

As we have

dum+ρ = 0,

so DR(um+p - Um) = DR(um) - DR(um+p). Hence (ttm)SUi is D-convergent. vSince

wm = 0 on i?o, («m)m=i converges to a function w in C-topology, where w = 0 on

Ro and harmonic in R~R0. Moreover, since \um\^snpR\ψ\f u = BΛimmum

on R. Hence

u = 5D-limm «m on

Let Φm~φ-um and φ-ψ-u. Then

and as ψm^ MQ(R)> SO ψ^M&iR). Since
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DR(Um, φm) = φm*dum = 0,
JdRoVdBm

DR(u,φ)=0. Next, since f»εMΔ(i?), we can find ψn,k^Mo{R) such that

<pn = BD-\imk<Pn,k. Suppose that the support of ψn,k is contained in Rn(k).

Then

\D(u,<pn.k)\=\[ ψn,k
1 ^9 i? o u9i? n ( f c ) 9i?0

. Hence D(w, ψn) = 0 ( Λ = 1,2, . . . ) . T h u s D(u, ψ) = l i m Λ D ( « , ψn) =

0. Hence from

£>(?>, u)=D(u, u) + D(φ, u)}

we conclude that Z>(#) = 0. As « = 0 on i?0. so w s 0 on R and so ^ = φ e MAR).

Q.E.D.

LEMMA 1.4.2 [Generalized Dirichlet principle]. Z,£ί K be a compact set in

R* {which may be empty) such that KΠ A = 0 and KΓ) R -K and dK consists

of at most a countable number of piece-wise analytic curves not accumulating

in R. Assume that f <^M(R). Then there exists a unique u in M(R) such that

i f on JϋK;

v harmonic in R— K

and DR{f)=DB{u)+DR{f-u) and

DR(u) = min(DR(h) heM(R) and h = / on JUK).

Proof. Let (/?rt)«=i be a normal exhaustion of R and un be continuous on

R such that

<f on R-(Rn-K);
Un = S

1 harmonic in i?n ~ K.

Clearly un e M(#) and I wΛ | < sup/?| /1 on R (n = 1, 2, . . . ) . Hence by choosing

a suitable subsequence, we may assume that (un)n=\ is ^-convergent on R. We

set u-BΛ\vsλnUn on R. Then w=/ on KΓ\R and harmonic in R -K. Clearly

and / - wM = 0 on 2?-- (Rn~ K). Hence

and so D̂ GO = DR(un) -f DR{f - Un) and in particular, DR(un) <DR(f). Similarly,
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DR(un - Un+p, un+p) = 0 and so Ds(un - un+p) = DR(un) - Dniun+p). Thus

(M«)«-I is D-convergent and so u = D-limnUn on ft. Hence

u = Z?ZMimM wn on ft.

Thus u^M(R) and w is continuous on ft*. From this, u=f on KΠR implies

w = / on K =~KΠR. Moreover, / - u = BDΛimn(f- un) and /-w r teAf0(ft)

implies that / - we MA{R) or u =/ on J. From DR(f)=DR(un)+DR(f-un)>

we get £>*(/) = # * ( « ) + £>*(/-«) and DR(u)<,DR(f). The unicity of such a

w follows from Lemma 1.2.4.

Next let h^M(R) with h^f on JΌK Construct v^M(R) for & such

that v = h on ΔΌ K and harmonic in R — K. Then DR{v)<DR(h). As v = h-

/ = w on JUϋf, the unicity assures that t; = w on ft Thus DR(u)<DR(h).

Q.E.D.

LEMMA 1.4.3. Let K and K' be compact sets in i?* such that K'^K and

K'f)J = φ and Kf]R = K and K'ΠR = Kf and relative boundaries dK and dK1

consist of at most a counsable number of disjoint analytic Jordan curves not

ending and not accumulating in R. Then

(1.4.1) there exists a unique u in M(R) such that u = l on K and w = 0

on Δ and u is harmonic in R— Kl

(1.4.2) DR(u) = \ *du;

(1.4.3) if ί \*du\<oo, then f *Jw=f *du.

Proof. Let (i?»)»=0 be a normal exhaustion of R and F be a compact set in

ft* such that ^ D J and FOR = F and FΠK= 0 and dF consists of at most a

countable number of piece-wise analytic Jordan curves not ending and not ac-

cumulating in ft. We put Fk = F-Rk. By Lemmas 1.2.1 and 1.2.2, we can

find a function / in M(R) such that / = 0 on F and / = 1 on K. By Lemma

1.4.2, there exists a function uk in M(ft) such that Uk = / on KUdFkV Δ and

u is harmonic in R— KΌdFk. By Lemma 1.2.4, Uk=0 on fik Π ft. Hence

1

harmonic

0

on

in

on

K

ft-

Fk

Kϋ Fkl

and by Lemma 1.4.2,
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DR(Uk)<D(f).

Next let Uk,n be continuous on Rn~K—Fk (n>k) and harmonic in Rn — K

- Fk such that Uk,n = 1 on &KTI /?„ and uk,n = 0 on aF& Π /?„ and -̂w&,Λ = 0 on
OP

σRn- K- Fk. We set Uk,n = 0 on F* and ί%w = l on K. Then, since

DRn(Uk,n+p — Uk,n,Uk,n) = \ (Wjfe, «+/, - W&,«)*dUk%n = 0,

we get

DRn(Uk,n+p-Uk,n) = Diίu(Uk,n+p) ~ DRn(uk,n)<Diin+p(uk,n+p) ~ DRn(

On the other hand,

DRn(Uk- Uk,n,Uk,n) =

implies that DRn(uk,n) = DRn(uk,Uk,n)<ylDRn{uk) ^DRn(uk,n), or

As (DRn{uk,n))n>k is non-decreasing and bounded, so

lim«DRn(uk,n+p - «*,*) = 0.

