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A hyperbolic two-fluid model for gas–particle flow derived using the Boltzmann–Enskog
kinetic theory is generalized to include added mass. In place of the virtual-mass force, to
guarantee indifference to an accelerating frame of reference, the added mass is included
in the mass, momentum and energy balances for the particle phase, augmented to
include the portion of the particle wake moving with the particle velocity. The resulting
compressible two-fluid model contains seven balance equations (mass, momentum and
energy for each phase, plus added mass) and employs a stiffened-gas model for the
equation of state for the fluid. Using Sturm’s theorem, the model is shown to be globally
hyperbolic for arbitrary ratios of the material densities Z = ρf /ρp (where ρf and ρp are
the fluid and particle material densities, respectively). An eight-equation extension to
include the pseudo-turbulent kinetic energy (PTKE) in the fluid phase is also proposed;
however, PTKE has no effect on hyperbolicity. In addition to the added mass, the key
physics needed to ensure hyperbolicity for arbitrary Z is a fluid-mediated contribution
to the particle-phase pressure tensor that is taken to be proportional to the volume
fraction of the added mass. A numerical solver for hyperbolic equations is developed
for the one-dimensional model, and numerical examples are employed to illustrate the
behaviour of solutions to Riemann problems for different material-density ratios. The
relation between the proposed two-fluid model and prior work on effective-field models is
discussed, as well as possible extensions to include viscous stresses and the formulation
of the model in the limit of an incompressible continuous phase.
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1. Introduction

The difficulties in developing hyperbolic two-fluid models for disperse multiphase flows
has been reviewed by Lhuillier, Chang & Theofanous (2013). Many of the models that
have been proposed in the literature suffer from being mathematically ill posed (see Drew
& Passman 1998; Vazquez-Gonzalez, Llor & Fochesato 2016, for other discussions of
this topic), most notably when the Archimedes force is included. Mathematically, well
posedness of nonlinear multiphase flow models implies hyperbolicity of the underlying
Cauchy problem (Métivier 2005). In practice, numerical simulations with non-hyperbolic
two-fluid models diverge under grid refinement due to the complex eigenvalues in the
continuum limit (see, e.g. Ndjinga 2007; Kumbaro & Ndjinga 2011). To solve this problem,
ad hoc correction terms have been added to make the models well posed (see, e.g. Panicker,
Passalacqua & Fox 2018). In particular, some authors have resorted to neglecting the
Archimedes force (see, e.g. Hank, Saurel & Le Metayer 2011), which is the root cause of
non-hyperbolicity. For bubbly flows the Archimedes force is of critical importance when
buoyancy effects are present.

Starting from a kinetic-theory description, Fox (2019) developed a hyperbolic two-fluid
model for gas–particle flows that neglects added-mass effects (as well as inelastic
collisions and viscous effects). The model equations were derived starting from the
Boltzmann–Enskog kinetic theory for a binary hard-sphere mixture. A closure for the
particle-pair distribution functions was introduced to account for the Archimedes force
in the limit where one particle diameter is much smaller than the other. However, because
the closure for the particle-pair distribution function only accounts for mean gradients, it
cannot capture the higher-order correlations needed for added mass. The system of velocity
moment equations was truncated at second order, and the unclosed collisional source
terms were closed using an isotropic Gaussian (Maxwellian) distribution (Levermore &
Morokoff 1996; Vié, Doisneau & Massot 2015). Then, by employing Sturm’s theorem
(Sturm 1829), it was demonstrated that the resulting two-fluid model is hyperbolic for
physically realistic values of the model parameters. In comparison to other two-fluid
models, novel contributions to the pressure tensor and energy flux (which appear in closed
form) arise and play a key role in ensuring hyperbolicity when fluid and particle material
densities satisfy ρf � ρp. Here, we employ the same model formulation, extended to
account for the added mass from particle wakes and pseudo-turbulence, to compressible
fluid–particle flows with a slip velocity due, e.g. to buoyancy.

Our treatment of added mass is similar to Cook & Harlow (1984) (see appendix A
for more details), but generalized to a compressible fluid and a non-constant added-mass
function. The latter is required to handle flows wherein the particle-phase volume
fraction varies significantly. In our model and in the model of Cook & Harlow (1984),
mathematical objectivity is ensured, unlike in other formulations (e.g. Drew, Cheng &
Lahey 1979; Massoudi 2002). In the context of kinetic theory, the approach of Cook &
Harlow (1984) where the added mass moves with the particle velocity allows us to simply
redefine the particle properties without changing the basic form of the kinetic equation
governing the velocity distribution function (Fox 2019). Nonetheless, because the fluid in
the particle wake is not fixed, but exchanges with the bulk fluid, mass transfer must be
included in the kinetic equation to model the convective mass-transfer process. Here, a
simple model is employed that depends on a mass-exchange function Sa. (See figure 1 for
details.) Because the mass-transfer model involves neither spatial nor temporal derivatives,
its form does not affect the hyperbolicity of the two-fluid model.

From a kinetic-theory perspective, the added mass of fluid on a particle can be accounted
for by defining a particle’s volume and mass to include the fluid moving with the particle
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FIGURE 1. Schematic of a particle with its added volume of fluid (i.e. the wake of the particle).
The fluid in the wake exchanges mass with the external fluid at a net rate determined by Sa.
The total particle volume, moving with velocity up, is V�

p with sub-volume Vp having material
density ρp and added volume Va having material density ρf . The external fluid with material
density ρf and moving with velocity uf , has volume V�

f = V − V�
p . The mass of the particle is

mp = ρpVp + ρf Va. In terms of the volume fractions, mp = (ρpαp + ρf αa)V = ρeα
�
pV where ρe

is the effective density of the particle with its added mass and α�
p = αp + αa. Thus, the added

volume of fluid moving with the particle velocity is αaV , and the added mass is ρf αaV . The
added-volume fraction must satisfy 0 ≤ αa ≤ αf so it is convenient to define an added-mass
function cm by αa = cmαpαf . As the added volume is usually associated with particle wakes, cm
can depend on the particle Reynolds number Rep, the particle-phase volume fraction, and other
dimensionless parameters needed to describe the flow. In the limit αp → 1, all of the fluid can be
assumed to move with the particle so that cm → 1; however, this is not required for hyperbolicity.

(Marchisio & Fox 2013), i.e. the fluid in the particle wake (Moore & Balachandar
2019). The total particle mass mp is then employed in the kinetic-theory expressions
for the velocity moments. This procedure introduces two volume fractions, namely αp
and α�

p = αp + αa. The former is the usual volume fraction of the particle phase, while
the latter includes the volume of the fluid moving with the particles. Naturally, α�

p ≥ αp
and the corresponding fluid-phase volume fractions are α�

f = 1 − α�
p and αf = 1 − αp,

respectively. A similar decomposition of the fluid-phase variables is used by Osnes et al.
(2019) to define a modified slip velocity (ufree = αf ufp/α

�
f ) in supersonic gas–particle

flows. Using arguments similar to those of Risso (2018) for bubbly flows, these authors
also reported that the pseudo-turbulence in the streamwise direction is well approximated
by αau2

fp/α
�
f , and for fixed αp show that αa decreases with increasing Rep (Osnes et al.

2020).
For the analysis of hyperbolicity, it is convenient to introduce an added-mass function

cm defined such that αa = cmαpαf . In principle, cm can be a function of the slip velocity
between the two phases (i.e. of the particle Reynolds number Rep = ρf dpufp/μf where dp
is the particle diameter and μf is fluid viscosity), the density ratio Z = ρp/ρf , and the
volume fraction αp (Zuber 1964; Sangani, Zhang & Prosperetti 1991; Zhang & Prosperetti
1994). However, in the dilute limit, Odar & Hamilton (1964) found experimentally that
cm depends only on the acceleration number Ac = u2

fp/(adp) where a is the magnitude
of the particle acceleration, which we approximation below using the drag force. Unless
cm = 0, the phase velocities found from the kinetic-theory derivation will not be equal
to those found from volume averaging unless added mass is accounted for in the latter.
Nevertheless, the kinetic-theory derivation leads to conservation laws in the form of
hyperbolic equations. This has advantages over a formulation where the virtual mass is
treated as an interphase force when solving the two-fluid model numerically.
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Finally, because the added mass can vary from location to location in the flow, mass
transfer between the bulk fluid and the added-mass fluid (i.e. the particle wake) must be
accounted for in the model. This is done by introducing an added-mass exchange rate Sa.
The exchange of mass between the bulk fluid and added mass also induces an exchange of
momentum and kinetic energy, which depends on the direction of the mass exchange.
The bulk-fluid momentum is ρf α

�
f uf , while that of the added-mass fluid is ρf αaup.

Concerning the total energy, for the particle phase it is defined by

ρeα
�
pEp = ρeα

�
p

(
Θp

γp − 1
+ 1

2
u2

p

)
, (1.1)

where γp = 5/3 for hard spheres, Θp is the granular temperature and ρeα
�
p = ρpαp + ρf αa

defines ρe. For simplicity, in (1.1) the internal energy associated with the solid phase and
the added mass is neglected. Otherwise, an additional scalar transport equation would be
required, which does not change the hyperbolicity of the system (Houim & Oran 2016).
For the bulk fluid, the total energy is defined by

ρf α
�
f Ef = ρf α

�
f

(
Θf

γf − 1
+ 1

2
u2

f + kf

)
, (1.2)

where γf is the fluid specific heat ratio, Θf is the fluid temperature and kf is the
pseudo-turbulent kinetic energy (PTKE). In the two-fluid model, the momentum-exchange
contribution is equal to Sauf or Saup, and the energy-exchange contribution to Sa(u2

f /2 +
kf ) or SaEp, depending on the sign of Sa. The asymmetry in the energy exchange from the
bulk fluid to the particle wake results from neglecting the internal energy in (1.1). In the
compressible two-fluid model, (1.1) and (1.2) are used to find the temperatures Θp and Θf
given the total energies Ep and Ef , respectively. In the stiffened-gas model used for the
fluid, Θf must be initialized such that the fluid pressure pf is positive.

2. Two-fluid model for compressible flows

2.1. Governing equations
The governing equations for mono-disperse particles in a compressible fluid with added
mass, but neglecting PTKE, are given in table 1. If PTKE is taken into account (Shallcross,
Fox & Capecelatro 2020), the model has the form given in table 2. We should point out
that in the balance equation for kf the part of the source term DPT due to drag is Ku2

fp, which
is the same as the correlated part of the source term for total energy DE. Physically, this
implies that viscous losses are ignored during the exchange process such that drag transfers
energy to kf from the particle phase, which is subsequently dissipated to uncorrelated
energy by εPT . The accuracy of this assumption is likely to depend on the particle Reynolds
number, i.e. it will be more accurate for high Rep where the particle wakes are turbulent.
In practice, this difference can be accounted for by multiplying Ku2

fp in DPT (but not in DE)
by a damping factor dependent on Rep. Doing so, it may be possible to reduce the Mach
number dependence of Cf observed in Shallcross et al. (2020).

