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1. Summary

The purpose of this paper is to prove that if n-\-3, or more, strongly
convex sets on an n dimensional sphere are such that each intersection of
M+2 of them is empty, then the intersection of some n + 1 of them is empty.
(The n dimensional sphere is understood to be the set of points in w+1
dimensional Euclidean space satisfying x\-\-x\-\- • • • +3%+! = 1.)

2. Introduction

In Euclidean space a set is called convex if together with any two of
its points it contains the entire line segment joining them. The notion of
convexity is easily extended to sets in spherical space, that is sets on the n
dimensional sphere as defined already: to be convex a set, together with
any two of its points, must also contain the minor arc of the great circle
joining them.

However, a complication arises if a set contains a pair of points for
which this minor arc is not well defined, i.e. a pair of diametrically opposite,
or antipodal points. Consequently there are different definitions of spherical
convexity according to the conditions laid down for antipodal points.
There are four definitions given in Danzer, Griinbaum and Klee [1]: strong
convexity, weak, Robinson-, and Horn-convexity. These are in order of
increasing generality, and each is implied by the preceding. This paper is
concerned only with strong convexity. A set on a sphere is defined to be
strongly convex if and only if it does not contain antipodal points, and
together with any two of its points contains the minor arc of the great
circle joining them.

The following results are used:

THEOREM 1 (Separation) [4]. Two disjoint closed strongly convex sets on
a sphere can be strictly separated by a hyper plane through the centre.

THEOREM 2 (Helly) [1, 2]. If a family of convex sets in n dimensional
Euclidean space is such that each intersection of n-\-l of them is non-empty,
then the intersection of them all is non-empty.
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THEOREM 3 (Molnar) [3]. / / a family of closed strongly convex sets on
an n dimensional sphere is such that no n-\-2 of them cover the sphere and each
intersection of n-\-\ of them is non-empty, then the intersection of them all is
non-empty.

For a survey of separation theorems see Rennie [4], for Helly's theorem
and its relatives see Danzer, Griinbaum and Klee [1], who give a compre-
hensive bibliography of the subject, and for related Helly-type theorems
on a sphere using Robinson-convexity see Robinson [5].

The result is first proved for n-\-Z closed sets.

LEMMA. / / W + 3 closed strongly convex sets on an n dimensional sphere
are such that each intersection of w+2 of them is empty, then the intersection
of some n-\-\ of them is empty.

PROOF. Let A, B C, D, • • •, Z be w+3 closed strongly convex sets
on an n dimensional sphere. Suppose that

(1) each intersection of n-\-2 of them is empty,
(2) no intersection of n-\-\ of them is empty.

We obtain a contradiction.
The sets B and C n D n • • • n Z are disjoint, so, by the separation

theorem they can be strictly separated by a hyperplane through the origin.
This hyperplane defines two open hemispheres. Call that containing B the
lower hemisphere and the other the upper hemisphere.

Map the upper hemisphere onto the hyperplane parallel to the first
hyperplane and tangential to the hemisphere by a projection with vertex
the centre of the sphere. It is clear that under such a mapping or its inverse
the convexity and intersection properties of sets are preserved. Denote the
images under this mapping of those parts of the sets A, C, D, • • •, Z that
lie in the open hemisphere by A', C, D', • • •, Z'.

If all the intersections of w+1 sets including A', and excluding B' and
one other were non-empty, then, since C n D' n • • • n Z' is also non-
empty, by Helly's theorem, A' n C n D' n • • • n Z' would be non-empty.
This contradicts (1). Therefore at least one of the above intersections must
be empty. Suppose, without loss of generality, that A' n D' n • • • n Z' is
empty. Then A n D n • • • n Z has no point in the upper hemisphere.

Now map the lower hemisphere similarly onto a hyperplane, denoting
the image sets by A", B", C", D", • • •, Z".

If A" n D" n • • • n Z" has a point in this plane, then consider the
n-\-2 sets A", B", D", • • •, Z". Every « + l of them have non-empty
intersection (2), so, by Helly's theorem, the intersection of them all is

https://doi.org/10.1017/S144678870000416X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000416X


[3] A Helly-type theorem on a sphere 325

non-empty. This contradicts (1). Therefore A" n D" o • • • n Z" is empty,
and so A n D n • • • n Z has no point in the lower hemisphere.

It has now been shown that A n D n • • • n Z has no point in either
of the two open hemispheres. Since it is not empty (2), this intersection
must lie entirely in the region of the sphere that separates the two hemi-
spheres. This region is an n—1 dimensional sphere.

By Molnar's theorem any w+2 of the sets cover the sphere, for other-
wise there would be some n-\-l with empty intersection. Therefore each
point on the sphere belongs to at least two of the sets.

There is a point on the n—1 dimensional sphere in A n D n • • • n Z.
Therefore the antipodal point must belong to B n C, since no set contains
a pair of antipodal points. But B belongs entirely to the lower open hemi-
sphere. Thus a contracdition has been obtained and the lemma established.

The extension to a family of sets whether closed or not is routine.
Let a, b, • • •, z be « + 3 strongly convex sets on an n dimensional sphere.
Consider all the non-empty intersections of a with one or more of b, • • •, z.
Choose one point from each of these intersections and denote by A the
convex hull of all these points, that is the smallest convex set containing
them. Define B, • • •, Z similarly. Now A, B, • • •, Z have the same inter-
section properties as a, b, • • •, z; for if a particular intersection of some
of a, b, • • •, z is non-empty then at least one point of it must belong to the
corresponding sets oiA,B,---,Z and thus to their intersection. Conversely,
if a particular intersection of some of a, b, • • •, z is empty, then, since
A C a, B C b, • • ', Z C z, the corresponding intersection of the sets of
A, B, • • •, Z must be empty. The sets A, B, • • •, Z are closed and strongly
convex, and so by applying the lemma the result for the sets a, b, • • •, z
is obtained.

Finally if the family has more than n-\-3 sets and satisfies the rest of
the hypothesis the result follows immediately by considering just « + 3 of
the sets. This completes the proof of the theorem.

I thank Professor B. C. Rennie of the University College of Townsville
for interesting me in Helly's theorem.
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