Since iuk,n)n>k is bounded and w&,n is harmonic in Rn-K~Fk and 0 on

and 1 on 8UL, lim« ŵ , n is a harmonic function in R — K— Fk which equals 0 on

and 1 on 3/Γ. Hence by Lemma 1.2.4, uk = limnuk,n in R-K—Fk and so on

J?. Hence by Fatou's Lemma,

DRn{uk ~ w*,n)<lim infpDRn(uk,p - #*,«)

and so

limnI>Brι(wife--«jfe,n)<limw(lim inίpDRn(uk,p - wjfe,«)) = 0

and also

Similarly as before, since

DRll(Uk + q,n- Uk,n, Uk + q,n) = \ (w*+α,n ~ Uk,n)*dUk+q,n = 0
JtiBn-Fjc+q-K)

we have

q,n - Uk,n)<DRn(uk+q,n — Uk,n) = DRn(uk.n) - DRn(Uk+<j,n)
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and so by making nf cχ> and then m / <*>, we get

DB{Uk+q - Uk)<DR{Uk) - DB(Uk+q).

As DR(uk) ^\in\n DRn(uk,n)<DR(f), so

linu DR(uk+g - Uk) = 0.

Since m = 1 on K and («*)£= i is bounded and «*. is harmonic on R-K—Fk,

)t=i converges to a function u on R in J3-topology and u is harmonic on

R~ K and u = 1 on if. Moreover

and uk^MA(R) implies w = 0 on Δ. This ^ is the desired in (1.4.1) and the

unicity follows from Lemma 1.2.4.

Next we prove (1.4.2). From (1.4.1), we can find a function e in MΛR)

such that

e =

1 on R-Fk',

harmonic in Fk\

0 on J.

Clearly e is superharmonic on R. Let hm be continuous on R such that

Γ e on R - Rm

t harmonic in i?m.

Then it is easily seen that 0 < hm+p <hm<e on R and since

DR(hm — hm+ρ, hm+ρ> = \ (fe« ~~ htn+ρ) dhm+ρ = 0,

we get DR(hm- hm+p) = DR(hm) - D R { h m + p ) . Hence if we put h = \immhm on

i?, then h = BDAimmhm on i? and so ft e HBD(R)czM{R) and as 0<ft<e, so

ft = 0 on J. Hence by Lemma 1.2.4, /ZΞO. Hence if we put

then 0 < ψm <, ψm+p <e<l on R and £ = BDΛimm ψm and the support of ψm is

contained in Rm. Now we have

DR(Ukψm,Uk) = \imnDRn(uk>nψm,Uk,n)

Uk, n ψm*dUk, n
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As uktn-*ιik (n-> oo) uniformly on Rm, so *duk,n-**duk on BKΓϊRm uniformly

and so

D{Ukψm, Uk) = f ψm*duk.
J"dKr\Em

We can easily show that

on R. Since *duk>θ on 9ϋΓ and 0<fm<l, we get ψm*duk<*duk on 3K Hence

D{uk<pm,uk)< \ *duk and so

On the other hand, by Fatou's lemma,

J *<i#*<lim infm J ψm*duk = UmmD(ukΨm> uh) = D(uk).

This shows that D(uk) = I Ĵwjfe. By Lemma 1.2.4, Uk<Uk+p on i? and as
J 9JC

Wfc = W£+/>=l on 3/f, so *duk>*duk+p>Q on 3ϋΓ. Hence *duk-**du and by

Lebesgue's convergence theorem,

du = Uί

which proves (1.4.2).

Finally we prove (1.4.3). Let RC\ (K1 - K) = US« be the decomposition
n

into connected components. If we have \_ *ί/w=\_ *du, then since

\ \*du\ and \ \*du\ are finite, we get

Hence we may assume without loss of generality that (K' - K) Π i? is a domain.

Let T be the double of (Kf ~ K) Π R with respect to dK and a/£' and (Γn)«»i

be a normal exhaustion of T and Γo is a disc in (K'-~ K)aR such that ToC

(if' - K) IΊ Λ Π Γj. For convinience, we set γn = dTnn(Kf - K ) Π i?. We take
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a continuous function vn on T such that

Vn =

1 on T o ;

harmonic in Tn — To

0 on T-Tn.

Since (k' ~ K) ORΠ A = φ, T is parabolic by Lemma 1.2.3 and so

on T. Since *dvn = 0 on MΓUaδT and ^ *rfw = 0, we get

D{κfnR-κ)(Vn>u) = \ Vn*du= \ V

As vn*du + *du and |0Λ*tf«|^*A* on a/ΓΠa/Γ' and |*rfn| is integrable on

dK U 8ϋC', so by Lebesgue's convergence theorem,

\ *ίf« = limn\ Vn*du = lMinD{κ'-κ>nB(Vn,u)-D&-K)nB(l,u) =0,
JdJ£-3iC' J3/Γ-9X'

which shows \ *du= \ *du, i.e. (1.4.3). This completes the proof.

II. Green kernel on Royden's compactification

2.1. Let i? be a hyperbolic Riemann surface and gw(z) be the Green

function on R with its pole w in R. Let (Rn)n-o be a normal exhaustion of R

with to in i?0 and gί?(2) be the Green function on Rn. We set gn(z) =0 for z

in i?-i?M. By definition, gn(z)/gw(z) on i? and un{z) = gw(z) -gH(z) is

bounded and ZMimnWnU) =0 on R. Since «« is harmonic in Rn and un-gw

on R-Rn>

DB(un — «»+/», W/ι+ )̂ = \ («M ~ Un+p)*dUn + P = 0.

Hence DR(un-un+p) = DR{un) - DR(un+p). From these, we conclude that

= 0. In other words, ^ ^ / ^ ( β ) on R and £>*(#«(z) - ^ U ) ) - > 0 as

. Hence

on R for any £>0 (cf. p. 78, Satz 7.4 in [1]). As gn(z) Π CG M*(R) and

DB(gn(z) Πc) =2ττc, so we get

^ ( * ) ΠceMΛR) and DR(gw(z) C)c)=2πc

https://doi.org/10.1017/S0027763000011417 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011417


GREEN POTENTIAL OF EVANS TYPE 219

for any c>0. Hence gw(z) is quasi Dirichlet finite and so by Lemma 1.3.1,

gw is continuous on i?*. As gw(p) Π c = 0 on Δ for any c>0, so gw(p) = 0 o n J .