In prior work (Fox 2019), it has been demonstrated that for an ideal gas (γf = 5/3)
with material densities such that ρp � ρf and αa = 0 the two-fluid model in table 1
is hyperbolic for physically relevant values of the parameters. In this work, we mainly
consider the opposite case with ρp � ρf where the fluid phase is described by the
stiffened-gas model (Harlow & Amsden 1971; Saurel & Abgrall 1999). For a pure fluid,
the latter gives an equation of state of the form pf = ρf Θf − po

f where the constant po
f is
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∂t(ρpαp) + ∂x · (ρpαpup) = 0
∂t(ρeα

�
p) + ∂x · (ρeα

�
pup) = Sa

∂t(ρf α
�
f ) + ∂x · (ρf α

�
f uf ) = −Sa

∂t(ρeα
�
pup) + ∂x · (ρeα

�
pupup + ppI) = Kufp − ∂x · (αaPa

fp) − α�
p∂xpf + Sfp − F pf + ρeα

�
pg

∂t(ρf α
�
f uf ) + ∂x · (ρf α

�
f uf uf + pf I + α�

pρf R) = Kupf + ∂x · (αaPa
fp) + α�

p∂xpf − Sfp + F pf + ρf α
�
f g

∂t(ρeα
�
pEp) + ∂x · (ρeα

�
pEpup + ppup) = −DE − up · (∂x · αaPa

fp) − α�
pup · ∂xpf + SE − Dpf + ρeα

�
pup · g

∂t(ρf α
�
f Ef ) + ∂x · (ρf α

�
f Ef uf + α�

f pf uf + α�
ppf up + α�

pρf R · up + r) = DE + up · (∂x · αaPa
fp) + α�

pup · ∂xpf − SE + Dpf + ρf α
�
f uf · g

where ρp is constant,

α�
p = αp + αa ρe = ρpαp + ρf αa

αp + αa
α�

f = 1 − α�
p αf = 1 − αp

and the added-mass source terms are

Sa = 1
τa

ρf αf αp(c�
m − cm) Sfp = max(Sa, 0)uf + min(Sa, 0)up

τa =
4d2

pα�
f

3νf CDRepαf
SE = max(Sa, 0) 1

2 u2
f + min(Sa, 0)Ep

The other variables are defined as follows:

ufp = −upf = uf − up pf = ρf Θf − γf (γf − 1)po
f
αf

α�
f

pp = ρeα
�
pΘp(1 + 4α�

pg0)

R =
(

Θp + 1
3γp

u2
fp

)
I + 2

3γp
ufp ⊗ ufp Pa

fp = 2ρf

3γp

(
1
2

u2
fpI + ufp ⊗ ufp

)(
1 + 4α�

pg0

)

F pf = α�
pR · ∂xρf + (γp − 1)ρf α

�
p

(
tr(Γ )I + 2

γp
S
)

· ufp r = 2ρf α
�
pΘpupf

Dpf = up · F pf + 2α�
pΘp

[
upf · ∂xρf − ρf tr(Γ )

]
DE = K

(
3Θp + up · upf

)
Θf = (γf − 1)

(
Ef − 1

2 u2
f

)
Θp = (γp − 1)

(
Ep − 1

2 u2
p

)
g0 = 1 + αf

2α3
f

K = 3ρpα
�
pCDRep

4τp
τp = ρpd2

p

μf
S = Γ − 1

3 tr(Γ )I Γ = 1
2
[
(∂x ⊗ uf ) + (∂x ⊗ uf )

t]

TABLE 1. Compressible two-fluid model for particles in a fluid modelled as a stiffened gas. Typical values of the specific heat ratios are γf = 29/4
and γp = 5/3, and for the stiffened-gas constant po

f = 108 kg m−1 s2: CD is the drag coefficient that depends on the particle Reynolds number Rep,
fluid Mach number and volume fraction; and g is gravity. The default added-mass function is c�

m = min(1 + 2αp, 2)/2.
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∂t(ρpαp) + ∂x · (ρpαpup) = 0

∂t(ρeα
�
p) + ∂x · (ρeα

�
pup) = Sa

∂t(ρf α
�
f ) + ∂x · (ρf α

�
f uf ) = −Sa

∂t(ρeα
�
pup) + ∂x · (ρeα

�
pupup + ppI) = Kufp − ∂x · (αaPa

fp) − α�
p∂x · Pf + Sfp − F pf + ρeα

�
pg

∂t(ρf α
�
f uf ) + ∂x · (ρf α

�
f uf uf + Pf + α�

pρf R) = Kupf + ∂x · (αaPa
fp) + α�

p∂x · Pf − Sfp + F pf + ρf α
�
f g

∂t(ρeα
�
pEp) + ∂x · (ρeα

�
pEpup + ppup) = −DE − up · (∂x · αaPa

fp) − α�
pup · (∂x · Pf ) + SE − Dpf + ρeα

�
pup · g

∂t(ρf α
�
f Ef ) + ∂x · (ρf α

�
f Ef uf + α�

f Pf · uf + α�
pPf · up + α�

pρf R · up + r) = DE + up · (∂x · αaPa
fp) + α�

pup · (∂x · Pf ) − SE + Dpf + ρf α
�
f uf · g

∂t(ρf α
�
f kf ) + ∂x · (ρf α

�
f kf uf ) + ρf α

�
f Rf : ∂xuf = DPT − ρf α

�
f εPT

In addition to the variables defined in table 1,

Pf = pf I + ρf Rf Rf = 2kf

(
1
3 I + b

)
εPT = Cf k3/2

f /dp

SE = max(Sa, 0)
(

1
2 u2

f + kf

)
+ min(Sa, 0)Ep

DE = K
[
up · upf + 3aΘp − 2(1 − a)kf

]
DPT = K

[
u2

fp + 3aΘp − 2(1 − a)kf

]
Θf = (γf − 1)

(
Ef − 1

2 u2
f − kf

)
a = 1 + Zαa

1 + Z(αf αpb + αa)
Z = ρf /ρp

TABLE 2. Compressible two-fluid model for particles in a fluid modelled as a stiffened gas with a transport equation for PTKE kf . The
pseudo-turbulence tensor Rf arises due to the finite size of the particles and b is the PTKE anisotropy tensor (Tenneti, Garg & Subramaniam 2011).
The model for a is based on the asymptotic behaviours for ρf = 0 and ρp = 0. The parameter b fixes the ratio 3Θp/2kf when ρp = 0, and direct
numerical simulation data (Tavanashad et al. 2019) suggest that b = 0.365. The constant Cf is order one and fixes the magnitude of kf in spatially
homogeneous flow (Shallcross et al. 2020). An alternative is to use a transport equation for εPT to account for the integral length scale of PTKE in
lieu of dp.
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used to set the speed of sound in the fluid phase. For example, water can be simulated
with po

f ≈ 2225 MPa. The fluid temperature Θf (m2 s−2) is found from the fluid energy
Ef as shown in table 1, and must be large enough that pf > 0. In this work, we will use a
stiffened-gas model of the form

pf = ρf Θf − γf (γf − 1)po
f
αf

α�
f
. (2.1)

The actual value of po
f is not important as long as the speed of sound is much larger than

the other characteristic velocities (or eigenvalues) of the system. The factor αf /α
�
f has been

added to handle the limiting case where αf → 0 (i.e. densely packed particles), for which
this ratio diverges. Other forms of the stiffened-gas model are possible, and the factor
is not needed for more dilute systems where the disperse-phase eigenvalues remain well
separated from those of the fluid phase. For the disperse (i.e. particle) phase, the radial
distribution function g0 controls the speed of sound as αf approaches zero. For example,
if g0 is replaced with unity, the particle-phase speed of sound is weakly dependent on αp.
Here, to analysis the hyperbolicity of the two-fluid model, we use a form for g0 applicable
to non-deformable spheres, but other forms can be used as long as 1 ≤ g0. Furthermore,
replacing αf /α

�
f with g0 in (2.1) will not change the conclusions drawn in § 3 concerning

the hyperbolicity of the two-fluid models.
The kinetic-theory model derived in Fox (2019) made specific assumptions concerning

the two-particle distribution function that may be inaccurate for non-ideal gases and
liquids. Specifically, the terms involving R and r in table 1 are exact for hard-sphere
collisions (i.e. γf = γp = 5/3), but their definition in a stiffened gas is less obvious (e.g.
should they depend on both γf and γp?). Thus, in our analysis of the hyperbolicity of
the two-fluid model in § 3 we also consider a simplified version where these terms are
neglected in the fluid phase. Nonetheless, because the particle-phase pressure tensor Pp
includes an added-mass contribution involving R, one can argue that Pp has its origins
in the kinetic-theory description. In fact, in § 3 we show that the eigenvalues of the
one-dimensional (1-D) model are mainly determined by the choice of Pp and pf , with
R and r in the fluid phase only slightly changing the eigenvalues (while making the
hyperbolicity analysis more complicated). Thus, from the standpoint of applications to
real systems, the simplified model may offer a good compromise between computation
cost and model accuracy. However, one would also need to account for inelastic collisions,
particle-phase viscosity, as well as other effects (see, e.g. Abbas et al. 2010) in most
applications, none of which affect the hyperbolicity.

2.2. Added-mass model
In addition to the fluid drag with coefficient K, the models in tables 1 and 2 include
the buoyancy force, compressibility, lift and added mass. Compressibility and lift are
contained in the exchange force F pf (Fox 2019). The added-mass contribution is treated
differently than in most other two-fluid models where balance equations are written for
each phase with a virtual-mass force. Instead, here the phases are defined by their velocities
up and uf , and the added mass moves with the particle velocity up (see discussion in Cook
& Harlow 1984). For example, the mass per unit volume of the fluid phase moving with
velocity uf is ρf α

�
f = ρf (αf − αa). Note that

ρf α
�
f + ρeα

�
p = ρf αf + ρpαp, (2.2)
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so that the mixture density is independent of αa. The various volume fractions appearing
in the model are related by

α�
f = αf − αa α�

p = αp + αa αp + αf = 1. (2.3a–c)

Given the conserved variables (X1, X2, X3) = (ρpαp, ρeα
�
p, ρf α

�
f ) and the particle density

ρp, the volume fractions and fluid density are uniquely determined by

(αp, ρf , αa) =
(

X1

ρp
,

X3 + X2 − X1

αf
,

X2 − X1

ρf

)
. (2.4)

Hereinafter, we define the variable cm such that αa = cmαf αp, which is a convenient form
to enforce the upper limit on αa.

Although its definition is not required to analyse the hyperbolicity, the added-mass
exchange rate will be approximated by a linear relaxation model

Sa = ρf αf αp

τa
(c�

m − cm), (2.5)

with time scale

τa = 4d2
pα

�
f

3νf CDRepαf
. (2.6)

Physically, τa is the time scale characterizing the expansion/contraction/formation of
particle wakes. For example, when a particle moves from a region with large αp to one
with small αp (i.e. to larger spacing between particles), cm will be smaller than c�

m. Thus,
the wake will grow by entraining fluid with velocity uf and kinetic energy u2

f /2 + kf . The
time scale in (2.6) is meant to estimate this rate of growth and can be further refined
using data from particle-resolved direct numerical simulations (PRDNS) (see, e.g. Moore
& Balachandar 2019).

2.3. Added-mass function
In principle, by formulating a physically accurate function for c�

m, the two-fluid model will
be able to account correctly for unsteady effects. For example, c�

m might depend on Ac
(Odar & Hamilton 1964), making the added mass of the particle larger when the particle
acceleration is high. In this work, we are primary interested in the effect of added mass on
the hyperbolicity of the two-fluid model. In this context, source terms that do not depend
on space or time derivatives (such as Sa) have no influence on the eigenvalues of the
flux matrix. Nonetheless, the added-mass function c�

m(x) must have the properties 0 ≤
αpc�

m ≤ 1 and c�
m(0) = Cm where Cm is the added-mass constant, which is equal to 1/2 for

a spherical particle when αp = 0 (Zuber 1964). In addition, one might require c�
m(1) = 1 to

force all of the fluid phase to be treated as added mass when its volume fraction approaches
zero, but this is not required for hyperbolicity.

Theoretical expressions for the dependence of added mass on the particle volume
fraction can be found in Sangani et al. (1991); however, these expressions are valid
for αp < 0.5. From the hyperbolicity analysis in § 3, we find that 0.085 < c�

m < 1/αp,
which corresponds physically to 0 < α�

f < αf . These observations suggest the use of the
expression proposed by Zuber (1964) (written to account for the difference between uf and
vf ) of the form

c�
m = 1

2 min
(
1 + 2αp, 2

)
. (2.7)

Sangani et al. (1991) showed that this form is suitable for most applications (e.g.,
bubble and spherical particles with no-slip and free-slip boundaries); hence, it will be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.615


Hyperbolic compressible two-fluid model 903 A5-9

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8 0
1
2

1.0

Cm

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

αp

αp

(a) (b)

αp

FIGURE 2. Steady-state relation between αp and α�
p for the added-mass function c�

m = Cm +
(1 − Cm)x with three values of Cm. (a) x = αp. (b) x = α�

p. The diagonal line corresponds to
c�

m = 0. For the function in (2.7), the dependence will be the same as Cm = 1 for 1/2 < αp. Note
that the curve for Cm = 1 is the same for both choices of x .

the default expression in the proposed two-fluid model. Nonetheless, as done in Moore
& Balachandar (2019) for the velocity wakes around Lagrangian particles, PRDNS could
be used to improve this model to account for the particle Reynolds number and volume
fraction dependencies.

Another possible expression (which allows for direct computation of α�
p versus αp) is

the linear form

c�
m = Cm + (1 − Cm)x, (2.8)

with x = αp or x = α�
p, and 0 ≤ Cm ≤ 2. Based on their experimental results, Odar &

Hamilton (1964) found that Cm depends on the acceleration number as

Cm = 1 − 1
2 e−βAc, (2.9)

where β ≈ 3 and the acceleration number is defined by Ac = 4/(3CD). Thus, for very slow
acceleration, Cm = 1/2, whereas for rapid acceleration Cm = 1. However, more recent
theoretical works (e.g. Auton, Hunt & Prud’homme 1988; Sangani et al. 1991; Mei &
Adrian 1992) suggest that the decomposition of the virtual-mass and history forces used
by Odar & Hamilton (1964) is not reliable, and that Cm = 1/2 independent of Ac. In any
case, using (2.8) and given that α�

p = αp + cmαp(1 − αp), at steady state where cm = c�
m

with x = αp, the value of αp is the root in the interval [0 1] of a cubic polynomial for
0 ≤ Cm ≤ 2

(1 − Cm)α3
p + (2Cm − 1)α2

p − (Cm + 1)αp + α�
p = 0. (2.10)

For Cm = 1, the desired root is α2
f = α�

f (which also holds for (2.7) when αf < 1/2). For
other values of Cm, the root can be found numerically as illustrated in figure 2.

As previously noted, the choice of c�
m has no effect on the hyperbolicity of the two-fluid

model. Notwithstanding this fact, for actual applications, it will be important to choose
a functional form that accurately matches the dependence of the added mass on αp, etc.,
derived from PRDNS, experiments and theory.
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2.4. Particle-phase pressure tensor
In fluid–particle flows, the particles have uncorrelated motion due to fluid-mediated
interactions and direct collisions (Lhuillier et al. 2013). In recent PRDNS studies of bubbly
flow (du Cluzeau, Bois & Toutant 2019; du Cluzeau et al. 2020), these fluctuations are
referred to as the dispersed-phase Reynolds stresses, but it is important to note that they are
present in purely laminar flows (Biesheuvel & van Wijngaarden 1984). Indeed, in kinetic
theory the magnitude of the dispersed-phase Reynolds stresses is proportional to the
granular temperature Θp. In du Cluzeau et al. (2020), it is found that these terms (referred
to as M ex tra and MLD) make a significant contribution to the dispersed-phase momentum
balance. As described by these authors, in two-fluid models the corresponding flux terms
in the dispersed-phase momentum balance are usually separated into ‘dispersion’ forces
(proportional to ∂xαp) and a ‘drag’ force contributions. However, from the standpoint of
examining the hyperbolicity of the two-fluid model, it is simplest to treat them as part of
the momentum flux as done in this work.

Considering the effective repulsive force exerted between particles in random motion,
Batchelor (1988) proposed a (1-D) particle-phase stress model written in terms of the
hydrodynamic diffusivity D and the bulk mobility B of the form (written in our notation)

∂x pp = ∂xαpρpΘp − ρpD
mpB

∂xαf , (2.11)

where mp is the particle mass. He then used physical reasoning to argue that

ρpD
mpB

∝ ρf u2
fp. (2.12)

Considering that Batchelor’s model was developed for a 1-D flow with an incompressible
fluid phase, it is not unreasonable to treat his dispersion term as part of the particle
pressure as done in our compressible two-fluid model. From the kinetic-theory derivation
(Fox 2019), a dispersion term is also found in F pf , but written in terms of ∂xρf and
not ∂xαf . Thus, this dispersion term would be zero for an incompressible fluid phase.
Mathematically, the dispersion term in (2.11) would appear with the opposite sign in the
fluid momentum balance (i.e. it would be an interphase force), and the mixture momentum
balance would only contain pp.

Syamlal (2011) derived a ‘buoyant-force’ term that extends the fluid pressure in the
Archimedes force to include a relative-velocity contribution of the form ρf αf ufp ⊗ ufp.
Neglecting the particle pressure and considering an incompressible fluid, he demonstrates
that the two-fluid model for mass and momentum with this additional force is hyperbolic.
Comparing his model to the one in table 1 (and ignoring added mass), we observe that
the term in the fluid-phase momentum flux involving R (which is exact from kinetic
theory (Fox 2019)) is not present, and the particle-phase pressure tensor term ∂x · (αaPa

fp)
is replaced by the buoyant-force term αp∂x · (ρf αf ufp ⊗ ufp). In § 3.2, we find that the R
contribution to the fluid-phase momentum flux is not required for hyperbolicity (and, for
constant ρf , can be combined with the fluid pressure as done in § 5.2). Thus, by rewriting
the buoyant-force term in the form

αp∂x · (ρf αf ufp ⊗ ufp) = ∂x · (ρf αf αpufp ⊗ ufp) − ρf αf (ufp ⊗ ufp) · ∂xαp, (2.13)

it can be interpreted as a combination of a fluid-mediated particle-phase pressure tensor
and a dispersion force, albeit with a negative coefficient. As we show in § 3, the
fluid-mediated particle-phase pressure is essential for ensuring a hyperbolic system.
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Zhang, Ma & Rauenzahn (2006) and Zhang (2020) derived a two-fluid formulation
from a general kinetic theory accounting for long-range particle–particle interactions.
A particle–fluid–particle (PFP) force of the form ∂x · (αpΣpfp), where Σpfp is the PFP
stress, appears in their formulation. For uniform potential flow with constant ρf , Zhang
(2020) finds that

αpΣpfp = ρf
[
C1(αp)u2

fpI + C2(αp)ufp ⊗ ufp
]
, (2.14)

where C1 and C2 are coefficients that can be determined numerically. Unlike in (2.13), no
dispersion term arises in addition to the PFP force, nor is Σpfp related to the Archimedes
force. Nevertheless, the stress tensor in (2.13) is a special case of (2.14) and, hence, it is
reasonable to expect that the PFP force would affect favourably the hyperbolicity of the
system (which depends on the trace of Σpfp ∝ ρf u2

fp).
In kinetic theory, the dispersed-phase Reynolds stresses and fluid-mediated interactions

contribute to the particle-phase pressure tensor. Thus, from a physical-modelling
standpoint, an important component in the two-fluid model is the closure for this term

Pp = ppI + αaPa
fp, (2.15)

where pp = αppk
p + αapa

f with pk
p = ρpΘp(1 + 4α�

pg0), pa
f = ρf Θp(1 + 4α�

pg0) and

Pa
fp = ρf

2
3γp

(
1
2

u2
fpI + ufp ⊗ ufp

) (
1 + 4α�

pg0
)
, (2.16)

which is a particular form of (2.14). This model for Pp combines the kinetic-theory
dependence on Θp due to uncorrelated velocity fluctuations and direct collisions when
ρf � ρp (i.e. pp) with a component to describe the fluid-mediated interactions between
particles that are taken to be proportional to the added mass. In other words, even when
the granular temperature is null, in order to have a globally hyperbolic system we assume
that a particle pressure exists due to interactions between the particles via the fluid phase
(see van Wijngaarden 1976; Batchelor 1988; Zhang et al. 2006; Zhang 2020, for detailed
discussions).