Since gw(z) =gz(w) on RxR, we may define gp(z) as gz(p) for p in Γ. We set

for a fixed to in i?. By Harnack's inequality, we can easily see that Γo is in-

dependent of the special choice of w in R. Hence Γo= (P<ΞΓ; gw(p)>0 for

any wei?) = (/>eΓ; gp(z)>0 on i? as the function of z). Since #"(./>) =0

(/><= J), we see that

Thus, if P<EΞΓ-Γ0 (resp. />εΓ0), then #*(*) =0 (resp. #*U)>0) on i?.

LEMMA 2.1.1. The function gw{p) = gp(w) is continuous in (p, w) on R*xR

and finitely continuous in (p, w) on ΓxR.

Proof. As gw(z) =gz(w) is continuous in (2, w) on RxR, so we have only

to show the finite continuity of gw(p) =-gp(w) at (pθ9 Wo) in ΓxR. Let e be

an arbitrary positive number. Since gw°(p) -gp(iϋo) is continuous in p on R*t

we can find a neighborhood W of i>0 such that w^W and

for any p in PF. There exists a closure compact open neighborhood U of Wo

in i? such that i?* - f7 ̂ W and ^ ( 2 ) = ̂ (fi;0) <iV< 00 on i? - u. By Harnack's

inequality, there exists a neighborhood V of Wo such that F c U and

for any w in V and 2 in i? — C7, where c = 1 + e/AΓ. Hence

for any win F and z in R— U. Since gp(tv) — gp{u)o) is continuous in ^ on

R* for any fixed w in V and R— U is dense in /?*- £/, we have

for any w in V and i> in Λ* - C/. Thus for any (^, tc;) in Pf x V,

\gW(p) ~gWo(po)\<\gp(w) -gp(wo)\ + \gp(wo)-gHw*)\<2ε,

which shows that gw(p) =gp(w) is continuous in (p, w) at (p0, M;0). Q.E.D.
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LEMMA 2.1.2. Given a point p in Γo (resp. Γ— Γo) and an arbitrary neighbor-

hood U of p. Then there exists a decreasing sequence (Vn)n=i of neighborhoods

of p such that Vn^U and C\^ι(Vn^R)=φ and limns\ipw^vnnR\gp(z) -gw(z)\

= 0 uniformly in z on each compact subset of R. Hence in particular, gp(z)

is positive harmonic {resp. identically zero) on R.

Proof. Take a countable dense subset (zm)m=i of R. By induction, we can

find sequences (Umtn)%=ι (m = 1, 2, . . . ) of neighborhoods of p such that

and n ; β l ( ί n £71,«) = φ and \imnsnpw^σm,n^R\gZm(w) ~ gZm(P) I = 0. This is

possible, since gZm(q) is continuous in q at p for each m = 1, 2, . . . . Set Vn

= Un,n Then limnsupWf=vnr,R\gz(ιv) ~gz(p)\ = 0 for any z = zm (m = 1, 2, . . . ) .

Since (zm)m=i is dense in i?, by Lemma 2.1.2, limn s\ipw^vunR\ gz (w) — gz(p)\ =

0 holds for any z in R. As £*(w) = ^ ( 2 ) is harmonic in z on R except w, so

limMSupweFKOfll̂ U) -gp(z) I =0 holds for 2 uniformly on each compact subset

of R.

LEMMA 2.1.3. For any fixed p in R*9 DB(gp(z) Πc)<t2πc (c>0).

Proof. This is clear if p belongs to R* - Γo. Hence we have only to treat

the case where p belongs to Γo. By Lemma 2.1.2, we can find a sequence

(wn)n^i of points in R which do not accumulate in R such that

gp{z)=CΛimngWn(z)

on R. Then

limn I grad(g"-U) Π c) I2 = I grad(^U) Π c) |2

at each point of R except the set (z^R\ gp(z) =c) for each fixed local para-

meter. Hence by Fatou^ lemma and D(gWn(z) f)c) -2πcy we get

DB(gp(z) Πc)<\iminίnDR{gWn(z)f)c)=2πc (c>o).

2.2. From Lemma 2.1.3, it follows that ^^(2) is quasi Dirichlet finite on

R for any fixed p in i?* and so gp(z) is continuous on R* by Lemma 1.3.1. Hence

we can give the following

DEFINITION. The Green kernel g(p, q) on R* is given as the function of (p, q)

in it?* x R* by the following double limit:

g(p, q) = limRE*z-+p(\imBaw->qgtv(z)).
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PROPOSITION 1. The Green kernel g(p, q) on R* possesses the following pro-

perties :

(g.l) g(z, w) = gw(z) for (z, w) in RxR;

(g.2) g(z,p) -g(p,z) for z in R andp in /?*;

(g'S) g(p, q) is continuous in p on R* for fixed q in i?*;

(gΛ) g(z,p) is continuous in (z,p) on RxR* and finitely continuous in

(z,p) on RxΓ;

(g 5) g(z, p) is harmonic in z on R— (p) for fixed p in R*

ig.6) g(z,p)>0 iresp. =0) on R ifptΞRUΓ0 (resp. Γ-Γo):

(g.7) DR(g(z,p) Πc)<2πc for any fixed p in R* and c>0;

(g.8) if q is fixed in Γo U R, then g(p, q)>0 for any p in Γo U R;

(g.9) if q is fixed in R*y then g(p, q) = 0 for p in J.

Proof, The properties (g.l)-(g.7) are easy consequences of the definition

of gip, q) and Lemmas 2.1.1, 2, 3. To prove (g.8)f we have only to treat the

case where #eΓ 0 and i>eΓ0. We take a normal exhaustion (i?«)n=o of R and

we fix a point w in Ro. Since giz, q) (q<sΓo) is a positive harmonic function

in z on R by (g. 5) and (g. 6), we can find a positive number a such that

ag{z,q)>gw(z)

on BRQ. AS ag(z, q) >g%(z) on Rn - i?o, so ag(zt q) >gw(z) on R - Ro. By letting

z-»ί>eΓ0, we have

ag(p,q)>Lgw(p)>Q.