In (2.16), the contribution 1 + 4α�
pg0 with 1 ≤ g0 accounts for the excluded volume

occupied by the particles. Other formulations of (2.16) are possible and will perhaps be
required to capture the correct physics (e.g. when ρf ≈ ρp or for deformable particles
such as bubbles). For example, one might consider replacing α�

pg0 with αpg0, or changing
altogether the definition of g0. However, as shown in § 3, such changes will not affect
the hyperbolicity of the compressible two-fluid model as long as γp is not so large as to
make Pa

fp negligible. Furthermore, in § 3 we find that with αp = 0, the system is hyperbolic
even when cm = 0 (i.e. αa = 0 in (2.15)). Thus, it is possible for Pa

fp in (2.16) to depend
linearly on α�

p (so that the fluid-mediated pressure depends on α2
p) without changing the

hyperbolicity of the system. An example of this behaviour is presented in appendix B
where it is shown that for an incompressible fluid the two-fluid model with trace(αaPa

fp) ∝
(α�

p)
2u2

fp is globally hyperbolic.
The tensorial form of the fluid-mediated particle pressure in (2.16), and its appearance

with the opposite sign in the fluid-phase momentum balance, is motivated as follows.
In the kinetic-theory derivation of Fox (2019), it was shown that the mixture pressure
tensor has the form Pmix = P1 + P2 + c12PBE regardless of the size ratio between the
hard spheres. The Boltzmann–Enskog contribution PBE leads to the term involving R in
the fluid-phase momentum balance when added mass is neglected (αa = 0). Biesheuvel
& van Wijngaarden (1984) derive a contribution to the mixture stress and liquid-phase
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Reynolds stresses with the same tensorial form as R based on potential flow around
spherical bubbles, but neglecting particle–particle interactions. Thus, with added mass,
we assume that the mixture pressure tensor remains unchanged, and share the contribution
αaPa

fp between the two phases. This is consistent with the kinetic-theory derivation where
the particle pressures in each phase depend on the particle size ratio, while the mixture
pressure does not (Fox 2019). Finally, note that the contribution ∂x · (αaPa

fp) arises from
the kinetic-theory derivation as a modification to the pressure tensors, while in the
compressible two-fluid model it can be interpreted as a fluid-mediated exchange force.
Finally, the parameter γp in (2.16) is equal to 5/3 for a hard sphere in an ideal gas, but in
general it can be used as a parameter to set the magnitude of the fluid-mediated particle
pressure (i.e. tr(Pa

fp) ∝ 5/(3γp)). On the other hand, the tensorial form of Pa
fp must be

kept consistent with that of R as both arise due from the same term in the kinetic-theory
derivation (Fox 2019). As seen from (2.14), up to the scalar coefficients that can depend
on αp, this tensorial form is the only one that can be formed from ufp (Zhang 2020).

In summary, the particle-pressure tensor in (2.15) combines two limiting behaviours for
the material-density ratio and it is a key modelling component for ensuring hyperbolicity
when ρp � ρf . This is consistent with Batchelor (1988) where it is also shown to have
a strong effect on the linear stability of a uniform suspension. It is also consistent with
the kinetic-theory derivation of Zhang et al. (2006); Zhang (2020) who demonstrate
that an inter-species stress arises due to particle–fluid–particle interactions, which do
not depend on Θp. Nonetheless, future research should be devoted to refining the
model for αaPa

fp in (2.16) to account for the αp and Rep dependencies observed in
PRDNS.

2.5. Limiting cases
Having previously investigated the case with ρf � ρp (Fox 2019), in the remainder of this
work we are particularly interested in the limiting cases with ρp = 0 (i.e. the particles
have zero mass) so that ρeα

�
p = ρf αa. However, we will also analyse the hyperbolicity of

the complete model for selected values of the material density ratio Z. As is well known,
the drag and body forces appearing on the right-hand sides of the model equations do
not affect the eigenvalues of the two-fluid model. Hence, in § 3 we will ignore them and
consider only the terms involving temporal and spatial gradients.

3. Hyperbolicity of 1-D two-fluid model

In order to determine whether the full three-dimensional (3-D) model in table 2 is
hyperbolic, it suffices to consider a system with one spatial direction (see, e.g. Ndjinga
2007; Kumbaro & Ndjinga 2011; Lhuillier et al. 2013). This approach will be followed
here, starting with the 1-D model without source terms that do not involve temporal or
spatial derivatives.

3.1. One-dimensional compressible two-fluid model
The 1-D model without the source terms is given in table 3, written in terms of eight
independent variables

X := (X1, X2, X3, X4, X5, X6, X7, X8)
t = (

αp, ρeα
�
p/ρp, Zα�

f , up, uf , Ep, Ef , kf
)t

. (3.1)
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∂tX1 + ∂x (X1X4) = 0

∂tX2 + ∂x (X2X4) = 0

∂tX3 + ∂x (X3X5) = 0

X2(∂t + X4∂x )X4 + ∂x (pp + αaPa
fp) + α�

p∂x Pf + Fpf = 0

X3(∂t + X5∂x )X5 + ∂x (α
�
pZR − αaPa

fp) + α�
f ∂x Pf − Fpf = 0

X2(∂t + X4∂x )X6 + ∂x (ppX4) + X4∂x (αaPa
fp) + X4α

�
p∂x Pf + Dpf = 0

X3(∂t + X5∂x )X7 + ∂x (α
�
f Pf X5 + α�

pZRX4 + r) − X4∂x (αaPa
fp) + Pf ∂x (α

�
pX4) − Dpf = 0

(∂t + X5∂x )X8 + 2X8∂x X5 = 0

where

αp = X1 Z = X2 + X3 − X1

αf
α�

f = X3

Z
αf = 1 − αp α�

p = 1 − α�
f αa = α�

p − αp

R = Θp + 1
γp

(X4 − X5)
2 pf = ZΘf − γf (γf − 1)Z0p�

o
αf

α�
f

pp = (αp + Zαa)Θp(1 + 4α�
pg0)

Pf = pf + 2ZX8 Pa
fp = Z

γp
(X4 − X5)

2(1 + 4α�
pg0) r = 2Zα�

pΘp(X4 − X5)

Fpf = α�
pR∂x Z + (γp − 1)α�

pZ(X5 − X4)∂x X5 Dpf = X4Fpf + 2α�
pΘp[(X4 − X5)∂x Z − Z∂x X5]

Θf = (γf − 1)
(

X7 − 1
2 X2

5 − X8

)
Θp = (γp − 1)

(
X6 − 1

2 X2
4

)
g0 = 1 + αf

2α3
f

TABLE 3. One-dimensional compressible two-fluid model with the densities, pressures, fluxes
and forces normalized by ρp. The reference pressure p�

o is constant and has the same units as Θf ,
and Z0 is the reference density ratio.

We define Z such that ρf = Zρp. As ρp is constant, it can be factored out of the model if
desired. The conserved variables (X1, X2, X3) are related to (αp, Z, α�

f ) by

αp = X1, Z = X3 + X2 − X1

αf
, α�

f = X3

Z
, (3.2a–c)

and all other variables appearing in the momentum and energy balances can be found from
these variables. In addition to the model in table 3, we will also analyse the simplified
model given in table 4, which neglects the Boltzmann–Enskog fluxes (i.e. R and r in the
fluid phase) and forces (i.e. F fp and Dfp) that are specific to hard-sphere mixtures (Fox
2019).

Formally, the 1-D models can be rewritten as

A(X )∂tX + B(X )∂x X = 0, (3.3)

where the coefficient matrices A and B := B∗ + B0 yield the flux matrix F := A−1B.
Here, B0 is the contribution due to the pressure and buoyancy terms, and A and B∗ are
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∂tX1 + ∂x (X1X4) = 0

∂tX2 + ∂x (X2X4) = 0

∂tX3 + ∂x (X3X5) = 0

X2(∂t + X4∂x )X4 + ∂x (pp + αaPa
fp) + α�

p∂x Pf = 0

X3(∂t + X5∂x )X5 − ∂x (αaPa
fp) + α�

f ∂x Pf = 0

X2(∂t + X4∂x )X6 + ∂x (ppX4) + X4∂x (αaPa
fp) + X4α

�
p∂x Pf = 0

X3(∂t + X5∂x )X7 + ∂x (α
�
f Pf X5) − X4∂x (αaPa

fp) + Pf ∂x (α
�
pX4) = 0

(∂t + X5∂x )X8 + 2X8∂x X5 = 0

where

αp = X1 Z = X2 + X3 − X1

αf
α�

f = X3

Z

αf = 1 − αp α�
p = 1 − α�

f αa = α�
p − αp Pa

fp = Z
γp

(X4 − X5)
2(1 + 4α�

pg0)

Pf = pf + 2ZX8 pf = ZΘf − γf (γf − 1)Z0p�
o
αf

α�
f

pp = (αp + Zαa)Θp(1 + 4α�
pg0)

Θf = (γf − 1)
(

X7 − 1
2 X2

5 − X8

)
Θp = (γp − 1)

(
X6 − 1

2 X2
4

)
g0 = 1 + αf

2α3
f

TABLE 4. Simplified version of 1-D compressible two-fluid model from table 3. This model is
hyperbolic when the fluid-phase eigenvalues are sufficiently separated from those for the particle
phase. When this is not the case, the kinetic-theory terms in the full model may be needed to
achieve hyperbolicity.

from the convection terms. Written in terms of the components of X , the latter are

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 X2 0 0 0 0
0 0 0 0 X3 0 0 0
0 0 0 0 0 X2 0 0
0 0 0 0 0 0 X3 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

and

B∗ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X4 0 0 X1 0 0 0 0
0 X4 0 X2 0 0 0 0
0 0 X5 0 X3 0 0 0
0 0 0 X2X4 0 0 0 0
0 0 0 0 X3X5 0 0 0
0 0 0 0 0 X2X4 0 0
0 0 0 0 0 0 X3X5 0
0 0 0 0 2X8 0 0 X5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

The components of B0 are more complex due to the nonlinearities, but can easily
be computed using symbolic software, as can the flux matrix and its characteristic
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polynomial. Due to the nonlinearities of the additional fluxes and forces in the full
versus the simplified model, the latter can be analysed analytically in greater detail.
Nonetheless, it is always possible to compute the eigenvalues numerically in order to check
the predictions of the analysis.

The eight eigenvalues of F can be written uf + u0λk with k ∈ {1, . . . , 8}, where for fixed
values of �po

f = Z0p�
o/u2

0 = po
f /ρpu2

0, γf and γp, each λk, called here a normalized eigenvalue,
depends on five dimensionless parameters

αp, cm, Mas = up

u0
, Θr = Θp

u2
0
, Kr = kf

u2
0
, (3.6a–e)

where Θf = u2
0 + Θ0 and Θ0 is defined by pf = 0 from the stiffened-gas model. The

parameter Θ0 depends on Z. The λk are the roots of P(X) = Q(u0X)/u8
0, where Q is

the characteristic polynomial of F − uf I . In general, in order for the eigenvalues to be
real, pf must be positive. The characteristic velocity u0 should not be confused with the
speed of sound in the stiffened-gas model, which scales like cf = (γf po

f )
1/2 and is orders of

magnitude larger than u0. For the model in table 3, there are two normalized eigenvalues
that can be computed analytically, namely, 0 and Mas. For the model in table 4, there is an
additional normalized eigenvalue at Mas. In general, the remaining normalized eigenvalues
in both models depend on the five parameters in (3.6a–e).