Finally, we prove (g.9). To avoid the trivial case, we assume that #eΓ<>.

By Lemma 2.1.2, we can find a sequence (wn)n=i of points in R which do not

accumulate in R such that g(z, wn) converges to g(z, q) in C-topology on R.

Hence for any c>0,

g(z, q) ίlc = ZMim^U, wn) Π c

and since giz>q) and g(z, wn) are harmoinc on any compact subset K of R

for sufficiently large ny we get (cf. p. 73, Satz 7.4 in [1])

limn Dκ(g(zf q) Γic-g(z,wn) Πc)=0

and by (g.7),

D(g(z, Wn) Γic)<2πc (n = 1, 2, . . . ) .
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As g{zywn) nc(=MdR), so by Lemma 1.4.1, g(z, q) Π ct=M*(R), or g(pίq)dc

= 0 in p on Δ. Thus g{p, <?)=() for p in J. Q.E. D.

Remark. Notice that we do not claim the general symmetricity of g:

g(py q) = g(qyp). We also do not claim the continuity of g{p, q) in q at Γo for

fixed p in Γo.

It follow from (g.5) and (g.9) that g(z,p) (p^Γ0) is a singular positive

harmonic function, i.e. the greates harmonic minorant of g(z,p)Γ\c is identi-

cally zero. In fact, let u(z) be harmonic on R with 0<u(z)<sg{z,p) Πc on R.

Then by (g.9), 0 ^ lim S\XPB3Z-*QU(Z)<limR3z->Qg(z,p) Cic = g(q,p) Πc = 0 for any

q in J. Hence by Lemma 1.2.4, «(z) ΞO on R.

III. Quantities concerning Green kernel

3.1. Let Ω be an arbitrary non-empty set and K be a mapping of Ω x 42

into [c, °°] (c> ~ °°). For each set J£ in i2, we set

(nΛ m(X; Ω, K)=irήPl,
\6'

when X*0 and τ w (Z; Ω, K) = <χ> when Z = 0. Let i>b . . . , pn+i be arbitrary

points in X. Then

and so

Σ

Σ

(ft = 1,2,

Summing up these ^ + 1 inequality, we get

(n + I)' ' ' l Γ W ό A )> 21' "l2+1K<jnt pj) + (Λ +

or

Hence we get (w - l ) ^ ^ 1 ) τ«+1(Z; Ω, K)>(n + l) (™) τn(X; Ω,K), or

rrt+i(X; i?, K)>τn(X\ Ω, K) (n = 1, 2, . . . ).
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Hence we can define

τ(X; Ω, K) = limn-,* τn(X\ Ω, K).

This is called the irans finite diameter of X with respect to (Ω, K). Similarly

we set

n

npn(X'> Ω, K) =s sup^ p^z(iτiipeχj&K(p,pi))
t = l

when X*0 aud pn(X', Ω, K) = oo when X= 0. Let ph . . . ,ί«+m be arbitrary

points in X Then

and so

n n m

infpex Σ i^(ί, ί ί ) > inf^e^Σ /f(/>, pi) + inf ί Br Σ
t = l <=1 i π n + 1

Hence

\ Ω,K).

It is well known that for a sequence (an)n=\ of points in ( - oo, oo ) such that

an+m>an + am, \imn n~ιan exists. Hence we can define

p(X; Ω, K) = \imn^Pn{X\ Ωy K).

This is called the modified Tchebycheff's constant of X with respect to (Ω, K).

Concerning these two quautities τ and p, we have

PROPOSITION 2. p(X; Ω, K) >τ(X', Ωy K).

Proof. Let n>l be an arbitrary positive integer. We set r•= (n-l)'1 and

choose n points pn, pn-u - > i>2, pi in X satisfying

(3.1.1) Σ K{pn-uPj) <mίp<=κ Σ K{p,Pj) + r (i = 1, 2, . . ., n - 1).

We choose these n points inductively as follows. Let pn be an arbitrary point

in X. Assume that pn, pn-u . . . , Pn-i+i (i<n — l) have been already chosen.

Consider

= Σ
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on X Then, since infp<=xf(p)>ic> - oo, we can find a point pn-i in X such

that f{pn-i) < infpς=xf(p) + r. This is nothing but (3.1.1) and the induction is

completed. By the definition of pi(X; Ω> K), we get

mίp&x Σ K(p, pj) £ ipάX Ωy K).

Hence by (3.1.1), we get

Σ K{pn-i,Pj)<ipi(X; Ω,K)+r (* = 1, 2,

Summing up these Λ - 1 inequalities, we get

and so by the definition of τn(X'> &, K), we get

or

ΣipΛX; ΩyK)
(3.1.2) τn(X'> ΩyK)< ^ + —

(n\ (n\

As lim ĉo Pi(X\ Ωy K) = p(X; Ω, K), so we can easily see that

ϊft d ; Ωy K)
= p(X; Ω, K).

Hence by making n/ <» in (3.1.2), we get τ(X; Ω,K)<p(X; Ω, K).

3.2. Let R be a hyperbolic Riemann surface and /?* be its Royden's com-

pactification and g(p, q) be the Green kernel on i?*. For the sake of simplicity,

we set, for X in 2?*,

τn(X)=τn(X'> S*,g), τ(X)=τ(X; R*f g)

and similarly

Pn{X)-=Pn(X\ R*,g), p(X)=p(X; R*.g)

and we simply say that τ(X) (resp. p(X)) the trans finite diameter (resp. modi-
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fied Tchebycheff's constant) of X in /?*. From the considerations in Section

3.1, we s.ee that

τ(X) = limM^» τn(X), p(X) = lim*^*,

and

3.3. In this section, we state two lemmas concerning Green potentials on

hyperbolic Riemann surface. They are well known and contained in the general

potential theory on compact metrizable space with positive symmetric kernel

(see for example, Ninomiya Cll]). But for the sake of completeness, we give

proofs for two lemmas following Constantinescu-Cornea's book [1].