For αp = 0, the normalized eigenvalues (which are the same for both models) can be
computed analytically

0, ±
√

γf + γf (γf − 1)
�po

f

Z
+ 6Kr, Mas,

1 + (1 + 1/γp)cmZ
1 + cmZ

Mas ±
√

(1 + (1 + 1/γ 2
p )cmZ)cmZ

(1 + cmZ)2
Ma2

s + γpΘr (3.7a–d)

and are always real valued, including when cm = 0. Here, the two ‘fluid-phase’ eigenvalues
that depend on �po

f are always real and distinct. Note that when Θr = 0 the ‘particle-phase’
eigenvalues scale with Mas, but always remain real-valued. When Mas = 0, these
eigenvalues depend on Θr like an ideal gas (γp = 5/3). In the following, we investigate the
behaviour of the eigenvalues for a stiffened gas (γf = 29/4) with fixed values of Z, namely,
+∞, 1, and 0; which correspond, respectively, to bubbly, neutrally buoyant and granular
flow. The behaviour of the eigenvalues for other values of Z can be inferred from these
limiting cases. For the model in table 3, there will be six eigenvalues that vary with αp, as
opposed to five for the model in table 4. From the examples in figure 3, it can be observed
that the differences between the full and simplified model are small. The magnitudes of
the two ‘particle-phase’ eigenvalues increase with αp mainly due to g0, while their values
at αp = 0 depend on cm as shown in (3.7a–d).

3.2. Hyperbolicity analysis of simplified model
For the simplified model in table 4, a theoretical study of the hyperbolicity can be carried
out analytically. As done in Chalons et al. (2017), Sturm’s theorem (Sturm 1829) can be
used, which determines the number of distinct real roots in a given interval. For that, let us
consider the polynomial P0 = P/(X(X − Mas)

2), where P is the polynomial defined above.
The Sturm sequence of polynomials is defined by P0, P1 = P′

0 and, for any n ∈ {0, 1, 2, 3},
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FIGURE 3. Normalized eigenvalues dependent on αp for the full (a,c,e) and simplified (b,d,f )
1-D models. The two eigenvalues dependant on p�

o = 108, and the eigenvalue at Mas for the
simplified model, are not shown. All eigenvalues are real valued with these parameters as shown
in § 3.2. (a,b) Z = 0.0001, cm = 0.5; (c,d) Z = 1, cm = 0.5; (e, f ) Z = 10 000, cm = 0.5.

−Pn+2 is the remainder of the Euclidean division of Pn+1 by Pn . With the use of symbolic
software, one can compute this sequence. If the coefficient Sn of the highest-order term of
each Pn , called hereinafter a Sturm’s coefficient, is positive for n ∈ {0, 1, . . . , 5}, then Q
has five real roots, meaning that all eigenvalues of the system are real.

In the general case, it is hard to prove that all the Sturm’s coefficients Sn are positive.
However, since cf is large compared to u0, the limit when cf tends to infinity can be studied,
i.e. for a very large value of �po

f . Thus, a Taylor expansion of the Sn can be done when
ε = 1/�po

f tends to zero, for γf = 29/4 and γp = 5/3. Then, S0 = 1, S1 = 6 and the limit of
εSn when ε tends to zero is studied

εS2 → 145
8

αf (1 + cmZ) + αpZ
αf Z(αf cmZ + 1)(1 − cmαp)

, (3.8)

εS3 → 2175
16

αf + Zαp + αf cmZ
αf Z(αf cmZ + 1)(1 − cmαp)

, (3.9)

εS4 → Θr
p2(αf , cm, Z)

1 − cmαp
+ Ma2

s
p1(αf , cm, Z)

(1 − cmαp)3

{
5α8

f (1 − cmαp)
2 + cmZ2q1(αf , cm)

+Z(1 − cmαp)[18α5
f αpc2

m(1 + αf )(1 − cmαp) + q2(αf , cm)]
}
, (3.10)
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εS5 → μ(αp, cm, Z, Mas,Θr)
2

(1 − cmαp)

{
Θrp3(αf , cm, Z) + Ma2

s

[
cmZ2q4(αf , cm)

+5(1 + αf cmZ)[q3(αf , cm) + 6c2
mα5

f αp(1 − αf )(1 − cmαp)]
]}

, (3.11)

where each pk(αf , cm, Z) is a polynomial function of αf , cm and Z that is positive for
αf ∈ [0, 1], cm ≥ 0 and Z ≥ 0, each qk(αf , cm) is a polynomial function of αf and cm that
is positive for αf ∈ [0, 1] if cm is large enough, a sufficient condition being cm > 0.085.
Moreover, μ is a function of the parameters (αp, cm, Z, Mas,Θr). Then the limits of the εSk
are positive as long as 1 − cmαp > 0, and if neither cm nor Θr are too small, cm > 0.085
being a sufficient condition. The simplified model is then hyperbolic in those cases in the
limit of infinite �po

f .

3.3. Eigenvalues for specific cases
We are specifically interested to know whether the 1-D models are hyperbolic for all
physically relevant values of 0 ≤ αp ≤ 1 and 0 ≤ cm ≤ 1/αp. As can be seen in (3.7a–d),
Kr mainly affects the ‘fluid-phase’ eigenvalues, so it suffices to show hyperbolicity for
Kr = 0. Similarly, Θr mainly affects the ‘particle-phase’ eigenvalues and Θr = 0 is known
to yield complex eigenvalues when added mass is neglected (Fox 2019); hence, the analysis
of this limiting case is of particular interest. As done in Fox (2019), we will make use of
stability plots found from the Sturm coefficients to check for complex eigenvalues in αp–cm
parameter space.

3.3.1. Granular flow with ρf = 0
The limit Z = 0 corresponds to a granular flow with ρf = 0. For this case, the 1-D

model is globally hyperbolic. Nonetheless, the hyperbolicity plot in figure 4 requires a
Mas-dependent minimum value for Θr due to round-off errors in evaluating the Sturm
coefficients. As can be seen in figure 3 and from (3.7a–d), the particle phase has multiple
eigenvalues at Mas when Z = 0 and Θr = 0.

3.3.2. Neutrally buoyant flow with ρp = ρf

The limit Z = 1 corresponds to a neutrally buoyant flow with ρp = ρf . From the
hyperbolicity plot in figure 5, we can observe that the models are hyperbolic except for
a small region near cm = 0. In other words, there is a minimum value of cm above which
the models are globally hyperbolic. Note that this value is significantly smaller than the
standard added-mass constant cm = 1/2. In figure 6, examples with complex eigenvalues
corresponding to small cm are shown. It can be observed that with Z = 1 the eigenvalues
for the two models are quite similar unless cm is very small. It is noteworthy that when cm
is small enough, the ‘disturbance’ eigenvalue that begins above unity at αp = 0 can be less
that unity for values of αp near 0.15. In other words, particle-phase disturbances propagate
more slowly than the mean slip velocity if the added mass is relatively small.

3.3.3. Bubbly flow with ρp = 0
The limit Z → ∞ corresponds to a bubbly flow with ρp = 0. From the hyperbolicity plot

in figure 7, we can again observe that the models are hyperbolic except for a small region
near cm = 0. Furthermore, for the simplified model, the non-hyperbolic region is very
small and can be easily avoided by proper choices for c�

m and τa. In figure 6, examples with
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FIGURE 4. Hyperbolicity plot for the full (a,b,e,f ) and simplified (c,d,g,h) 1-D models for
granular flow (Z = 0) with varying Mas. The Sturm test function is negative in black regions,
which correspond to unphysical values of cm as discussed in § 3.2. The minimum value of Θr
needed to avoid round-off error is shown. (a) Mas = 0, Θr = 0; (b) Mas = 0.1, Θr = 10−11;
(c) Mas = 0, Θr = 0; (d) Mas = 0.1, Θr = 10−15; (e) Mas = 1, Θr = 10−9; ( f ) Mas = 10,
Θr = 10−7; (g) Mas = 1, Θr = 10−14; (h) Mas = 10, Θr = 10−12.
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FIGURE 5. Hyperbolicity plot for the full (a,b,e,f ) and simplified (c,d,g,h) 1-D models for
neutrally buoyant flow (Z = 1) and varying Mas. The Sturm test function is negative in black
regions, indicating that the 1-D model has complex eigenvalues. As shown in the analysis
of the Sturm coefficients in § 3.2, only the black regions with cm < 0.085 are of interest.
(a,c) Mas = 0; (b,d) Mas = 0.1; (e,g) Mas = 1; ( f ,h) Mas = 10.

complex eigenvalues corresponding to small cm are shown. It can be observed that with
Z = 10 000 the eigenvalues for the two models are nearly identical. In general, as predicted
from the hyperbolicity plot in figure 7, the full model has the largest region of parameter
space in which it is hyperbolic. As mentioned earlier, the Boltzmann–Enskog fluxes are
valid for a hard-sphere mixture, so neglecting them as done in the simplified model may be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.615


Hyperbolic compressible two-fluid model 903 A5-19

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

–2

0

2

–2

0

2

–2

0

2

αp αp

λ

λ

λ

λ

(a) (b)

(c) (d)

(g) (h)

(e) ( f )

FIGURE 6. Eigenvalues dependent on αp for the full (a,c,e,g) and simplified (b,d,f ,h) 1-D
models. Complex eigenvalues are observed in (e–h) (a–d, cm = 0.08; e–h, cm = 0.008) and
only the real parts are plotted. Both models yield similar eigenvalues. The two eigenvalues
that become complex correspond to the particle-phase eigenvalues at αp = 0 in (3.7a–d).
(a,b) Z = 1, cm = 0.08; (c,d) Z = 10 000, cm = 0.08; (e,f ) Z = 1, cm = 0.008; (g,h) Z =
10 000, cm = 0.008.

allowable without significantly changing the hyperbolicity. The added-mass contribution
to the particle-phase pressure tensor then determines the domain of hyperbolicity of the
two-fluid model.

In conclusion, it is worth noting that in the full model the region of hyperbolicity for
0.7 < αp includes cm → 0. In other words, when the particle-phase volume fraction is
near unity, the added mass has no effect on the well posedness of the full model. Thus,
cm can take any value in the interval [0, 1] for densely packed particles. In general, the
effect of added mass on hyperbolicity is most important for αp ≈ 0.1, regardless of the
material-density ratio.

4. Numerical examples of 1-D model

To illustrate the behaviour of the proposed two-fluid model, in this section we develop
a 1-D numerical solver for the full model written in conservative form. In table 5, the 1-D
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FIGURE 7. Hyperbolicity plot for the full (a,b,e,f ) and simplified (c,d,g,h) 1-D models for
bubbly flow (Z → +∞) and varying Mas. The Sturm test function is negative in black regions,
indicating that the 1-D model has complex eigenvalues. As shown in the analysis of the Sturm
coefficients in § 3.2, only the black regions with cm < 0.085 are of interest. (a,c) Mas = 0;
(b,d) Mas = 0.1; (e,g) Mas = 1; ( f ,h) Mas = 10.

two-fluid model used in the numerical simulations with fluxes (left-hand side) and source
terms (right-hand side) is provided in terms of the conserved variables Y . These variables
have been normalized by the constant particle density ρp, as are all terms in the model
equations.