Let μ be a positive regular Borel measure on R and Sμ be the support of

μ. The Green potential gμ(z) is defined by

gμ(z) =

If gμ(z) < oo for a point z in R, then gμ.(z)>0 and gμ(z) is harmonic in R- Sμ.

and gμ(z) is superharmonic in R (p. 34 in [1]).

A set A in R with Ά <^R is said to be polar if there exists a positive super-

harmonic function on R which is infinite on A. A property is said to hold

quasi everywhere if it holds except a polar set.

The energy \\μ\\2 (resp. mutual energy <μ, v» of a measure μ (resp. mea-

sures μ and v) is defined by

Wμf-\\g(z9 w)dμ(z)dμiw) resp. <μ, v> = \\g(z, w)dμ(z)dviw)).

For a set X in R, we denote by mx the totality of unit positive regular Borel

measures μ on R with S μ c χ We put

when X*0 and rUO = °° when X=0. We say that 1/riX) is the capacity

of J£ induced by energy integral when X is compact. Then we have

LEMMA 3.3.1. Let F be a compact set in R consisting of a finite number

of analytic arcs. Then there exists a unique measure μQ in mF such that γ(F) =
2 < °o and g,M(z)<r(F) on Randgμ(z) = γ(F) on F. Moreover #μo belongs
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to MAR) and DE(gμo(z)) = 2πγ(F).

Proof. Let (Rn)n=o be a normal exhaustion of R with Ro^>F. By Lemma

1.4.3, there exists a function w in M(R) such that M/ = 1 on F and w = 0 on J

and α> is harmonic i n i ? - F . Hence z^eMΔ(i?) and so we can find ψn^M^R)

such that w = £j>lim« «̂ on i?. If we put F the sum of arcs F with positive

direction and arcs F with negative direction, then we get

and it implies, by making n / oo,

(3.3.1) D(w) = [ *dw=[ *dw.

By Frostman's theorem (p. 40 in [1]), there exists a unique positive regular

Borel measure μi with Sμ^F such that gμχ(z)<l on R and gμι(z)~l quasi

everywhere on F and gμι(z)<tviz) on R. Let s(z) be a positive superharmonic

function on R with s(z) = oc on ( a s F ; g μ i(2:)<l). Then since

lim infR3Z^(gH(z) + εs( ε)

for any ξ in FU J and e>0, by Lemma 1.2.4, gμi(z) -f εs(z)>w(z) on /?. Hence

gμι(z)>w{z) on i? quasi everywhere. As a polar set is measure zero (i.e. the

Lebesgue measure of the intersection of polar set with any parameter neighbor-

hood is zero) (p. 31 in [1]), so gμi(z)'>:w{z) almost everywhere on R and so

gμι(z)>ιv(z) everywhere on i? (p. 13 in [1]). Hence

on, R, i.e. gμi(z)<l on R and gμι(z) = 1 on F. From this, it is clear that μΛF)

>0. Let μ^mP. Then by energy principle (p. 46 in [1]),

or

On the other hand,
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Hence, if we put μo = μι/μi(F), then μo^mF and

IUIP = IUIP/WF)2 = lUIP/M4 = 1/IUilP.

Thus MP>IUiP for any μ e= mF and γ{F) = IUU2 = Vμi(F) < °°. Hence £μ oU)

= r(F)gμί(z) fulfils the properties that gμΰ(z) < γ(F) on R and £μo(z) = r(F) on F.

The unicity follows again from Frostman's theorem (p. 40 in El]).

Notice that gμo = r(F) wt= MΛR). Thus by (3.3.1)

D*(gμo) = γ(F)2-\^*dw = r(F)^R *dgμ,

*dg(z,p))dμQ(p),

Since p varies in Ro in the last term of the above, it is easy to see that

lyp) =2π.

Hence by noticing μo(F) =1, we finally obtain

DR(gμΛ)=2πr(F). Q.E.D.

LEMMA 3.3.2. Let F be as in Lemma 3.3.1. Then γ(F) = τ(F) = p(F).3)

f. For each n, we can find points p[n\ . . . , p(n] in F such that

Let ^M be defined by μn(pϊn)) = l/n (ι = l, . . . , w) and μn(R- U(/>ίΛ)))=0.
ί = l

Then ^ r t belongs to mF. Then there exists a subsequence (/iMfe)?=i of (μn)n=i

such that

for every finitely continuous function / on F (p. 9 in El]). Clearly μ^mF.

Let c>0. Then by Stone-Weierstrass' theorem, there exists a function

φ(z, to) = ih<*jfjiz)hj(w)>
J = l

where αy are real numbers and / 7 and hj are finitely continuous functions on

F, such that

3 ) It is well known that this is true for any compact set F in R.
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\g(z, w) Πc-?nU w)\<l/n

on F. Then

Since ^ J ψndμnkdμnk = Σ β/' j//<W# \hjdμnk -» Σ ctj\fjdμ*jj hjdμ = J ̂  ψndμdμ (k

c»), we obtain by making £-> °°,

By making w / oo, τ{F) > j^ί^Π c)dμdμ. Again by making c?/* oo,

Thus we get τ(F)>r(F).

By Proposition 2, p(F)>r(F). Hence if we prove r(F)>p(F), then the

proof of Lemma 2 is completed. Let μo be as in Lemma 3.3.1 and pu . - ,

pn be arbitrary points in F. Then

r(F)>

Hence

71

Thus by making n/ «>, we get r(F)>p(F),

3.4. Asume that ΓoΦ0. Fix a point 20 in /? and (r«)"=i be a sequence of

positive numbers such that

rn >rn+i, limn-><»rn = 0

and the level curve ( a e i ? ; g(z, zQ)=rn) consists of a countable number of

analytic Jordan curves not ending in R. Moreover we may assume that the

set

£/„= (ze=R; g(z,zo)>rn)

is not relatively compact in R. We set
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Then Γ o= U Γ. Let (/?«)£= i be a normal exhaustion of R such that zo^Ri.