4.1. Conservative form of 1-D model
The added-mass contribution to the particle-phase pressure tensor Pa

fp is purely
mechanical. This implies that the granular energy balance for Θp has a compression source
term that depends only on the ‘thermodynamic’ pressure pp (see appendix A in Houim &
Oran 2016, for details). Without this property, the source term can generate a negative
granular temperature when the thermodynamic pressure is null. Using the 1-D model in
table 5, the granular energy balance becomes (with γp = 5/3)

3
2

(
Y2∂tΘp + Y2X4∂xΘp

) = −pp∂x X4 − 2α�
pΘp[(X4 − X5)∂x Z − Z∂x X5]

+ K[2(1 − a)X8 − 3aΘp] + 1
2 max(Sa, 0)

[
(X4 − X5)

2 − 3Θp
]

(4.1)

which has the necessary property that the right-hand side is non-negative when Θp is
null. In contrast, if pp were replaced by ( pp + Pa

fp) in (4.1), then the first term on the
right-hand side would be negative when Θp = 0 and ∂x X4 is positive (i.e. during expansion
of the particle phase), leading to a non-physical negative granular temperature. Finally,
note that body forces (i.e. gravity) do not appear in (4.1) and, therefore, it can be solved
in place of the total energy balance to avoid the associated numerical errors observed
in § 4.3.
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∂tY1 + ∂x (Y1X4) = 0
∂tY2 + ∂x Y4 = Sa

∂tY3 + ∂x Y5 = −Sa

∂tY4 + ∂x (Y4X4 + pp) = Y2gx − ∂x (αaPa
fp) − α�

p∂x Pf − Fpf + K(X5 − X4) + Sfp

∂tY5 + ∂x (Y5X5 + Pf + α�
pZR) = Y3gx + ∂x (αaPa

fp) + α�
p∂x Pf + Fpf + K(X4 − X5) − Sfp

∂tY6 + ∂x (Y6X4 + ppX4) = Y4gx − X4∂x (αaPa
fp) − X4α

�
p∂x Pf − Dpf − DE + SE

∂tY7 + ∂x (Y7X5 + α�
f Pf X5 + α�

pPf X4 + α�
pZRX4 + r) = Y5gx + X4∂x (αaPa

fp) + X4α
�
p∂x Pf + Dpf + DE − SE

∂tY8 + ∂x (Y8X5) = DPT − X1εPT − 2X3X8∂x X5

where the conserved variables are
ρpY = (ρpαp, ρeα

�
p, ρf α

�
f , ρeα

�
pup, ρf α

�
f uf , ρeα

�
pEp, ρf α

�
f Ef , ρf α

�
f kf )

t

and the primitive variables are X = (Y1, Y2, Y3, Y4/Y2, Y5/Y3, Y6/Y2, Y7/Y3, Y8/Y3)
t. The other model parameters are as follows:

αp = X1 αf = 1 − αp Z = X2 + X3 − X1

αf
g0 = 1 + αf

2α3
f

α�
f = X3

Z
α�

p = 1 − α�
f αa = α�

p − αp = cmαf αp
ρe

ρp
= αp + Zαa

α�
p

Sa = 1
τa

Zαf αp(c�
m − cm) Sfp = max(Sa, 0)X5 + min(Sa, 0)X4

TABLE 5. For caption see next page.
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τa =
4d2

pα
�
f

3νf CDRepαf
SE = max(Sa, 0)

(
1
2 X2

5 + X8

)
+ min(Sa, 0)X6

Pf = pf + 2ZX8 R = Θp + 1
γp

(X4 − X5)
2 r = 2Zα�

pΘp(X4 − X5)

Fpf = α�
pR∂x Z + (γp − 1)α�

pZ(X5 − X4)∂x X5 Dpf = X4Fpf + 2α�
pΘp[(X4 − X5)∂x Z − Z∂x X5]

Θf = (γf − 1)
(

X7 − 1
2 X2

5 − X8

)
pf = ZΘf − γf (γf − 1)Z0p�

o
αf

α�
f

Θp = (γp − 1)
(

X6 − 1
2 X2

4

)
pp = (αp + Zαa)Θp(1 + 4α�

pg0)

Pa
fp = 1

γp
Z(X4 − X5)

2(1 + 4α�
pg0) τp = d2

p

Zνf
Rep = dp|X4 − X5|

νf

K = 3α�
pCDRep

4τp
a = 1 + Zαpαf

1 + 1.73Zαpαf
DE = K

[
X4(X4 − X5) + 3aΘp − 2(1 − a)X8

]
DPT = K

[
(X4 − X5)

2 + 3aΘp − 2(1 − a)X8
]

εPT = Cf

dp
X3/2

8 c�
m = 1

2 min
(
1 + 2αp, 2

)
TABLE 5. One-dimensional compressible two-fluid model in conservative form with densities and pressures normalized by the particle material
density ρp. The terms on the left-hand side are the conservative fluxes, while those on the right are interphase exchange terms and gx is the component
of gravity in the x direction. The fluid kinematic viscosity is νf and the particle diameter is dp. For water, νf = 10−6 m2 s−1 and the stiffened-gas
model parameters are γf = 29/4 and p�

o = 108 m2 s−2. Z0 is the reference density ratio and Cf = 1. For the particle phase, γp = 5/3 and CD is the
Rep-dependent drag coefficient where, for Stokes drag, CDRep = 24.
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The mixture mass ( = Y2 + Y3), momentum M = Y4 + Y5 and energy E = Y6 + Y7
balances can be written as

∂t + ∂xM = 0

∂tM + ∂x(Y4X4 + Y5X5 + Pf + pp + α�
pZR) = gx

∂tE + ∂x(Y6X4 + Y7X5 + α�
f Pf X5 + α�

pPf X4 + ppX4 + α�
pZRX4 + r) = Mgx

⎫⎪⎬
⎪⎭ (4.2)

which have the form of hyperbolic conservation laws, albeit with rather complex
momentum and energy fluxes. From a computational standpoint, (4.2) can be solved with
the PTKE and particle-phase balances

∂tY1 + ∂x(Y1X4) = 0

∂tY2 + ∂x Y4 = Sa

∂tY4 + ∂x(Y4X4 + pp) = Y2gx − ∂x(αaPa
fp) − α�

p∂x Pf − Fpf + K(X5 − X4) − Spf

∂tY6 + ∂x(Y6X4 + ppX4) = Y4gx − X4∂x(αaPa
fp) − X4α

�
p∂x Pf − Dpf − DE − SE

∂tY8 + ∂x(Y8X5) = −2X3X8∂x X5 + DPT − X3εPT

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(4.3)

using operator splitting for the left-/right-hand sides, respectively. Here, the left-hand
sides are fluxes in the finite-volume sense, whereas the right-hand sides are source terms.
Alternatively, the balance for Y6 can be replaced with the granular energy balance for Θp
shown in (4.1), which is preferable for dissipative systems to avoid round-off errors due to
the very small value of Θp (see Houim & Oran (2016), for a discussion of this point), and
for the numerical treatment of body forces.

4.2. Numerical solver
The 1-D model in table 5 has the form

∂tY + ∂x f (Y ) = h(Y ), (4.4)

where f are the spatial fluxes, and h are the source terms. In the numerical solver for (4.4),
the conservative variables in each grid cell are updated using an explicit algorithm

Y n+1
i = Y n

i − �t
�x

( f n
i − f n

i−1) + �t h(Y n
i+1, Y n

i , Y n
i−1). (4.5)

The source term in (4.5) is evaluated using a central-difference formula for the spatial
gradient. In principle, the source term could be stiff and one might want to use an implicit
solver. However, we found that the time step required for the spatial fluxes is small
enough that this is unnecessary. We should note that for simulations starting with zero
particle-phase energy, the explicit Euler scheme for the gravity term generates a negative
granular temperature (i.e. Y0

4 = Y0
6 = 0 yields Y1

4 = �tY0
2 gx , Y1

6 = 0). In general, if there
is mean slip between the phases (i.e. Z0 /= 1), the granular temperature becomes positive
everywhere in the domain after a few time steps. To avoid such numerical issues, when
evaluating the particle pressure and spatial fluxes, the granular temperature is set to zero
whenever it is negative.
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The numerical fluxes in (4.5) are defined using a classical HLL approach (Harten, Lax
& van Leer 1983; Toro 1997)

f n
i = a+f (Y n

i ) − a−f (Y n
i+1) + a+a−(Y n

i+1 − Y n
i )

a+ − a− , (4.6)

where a− < 0 < a+ correspond to the minimum and maximum eigenvalues of the system.
In all cases considered below, these eigenvalues come from the stiffened-gas model and
a− ≈ −a+. In our simulations, the eigenvalues are computed at each time step from the
characteristic polynomial. On a uniform grid with spacing �x , the time step is set using
�x/�t = 2 max(a+,−a−). As described in § 3, the six other eigenvalues of the 1-D
system are order one in magnitude, and thus are at least two orders of magnitude smaller
than a+. As a consequence, the HLL fluxes in (4.6), designed for two-wave systems (Toro
1997), will generate significant numerical diffusion for the system in table 5. For example,
the effective diffusivity of the volume fraction is D ∝ �x a+ due to the final difference
term on the right-hand side of (4.6). For this reason, unless �x is very small, the material
interface for the density-matched case (Z0 = 1), for which the mean velocity is very
small, will be smeared out over time. Future work should therefore focus on developing
hyperbolic solvers specifically for multiphase systems to reduce the numerical diffusion
using higher-order spatial reconstruction schemes (Toro 1997).

4.3. Numerical examples
The numerical examples provided in this section illustrate the behaviour of the model for
Riemann problems with different initial conditions on the right/left sides of the domain. In
all cases, the initial value Z = Z0 is used (i.e. fixed material-density ratio) and corresponds
to monodisperse particles in a given fluid with kinematic viscosity νf = 10−6 m2 s−1. The
fluid temperature Θf is set to be 5000 m2 s−2 larger than Θ0 in the stiffened-gas model. For
simplicity, we consider Stokes drag (CDRep = 24), a particle diameter of dp = 10−3 m and
set c�

m = 1/2. Finally, in order to keep the time step reasonable, we set p�
o = 104 m2 s−2,

which yields a+ ≈ 775 m s−1. Increasing p�
o will result in smaller variations in Z, but

requires a correspondingly smaller time step. The computational domain is taken as
x ∈ [−1/2, 1/2] m and zero-flux boundary conditions are employed on each end. To
illustrate the effect of numerical diffusion in the HLL scheme, the grid spacing is set
to �x = 1/N m with N = (1000, 2000, 4000).

In the first example, we consider a case with Z0 = 1. The initial conditions are αp = 0 on
the left half and αp = 0.1 on the right half of the domain. The fluid and particle velocities
and the granular temperature are null. With gravity, a pressure gradient develops in the
fluid phase and Z becomes very weakly dependent on x . Because the particles have the
same density as the fluid, the exact solution for αp does not change with time. However,
as seen in figure 8, the HLL fluxes are diffusive, leading to a smearing out of the material
interface. Without gravity, numerical diffusion is also observed for αp even though the
velocities are null. At shorter times (but still long compared to the fluid speed of sound),
the numerical diffusion is less obvious. As expected for Z0 = 1, aside from the volume
fractions and Pf , the primitive variables are nearly uniform. Note that the particle pressure
Pp is very small due to the negligible slip velocity and small Θp. For the exact solution, Θp
is null and, as discussed earlier, negative values are computed due to the treatment of body
forces with the Euler time step. Finally, the added-mass cm remains close to the equilibrium
value of 0.5, and thus well above the minimum value required for hyperbolicity.