We set

Fn, m = Un Π 3i?m

LEMMA 3.4.1. The set Un is a subdomain in R and ΊjΓ\J = 0.

Proof. Since g{p, 20) = 0 ( ^ e j ) , £/„ ΠJ = 0. Assume, contrary to our as-

sertion, that there exists a component G of Un with 20ΦG. Then giz,zo) is

the bounded harmonic function on G with #(2, ZQ) = rn on 9G. Then by Lemma

1.2.4, since G Π J = 0, ^(2, 20) = r« on G. This is a contradiction. Q.E.D.

LEMMA 3.4.2. There exists a unique positive harmonic function ton,m on

Un+. - Rm such that wn,m = 0 on dUn+i ~ Rm and Wn,m-1 on Fn+i,m Moreover,

Wn,m is continuous on Un+i — Rm and there exists a constant σn>0 such that

Wn,m(p) >σn for any p^Γn (m = 1, 2, . . . ) .

Proof. Let k>m+l and uπ be harmonic in RkΓi Un+i-Rm with boundary

value uk = l on Fn+i,m and uk = Q on Fn+i,k U (d(Rk Π ϋn+ι) -Rm^- Since Uk<

Uk+p, Wn,m = limkUk is a positive harmonic function on U»+i — Rm with boundary

value Wn,m = l on Fn+i,m and wn,m = 0 on dUn+i-Ήm- The unicity of such a

^n,m follows from Lemma 1.2.4. We get

ΛfonCΊ.M -JF m + 1 (Wife) = Uk*dUk.

As Wfc is harmonic on BRmn Π £7Λ+i and converges uniformly to ^«,m on

3/?m+i Π C/n+i, so we get

0 < linu uk *duk = \ wn, m *dwn, m < °°

Hence by Fatou's lemma,

= Wn,m*dWn,m< °° .
J 9 Rw+iπί/M+i

On the other hand, let # be harmonic in Z?m+i Π £7«+i - Rm with boundary value

v = w;w,m on FΛ+ifm+i and ϋ = 0 o n d(Rm+i Π C/M+i - Λm) - Fn+j.m+i. Then clearly

DRm+inUn+l-Rm(v) < °° . Let

f =

Wn,m On R Π Un+i " Rtn+l i

# o n Rm+i Π Z7W + 1 — ^"m

0 on R-
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Then / is bounded continuous a.c.T function on R and DR(f) = DRm+lnUn+i-Rm(v)

+ Dσn+ι-Bm+Swn.m)< °°. Hence / e M(R) and so / is continuous on i?*. In

particular, wn,m is continuous on £7» n — Rm+i and so Un+ι — Rm-

Next let i?0 = (z e i? #U, zo) >b) be contained in Rx Π £/Λ+i with its closure.

Put

+i — Ro, Hence

From this, by

Then M ; ( Z ) > 0 on ί/M+1 and wU) = 0 on 9£7«+i and Z<;(2)<1 on

Wn,m — w = l-w>0 on Fn+itm and ̂ M,m — ̂  = 0 on 9£7«+i - i?

Lemma 4, we get

OTi Un+l ~

Let ^ be in ΓΛ. Then

The unicity of such a w;w,m follows from Lemma 1.2.4.

LEMMA 3.4.3. r(Γ Λ )>tf i r (F Λ + i , m ) (wι = 1, 2 ,- . . . ) . -

Q.E.D.

Proof. Let ̂  be an arbitrary positive integer larger than 4 and pu p2, . . . ,

be in ΓΛ. We choose ^ points zu 22, . . . , Zk in Fn+i,m inductively as follows.

Let

and z\ be in Fn+i,m such that

Since %(2:)>0 on R> uΛz) - wi(«i)wn,m(z) > 0 on 3(£/w+i —i?m), where ẑ «,m is

as in Lemma 3.4.2, and so by Lemma 1.2.4, UL(Z) >ui(z)wn,m(z) on Un+ι — Rm

and so on Un+ι ~ i?m. Hence in particular,

Uι(pi)>:Uι(Zi)Wn,m(pi) >0nU\(Zι)

and so

k 2, ... ,k k 2, ... ,/c

Σ Έ Σ )

1, . . . , n

and hence by putting α = Σ g(PύPj\ we get
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(3.4.1) σn^lg(zupi)+ ' Σ g(pi,Pj)<a.

Next we choose 22, . . . , zn-i in Fn+i,m satisfying

(3.4.2) tfi'Σ g(ziy zj) + σnΈ Σ g(zi,pj)+ Σ " g(Pupj)<a
ij l j l i

(i> = 2, 3,

First let

and 22 be in Fn+um such that

Similarly as above, we have %(/>)>«2(z2)wn,mii)^^««2(22) for £ in Un+i~-Rm

and so

*Σg(p2>Pj) + σng(zui>2)'>.σn'Σg(z2,pj) + <τϊ̂ (2i, 22).
.7 = 3 j = 3

From this with (3.4.1), we get

2 7c 3, . . . , k

o2ng(zuZ2) + <Jn*ΣilLig(zi,pj)Jir Σ g(Pi, Pj) < a.
i = i j = 2 t<i

This is nothing but (3.4.2) for v = 2. Next assume that z2, . . . , z"v ( z ^ < ^ - 3

have been already chosen in Fn+i.m satisfying (3.4.2). Let

k v

Uv+i(z)= Σ g(ztpj) +
j=v+2 1=1

and 2v+i be in Fn+i,m such that

Similarly as before, we have Uv+i(p)>uv+1(zv+ι)wn,m(p)>σnU\,+ι(zv+i) ίor p in

Un+i - Rm and so

k v jfc v

Σ £ ( ί v + l , 0 y ) + < 7 « Σ # U f , i > v ί l)>tfΛ Σ ^ U v + l , A ) + < ί i Σ ^ ( 2 ι » 2 v + l ) .
j=V+2 ί=l j=V+2 ί-1

From this with (3.4.2) for v£k-3, we get

1, . . . , v + i v+1 k v + 2, . . . , k

ύ\ Σ g(zi, Zj) + σnΈ Σ g(zi,pj)+ Σ g(PuPj)<a.
i<j ί=l j=v+2 ί<J
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This is (3.4.2) for v + 1. Thus we have constructed the system z2f . . . , Zk-2.