In the second example, we consider a case with Z0 = 104 corresponding to buoyant
particles. The initial conditions are again αp = 0 on the left half and αp = 0.1 on the right
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FIGURE 8. Primitive variables at t = 0.1 s for Riemann problem with Z0 = 1 and �x = 1/N m
(blue, N = 1000; red, N = 2000; gold, N = 4000). The exact solution for αp is a step function
at x = 0. Here, the HLL fluxes result in numerical diffusion of the volume fractions, which can
be reduced by increasing N.

half of the domain. The fluid and particle velocities and the granular temperature are null.
With gravity, a pressure gradient develops in the fluid phase and Z becomes very weakly
dependent on x . The buoyancy force makes up positive, moving particles towards the top
of the domain. However, as seen in figure 9, the HLL fluxes lead to a smearing out of
the material interface, with the numerical diffusion resisting the rise velocity. A finer grid
exhibits less numerical diffusion, but the smearing of the volume fraction is still obvious.
Presumably, if the grid were made fine enough, αp would remain near zero for x < 0, and
be larger at x = 0.5 due to buoyancy. In general, the primitive variables are non-uniform
due to the buoyancy force. The particle pressure Pp is significant due to the slip velocity.
As in the first example, the added-mass cm remains close to the equilibrium value of 0.5,
and thus well above the minimum value required for hyperbolicity. A case with Z0 = 10−4

(not shown) exhibits similar behaviour, but with the particle volume fraction larger at the
bottom of the domain.

In summary, aside from excessive numerical diffusion due to the HLL fluxes, solutions
to the model in table 5 exhibit the expected physical behaviour. Depending on the value of
Z0, the particle pressure can play a significant role in the momentum balances. In real
applications, Θp (and, hence, pp) will be much smaller due to inelastic collisions and
lubrication effects (Abbas et al. 2010). However, this will not affect the hyperbolicity.
Furthermore, the added-mass cm can vary spatially due to transport between regions with
different volume fractions, but always remains well above the minimum value of 0.085
needed to ensure hyperbolicity.
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FIGURE 9. Primitive variables at t = 0.1 s with Z0 = 104 and �x = 1/N m (blue, N = 1000;
red, N = 2000; gold, N = 4000). Due to the finer mesh, numerical diffusion is less important
for larger N as can be seen from the spatial distribution of αp.

5. Discussion and conclusions

The compressible two-fluid model in table 2 describes inviscid fluids with arbitrary
material-density ratios. As seen from the examples in the previous sections, the model
for Pp plays a key role in the hyperbolicity of the two-fluid model. In particular, when
the material-density ratio Z is non-zero, Pp must be non-zero when Θp = 0 in order
to eliminate complex eigenvalues. Following Batchelor (1988) and Zhang et al. (2006),
we have thus included an added-mass contribution to the particle-phase pressure tensor
that depends on the slip velocity between the phases. For bubbly flow where the particle
shape is flexible, the g0 expression for solid particles is likely to diverge too quickly with
increasing αp. On the other hand, with rigid particles a frictional component must be
added to Pp, which is independent of Θp. Houim & Oran (2016) have analysed such a case
and showed that the eigenvalues remain real valued. Therefore, the overall conclusion is
that the two-fluid model in table 2 provides a hyperbolic inviscid model for describing
compressible disperse-phase flows for all material-density ratios.

5.1. Extension to viscous flows and other interphase forces
The model equations in table 2 can be augmented in different directions. First, to model
viscous flows (Abbas et al. 2010; Guazzelli & Pouliquen 2018), (traceless) viscous-stress
tensors for the fluid and particle phases can be added to the momentum and energy
balances. Note that for the fluid phase, b acts like a pseudo-turbulent viscous stress
and can be modelled as a Newtonian fluid with an effective viscosity depending on
kf and εPT . The parameter a appearing in DE and DPT determines the distribution of
pseudo-turbulent kinetic equation between kf and Θp. The latter has been investigated
for spatially homogeneous, incompressible flow by Tavanashad et al. (2019) over a wide
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range of material-density ratios, and these results could be use to develop a correlation
for a. Likewise, Cf fixes the value of kf /u2

fp and can be fit to the data of Tavanashad et al.
(2019). As with all two-fluid models, a closure for the drag coefficient K must be provided,
which will depend, as usual, on the particle Reynolds number and volume fraction in
addition to the fluid Mach number. Finally, additional interphase forces can be added to
the momentum and energy balances to describe the effects of mean shear and vorticity on
the disperse phase. As mentioned earlier, although these forces contain spatial gradients of
the phase velocities, they act normal to the flow direction and, therefore, do not change the
hyperbolicity of the system. Note that the effect of ‘turbulent dispersion’ of the disperse
phase is already included using the tensor Rf , and thus no additional terms are needed in
the balances in table 2. The same is true for the virtual-mass force, which is accounted for
as added mass. The coefficient of the lift force in F fp should be revisited to account for
surface-tension effects with deformable particles (du Cluzeau et al. 2020).

5.2. Two-fluid model for bubbly flow with constant ρf

For bubbly flow where ρp � ρf , the two-fluid model in table 2 can be simplified by
removing the transport equation for Ef and treating ρf as constant. The fluid pressure
is then found using the condition that α�

f + α�
p = 1. This seven-equation model is shown

in table 6. It is important to note that while the mean velocity fields are weakly coupled
with the pseudo-turbulence kinetic energy, it is often necessary to solve for kf and Θp
for other purposes. For example, kf will be needed to model the effective viscosity or
the effective diffusivity of a passive scalar transported by the fluid (Peng et al. 2019). As
mentioned above, the bubbly flow model in table 6 can be augmented with a viscous-stress
tensor (including pseudo-turbulence) for the fluid phase. Unlike in most other hyperbolic
formulations for bubbly flows (see, for example, Panicker et al. 2018), it is not necessary
to add a turbulent-dispersion term to enforce hyperbolicity. As shown in appendix B, the
model for Pp ensures global hyperbolicity. In the terminology of two-fluid models (see
Lhuillier et al. 2013), the seven-equation two-fluid model in table 6 is a two-pressure
model with mixture pressure tensor P = ( pp + pf )I . As we show in appendix B, the
shared-pressure model with Pp = 0 is not hyperbolic (Drew & Passman 1998) and, thus,
cannot be used for bubbly flow simulations because it produces non-physical solutions
(see examples in Panicker et al. 2018).

5.3. Relation to effective-field models
Lhuillier et al. (2013) discuss the history of effective-field models for disperse flows,
providing insights into why past formulations are mathematically ill posed. It is therefore
of interest to compare the two-fluid model in table 2 to their formulation in order
to understand why it is hyperbolic. However, even before performing this exercise, it
is noteworthy that these authors suggest that ‘a promising direction is to associate
added-mass and the pseudo-turbulence of the particles’. For clarity, in this section we will
use the notation developed in this work. However, we should emphasize that as discussed
in appendix A the effective-field model is written in terms of the velocity vk, while here
we use uk to account for the added mass.

The pseudo-turbulent kinetic energy in Lhuillier et al. (2013) is denoted by Kk, so that
Kf = kf and Kp = (1/(γp − 1))Θp in our notation. In other words, as the particles have
no internal energy, the granular temperature plays the role of the pseudo-turbulent kinetic
energy of the particle phase. The momentum balances in Lhuillier et al. (2013) are written
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∂t(ρpαp) + ∂x · (ρpαpup) = 0
∂t(ρeα

�
p) + ∂x · (ρeα

�
pup) = Sa

∂t(ρf α
�
f ) + ∂x · (ρf α

�
f uf ) = −Sa

∂t(ρeα
�
pup) + ∂x · (ρeα

�
pupup + ppI) = Kufp − ∂x · (αaPa

fp) − α�
p∂xpf + Sfp + F fp + ρeα

�
pg

∂t(ρf α
�
f uf ) + ∂x · (ρf α

�
f uf uf + pf I) = Kupf + ∂x · (αaPa

fp) + α�
p∂xpf + Spf + F pf + ρf α

�
f g

∂t(ρeα
�
pEp) + ∂x · (ρeα

�
pEpup + ppup) = −DE − up · (∂x · αaPa

fp) − α�
pup · ∂xpf + SE + Dfp + ρeα

�
pup · g

∂t(ρf α
�
f kf ) + ∂x · (ρf α

�
f kf uf ) + 2ρf α

�
f kf ∂x · uf = DPT − ρf α

�
f εPT

where α�
p = 1 − α�

f , αf = 1 − αp, αa = α�
p − αp = cmαf αp,

ρeα
�
p = ρp

(
αp + Zαa

)
ufp = −upf = uf − up c�

m = 1
2 min

(
1 + 2αp, 2

)
Sa = 1

τa
αf αp(c�

m − cm) Sfp = −Spf = max(Sa, 0)uf + min(Sa, 0)up

SE = max(Sa, 0)
(

1
2 u2

f + kf

)
+ min(Sa, 0)Ep τa =

4d2
pα

�
f

3νf CDRepαf

pp = ρeα
�
pΘp

(
1 + 4α�

pg0

)
Pa

fp = 2ρf

3γp

(
1
2

u2
fpI + ufp ⊗ ufp

)(
1 + 4α�

pg0

)
g0 = 1 + αf

2α3
f

F pf = −F fp = ρf α
�
p(γp − 1)

(
tr(Γ )ufp + 2

γp
S · ufp

)
Dfp = up · F fp + 2ρf α

�
pΘp∂x · uf

DE = K
[
up · upf + 3aΘp − 2(1 − a)kf

]
DPT = K

[
u2

pf + 3aΘp − 2(1 − a)kf

]
Θp = (γp − 1)

(
Ep − 1

2 u2
p

)
εPT = Cf k3/2

f /dp

K = 3ρpα
�
pCDRep

4τp
τp = d2

p

Zνf
a = 1 + Zαa

1 + Z(αf αpb + αa)
Z = ρf

ρp

TABLE 6. Seven-equation two-fluid model for bubbly flow with constant fluid density and γp = 5/3. CD is the drag coefficient that depends on the
particle Reynolds number and volume fraction, and g is gravity. The energy balance for Ep can be rewritten in terms of Θp. In principle, this model
can be applied for any value of Z provided ρf can be treated as constant (i.e. low Mach number flows). In the fluid momentum balance, a traceless
stress tensor due to R and Rf can be included without changing the hyperbolicity of the system.
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in our notation as

α�
pρe

Dpup

Dt
+ ∂x · Πp + α�

p∂x · P f = −F , α�
f ρf

Df uf

Dt
+ ∂x · Π f + α�

f ∂x · P f = F ,

(5.1a,b)

where Dk/Dt is the convected derivative with velocity uk, Πk are the phasic stresses and
F = Kupf is the interphase force (i.e. drag). Comparing with table 2, we observe that
Πp = Pp and Π f = α�

pρf R − αaPa
fp, and that the kinetic-theory expression for P f includes

the pseudo-turbulent pressure due to Rf . However, as shown earlier, the two-fluid model
is hyperbolic even with Rf = 0 for the fluid phase, so the most important term is the
added-mass-dependent contribution to Πp and Π f (which can alternatively be treated as
part of F ).