Next let

fc-2

Uk-i(z) =g(z,pk) + σn'Σgizi* z)

and zk-i be in Fn+i,m such that

Uk-ι(zk-ι) = τΩ.inz^Fn+ltmUk-ι(z).

Similarly as before, we get Uk-Λp)>:uk-i(zk-i)iVn.m(p)>(*nUk-i(zk-i) for p in

ΰn+i- Rm and so

7c- 2 fc-2

g(pk-hpk) H- ̂ M Σ ^ ( 2 J , ί^-l) ><ϊng(Zk-hPk)
i = l

From this with (3.4.2) for z> = &-2, we get

1 A r - 1 fc-1

(3.4.3) <JJ Σ r̂(ft, ZJ) -hσn'Σg(zupk) < a

Finally let

and Zk be in Fn+i,m such that

* = 1

Similarly as before, we have Uk(p) > Uk(zk)wn,m(p) > <τ« Uk(zk) for ./> in ί/«+i - Rm

and so

/ f - l fc-1

Σ ί Σ 2 ι , Zk ).

From this with (3.4.3), we get

1, . . . , fc

» Σ g(zi> Zj) < a.

Hence by the definition of n>(Fw+i,m), we get

til?) Tk(Fn+i,m) < ' Σ

Since pu . . . ,pk are arbitrary in ΓM, so
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or σlτk(Fn+i,m) <>τk(Γn). Hence by making A/*oo, we finally get

LEMMA 3.4.4. \imm-+<» r(Fn,m) = °°

Proof. Let μn,m be as in Lemma 3.3.1 for F r t,m. Then D{gμrltm) = 2 πr(Fn,m).

Put um = gμn.m/r(Fn,m) Then Um^MA(R) and wm = l on Fw,m and harmonic

in R- Fn,m and

D(Um)=2π/r(Fn,m).

By Lemmas 1.2.1 and 2, there exists / in M{R) such t h a t / = l on Un-Rm

and 0 on J. Hence by Lemma 1.4.2, there exists vm^M(R) such that vm- 1

on Un — Rm and ι>m = 0 on J and #m is harmonic in R- (Un — Rm)> Then by

applying Lemma 1.4.2 for K = Fn,m, we get

D(um)<D(vm).

Again by applying Lemma 1.4.2 for K=zFn,m+ρ and vm and vm+ρ9

DR(Vm) - Dn

Hence (»«)«.! is D-convergent. By Lemma 1.2.4, vm>vm+p on R and soί/ =

limmt>m is a harmonic function on R and so # = BDΛimmvm. Thus v^M(R)

or v is continuous on i?* and 0 < v < vm implies υ - 0 on Δ. Hence by Lemma

1.2.4, v = 0 on R. Thus £D-lim ι;m = 0. From this,

0 ^ lim s\ipmD{um) ^ UmmD(vm) = 0.

Therefore, we obtain

lim infmAFntm) =limm2π/D(um) = oo, Q.E.D.

PROPOSITION 3. p(Γn) = oo (w = 1, 2, . . . ).

/. By Proposition 2 in Section 3.1 and Lemmas 3.3.2 and 3.4.3, we

get the relation

Hence by Lemma 3.4.4, we get, by making m/ oo, μ(Γn) = °°. Q.E.D.

IV. Proofs of Theorems 1 and 2

4.1. By Proposition 3, p(Γn) = oo. Since μ(Γ») =\immμm(Γn), we can find

an increasing sequence (wjθ*=i of positive integers such that
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(ft = l, 2, . . . ) .

By the definition of pmk(Γn), we can find rrik points p{i% (ί = 1, 2, . . . , m*) in

Γw such that

Then the function

en.k(P) ^2"k'1m;1

t = l

is continuous on R* and harmonic on R and en,k(P)>l/2 for any p in Γw. Since

g(zoyq) is finitely continuous in q on Γ, g{z0, q) <, c o < °o for any # in Γ. Hence

en,k(zo) <, co/2k+1 and so

is a positive harmonic function on i?. Let p^Γn> As e « U ) > S * » , * U ) o n

k = l

for any positive integer N. Hence

N N
lim infasz-^eΛ(z)->Σ * « ( £ ) >

Next by making iNΓ/̂  00, we get

Now we put, by noticing en{zo)<c<> (w = l, 2, . . . ) ,

on R. Then e( ε) is a positive harmonic function on R. Let p e Γo. Then />

ΓΛ for some n. Since e(z)>2~nen{z) on i?, we get

lim infB32-/

Hence we have

(4.1.1) l imjB 3 ^ p

4.2. we denote by εp(p^R*) the unit positive regular Borel measure such

that ej(i) = 1 and εp(R* - ( # ) ) = 0. We set

β= ZΔ *
«=1fc = 1 i = 1
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Then μ is a unit positive regular Borel measure on R* with SμcΓo and

μ(R* - Γo) = 0 such that

e(z) = 1 g(z, q)dμ{q).

Clearly, we can write

μ = Σ *, e<z, >

where (qi)T=i is the sequence of points in Γo which is a rearangement of (pk*,)),

and where (/Ϊ)Γ=I is the sequence of positive numbers such that Σ f t = l which
t = l

is given by ti = 2'n'k'1mt with Qi=Pk!}.

We shall prove that this μ is required measure in Theorem 2. Clearly μ

satisfies (4) and (5). Notice that

4.3. Now we show that D(e(z) ΓΊ c) <2πc (c>0) and e{z) is continuous

on i?* and e(p) =0 on Δ and £(/>) = oo on Γo, i.e. μ satisfies (6), (7), (8) and

(9) in Theorem 2.

Let n be an arbitrary but fixed positive integer. We set

a n d

dy(z)=*dx(z).

Then we can use x+iy as local parameter at each point of R except at most

a countable number of isolated points in R where dx(z) =0. We put

where α > 0 and we assume t h a t dx±?0 on (z\ x(z) = α:). As we have

so by Schwarz's inequality, we obtain

(it ~g(z,qi)2)dy)>n\ dy
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Notice that except at most a countable number of cc >0> dx^Q on (z x(z) = α).

By (g.3), ίg. 7) and (g.9) in Proposition 1, x{z) is contiunous on Λ* and

vanishes on A and x(z) Γϊc^M(R) (c>0). Applying (1.4.2) in Lemma 1.4.3

for ϋΓ=(i>e#*; x(p)>a) and (x(z) Πa)/cc, we get

Hence we have

(4.3.1)

Thus if c<,a<c\ where ώ;#0 on (z; x{z) = cf)t then

Therefore, we get

Σ Igrad^(^, qd \2dyf
l

if c < oc < d. Hence

(4.3.2) \ (L(x)Ydx< nc-'DRixΠ c') -flDRigiz, qi) n c'tf1) < oo.

Here we used (g.7) in Proposition 1 and the fact that

dΛ (Σlgrad^(^φ)|2W

ff Igrad g{z,qi)?dxdy
x^c'

\graάg(z,qi)\2dxdy.

As g{z, qi) < c'tΐ1 on (z&R; x(z) <cf) (* = 1, 2, . . . , w), so

f f I grad £ ύ , ̂ , ) I2 dxdy<DR(g(z, qd Π c'ίΓ1) < 2 Trc'ί,"1.

Hence we get (4.3.2). From (4.3.2), we get L(a)< «> or

(4-3.3) f I ^ U ί , ) l < ^ (1 = 1,2, . . . ,Λ)

for almost every c<a<cf and so for almost every a>0. For the sake of

simplicity, we say that a>0 is regular for x(z) if dx^O on b ε i ? ; #(2) = α )
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and (4.3.3) holds. We notice that the totality of regular positive numbers

are dense in the totality of positive numbers.

Now let c>0 be regular for x(z). Then by (4.3.1) and (4.3.3), we get

(4.3.4) DR(x ΠC)=C\ *dx = c Σ tλ *dg(zy qi).
Vx=c i=i Jχ=c

Let a >ctTι and g(z, qd # 0 on (z e R g(z, qd = a). Then the interior of K! =

; x(p) > c) contains K=(p(=R*; g(p, qd > α). Since

by (4.3.3), we can apply (1.4.2) and (1.4.3) in Lemma 1.4.3 for K and K!

and (g(z, qi) Π a/a) and so we get

\" *d(a'1g{z9Qi)) = \ *

= Dn-κ(a~1g(zt qd) =DBWΉg(zt qi) Γi a))

or

*dg(z, qd = a ^Rigiz, qd Π a) < a'1 2 τro: = 2 TΓ.

Hence by (4.3.4), we obtain

ZVtf Π c) = c Σ tS *dg(z, q{) = 2 πc'Σ U <2 πcy

t = l JX=C t = l

i.e.

(4.3.5) DE{(ΈUg(z>qi))nc)<2πc (Λ = 1, 2, . . .)

n

As (d((Σ>tig(z, qd) Γic))n=i converges to d{e(z)Γ\c) on R except the set

(z; e{z) =c) for each local parameter z on R> so by Fatou's lemma,

(4.3.6) DR{e(z)Pιc)<2πc.

If c>0 is not regular for x(z), we choose regular cn>0 for #(2) such that

cn\c, then ^(^(2) Π c)<DΛ(^(2) ΠcM) < 27rc«. Hence by making n/co, we

get (4.3.6) for any c>0. This is (6) in Theorem 2. From this, by Lemma

1.3.1, e(z) is continuous on iv?*, which is (7) in Theorem 2. From (4.1.1),

e(p) = 00 on Γo, which is (8). Clearly
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Πc)-»O (w-> °o)
t = l

for any compact K in R (cf. p. 78, Satz 7.4 in [1]). Hence by Lemma 1.4.1

with (4.3.6), e(z) eMk(tf), or e{p) = 0 on Δ, which is (9) in Theorem 2. Thus

we proved Theorem 2 completely.

4.4. Theorem 1 follows immeadiately from Theorem 2. In fact, assume

that (2M)«=iG 3\R). We show that limn^«>£μUn) = °° If this is not true,

then we can find a subsequence {wn)n=i of (zn)n=i such that

0<\\mn^<»gμ(iϋn) =b< oo.

Clearly (M;M)"=IG J Ί i ? ) . Let ^o be an accumulation point of (M;»)£=I. Then

since

lim infn-**>g(wn, 2 0 )>0,

we conclude that pQ e Γo. Let Λ = Q) be the totality of neighborhoods of po in

/?*. Then Γ = Λκ (1, 2, 3, . . .) is a directed set if we define that t = (A, w)>

t' = (λ'fn') if λaλ' and n>n'. For each ί = (A, w), (Wv)?-! Π (A - £«) # 0 . We

choose a point ^ in (wv)^i Π (A - Rn). Then clearly lim^r^i =i>o Moreover,

let M =w if ί = (A, Λ). Then linveyKN °°. Hence by lim^oo^μί^w) =b, we

get limber^μ(^) = ά< oo. On the other hand, since gμ is continuous on R* and

#μ = oo on 7o, we get

which is clearly a contradiction and so gμ satisfies (1) in Theorem 1. Since

D(gμ.Γ\c)<2πct gn also satisfies (2) in Theorem 1.

Finally we show that gμ is singular, which is (3) in Theorem 1. Let c>0

and h be a non-negative harmonic function on R with h<gμΠc on /?. Since

#μ = 0 on J, we get

\\mRΈBz+qh(z) = 0

for any q in J. Hence by Lemma 1.2.4, h{z) ^0 on i?. Thus the greatest

harmonic minorant of gμ Π c is identically zero and so gμ is singular.

Thus u = gμ is the required function in Theorem 1. This completes the

proof of Theorem 1.
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