The energy equation for the particle phase found from the balances in table 2 is

α�
pρe

DpKp

Dt
+ pp∂x · up = −K[aKp − (1 − a)Kf ], (5.2)

where the left-hand side is a non-dissipative pseudo-turbulent kinetic energy exchange
term. The parameter a determines the amount of mean kinetic energy that is directly
dissipated to fluid-phase internal energy, so for a non-dissipative system a = 0. Recalling
that b and εPT arise due to dissipation of fluid-phase pseudo-turbulent kinetic energy
to fluid-phase internal energy, the non-dissipative terms in the pseudo-turbulent kinetic
energy balance yield

α�
f ρf

Df Kf

Dt
+ 2

3
α�

f ρf Kf ∂x · uf + ufp · F = K[aKp − (1 − a)Kf ]. (5.3)

Then, as could be anticipated from the fact that α�
pρeEp + α�

f ρf Ef obeys a conservation
equation, the sum of (5.2) and (5.3) satisfies the energy conservation condition (2.5) in
Lhuillier et al. (2013).

Nonetheless, it is important to point out that the trace of Pp is not the inter-facial pressure
of the fluid at the particle surface. Indeed, the Θp-dependent part of Pp arises in kinetic
theory due to particles having different instantaneous velocities. Thus, at best, only the
αa-dependent part of Pp might be assigned to the inter-facial pressure (see Batchelor
1988, for a discussion of the physical reasoning on why this is incorrect). Supporting
the arguments made by Lhuillier et al. (2013) (and consistent with Batchelor 1988), taken
as a whole these observations suggest that the Θp-independent contribution to Pp is a
necessary condition for hyperbolicity of two-fluid models.

5.4. Closing remarks
Starting from the kinetic-theory-based model derived from first principles in Fox (2019),
the definition of the particle mass was extended to include the added mass moving with the
velocity of the particle. This resulted in the compressible two-fluid model in table 1. Then,
by relaxing the assumption that the pseudo-turbulent kinetic energy in the fluid phase
(denoted by Rf ) attain instantaneously its steady-state value, a transport equation was
introduced to model its trace (2kf ). The resulting compressible two-fluid model, presented
in table 2, has governing equations for pseudo-turbulent kinetic energy in both phases, as
well as balance equations for the total energies. The fluid phase is treated as compressible
with a stiffened-gas equation of state to describe liquids. As written, the compressible
two-fluid model is applicable to flows with an arbitrary material-density ratio Z = ρf /ρp.
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While needed for accurate physical modelling (e.g. in gas–particle flows), from the
hyperbolicity analysis of the 1-D model it was found that the pseudo-turbulent kinetic
energies play no role in determining whether the two-fluid model is hyperbolic. In contrast,
g0 and the particle–fluid–particle stress contribution (i.e. αaPa

fp) to Pp are crucial for
obtaining a hyperbolic model for large to intermediate values of Z. Indeed, for ρp = 0
(mass-less particles), without these contributions the two-fluid model loses hyperbolicity
in physically important regions of parameter space (e.g. Θp near zero). Future work should
therefore focus on obtaining a more fundamental understanding of how to model Pa

fp and
g0 in the particle-phase pressure tensor for real physical systems, especially for Z ≈ 1.
To this end, direct numerical simulations of particle suspensions over a wide range of
material-density ratios, Reynolds numbers and volume fractions would be useful (such as
is done in Moore & Balachandar 2019; Tavanashad et al. 2019; du Cluzeau et al. 2020),
especially if one can unequivocally relate model variables such as c�

m and Pa
fp to the data

from such simulations (Zhang 2020). Finally, work along the lines of Gu et al. (2019) and
Abbas et al. (2010) will be required to account for viscous effects in the particle phase.
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Appendix A. Relation to virtual-mass force in two-fluid model

Cook & Harlow (1984) derive a two-fluid formulation for the virtual-mass force starting
from a three-field model that treats the added mass as a separate field. In their model, the
fluid and particle material densities are constant (i.e. the fluid is incompressible), and they
assume that up = vp. Thus, by using the relation

α�
f uf = αf vf − αavp, (A 1)

the slip velocities are related by

ufp = αf

α�
f
vfp, (A 2)

where vfp = −vpf = vf − vp. For convenience, we define the convected derivative for each
phase as

Df = ∂t + vf · ∂x,

Dp = ∂t + vp · ∂x,

}
(A 3)

but will continue to write out the convected derivative for uf . In Cook & Harlow (1984), the
mass-exchange source terms involving Sa and the particle pressure pp are absent. If their
method to find the virtual-mass force is employed, these terms will yield non-conservative
terms in the mixture model that are unphysical (as defined in Lhuillier et al. 2013).
Therefore, we will follow their route to the find an expression for the virtual-mass force,
but make small modifications to avoid unphysical terms.
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In terms of vf and vp, the mass balances from table 1 yield

∂tρf αf + ∂x · (ρf αf vf ) = 0, (A 4)

∂tαp + ∂x · (αpvp) = 0, (A 5)

∂tρf αa + ∂x · (ρf αavp) = Sa, (A 6)

where αf = α�
f + αa and αa = cmαf αp. In Cook & Harlow (1984), αa = f αp with constant

f and ρf , which with (A 5) implies that Sa = 0 in their three-fluid model. Here, (A 6) is
needed to find cm. However, the time scale τa in Sa can be chosen sufficiently small to force
cm → c�

m. Nonetheless, in our model the dependence of αa on αf is needed to handle the
limiting case αp → 1 and, hence, a constant f can only be used for αp � 1. Furthermore,
as shown below, the assumption that ρf is constant is not required to derive the virtual-mass
force.

Using the continuity equations, the momentum balances from table 1 can be rewritten
in non-conservative form as

ρf α
�
f (∂t + uf · ∂x)uf + α�

f ∂xpf + ∂x · (ρf α
�
pR) = −Gfp + Spf + uf Sa + ρf α

�
f g (A 7)

(ρf αa + ρpαp)Dpvp + α�
p∂xpf + ∂xpp = Gfp + Sfp − vpSa + (ρf αa + ρpαp)g, (A 8)

where

Gfp = αf

α�
f

Kvfp + ∂x · (αaPa
fp) + F fp, (A 9)

is the interphase momentum-exchange vector. Unlike in Cook & Harlow (1984), we do not
have a model for the added-mass momentum; however, from their study we know that the
virtual-mass force arises from the shared pressure. Thus, treating the shared pressure as a
separate term, we propose a model for the added-mass momentum of the form

ρf αaDpvp + (αv + αa)∂xpf = −Ga + Sfp − vpSa + ρf αag. (A 10)

The added-mass pressure coefficient αv and the force vector Ga are unknown at this point.
However, Ga is independent of the shared pressure and is zero when the particles do not
move relative to the fluid (i.e. vfp = 0 and Θp = 0).

Adding and subtracting (A 10) from (A 7) and (A 8), respectively, yields the fluid-phase
momentum balance

ρf α
�
f (∂t + uf · ∂x)uf + ρf αaDpvp + (αf + αv)∂xpf = −Gfp − Ga + αf

α�
f
vfpSa + ρf αf g,

(A 11)
and the particle-phase momentum balance

ρpαpDpvp + (αp − αv)∂xpf + ∂xpp = Gfp + Ga + ρpαpg. (A 12)

As noted by Cook & Harlow (1984), (A 12) is not in the usual form of a two-fluid model
due to the incorrect coefficient for the Archimedes force. Indeed, just as in their work, we
shall see that the choice of αv determines the virtual-mass force.

The next step is to eliminate uf and Dpvp from (A 11), using the definition of uf in
(A 1). For this step, two intermediate results are first found from (A 1) and the continuity
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equations

ρf α
�
f ∂tuf = ρf αf ∂tvf − ρf αa∂tvp

− αf ∂x · (ρf αavp) − αa∂x · (ρf αf vf )

α�
f

vfp + αf

α�
f
vfpSa (A 13)

and

(α�
f )

2uf · ∂xuf = (αf vf − αavp) ·
(

αf ∂xvf − αa∂xvp + αf ∂xαa − αa∂xαf

α�
f

vfp

)
. (A 14)

It is noteworthy that (A 13) has the mass-exchange source term coming from the mass
balance in (A 6). Combining these two results then provides the expression for the
convected derivative of uf in terms of vf and vp

ρf α
�
f (∂t + uf · ∂x)uf = ρf αf Df vf − ρf αaDpvp + αf

α�
f
vfpSa + ∂x · Pvm. (A 15)

The virtual-mass pressure tensor in (A 15) is defined by

Pvm = ρf αa
αf

α�
f
vfp ⊗ vfp (A 16)

and is the same as in Cook & Harlow (1984). Note that Pvm has the same tensorial form
as R and, hence, as done below these two tensors can be combined in the fluid-phase
momentum balance.

Inserting (A 15) into (A 11), we then find the fluid-phase momentum balance in terms
of the two-fluid model variables

ρf αf Df vf + (αf + αv)∂xpf + ∂x · P�
vm = −Gfp − Ga + ρf αf g, (A 17)

where P�
vm = ρf α

�
pR + Pvm. The term involving Pvm ensures that the two-fluid model is

objective in the sense of Drew et al. (1979). As expected, (A 17) has no mass-exchange
source term and the mixture model found by summing it with (A 12) is conservative.

Physically, the pressure tensor (A 16) arises due to the added mass having a different
velocity than the bulk fluid, and thus will not be negligible unless ρf � ρp. Note that the
mixture momentum balance has a virtual-mass pressure contribution of ∂x · P�

vm, which
increases the pressure in the direction of the mean slip velocity. In a constant-density
flow, this pressure can be combined with pf in the fluid momentum equation. The
remaining contribution (i.e. that appearing in the particle-phase momentum balance) can
be combined with the virtual-mass force.

The momentum balances in (A 12) and (A 17) have the same forms as in Cook &
Harlow (1984). We can therefore proceed in the same manner to find an expression for
the virtual-mass force. However, to simplify the notation and make the manipulations as
transparent as possible, we rewrite the momentum balances as

ρpαpDpvp + αp∂xpf − αv∂xpf = Gp + ρpαpg, (A 18)

ρf αf Df vf + αf ∂xpf + αv∂xpf = Gf + ρf αf g, (A 19)

where Gp = Gfp + Ga − ∂xpp and Gf = − Gfp − Ga − ∂x · P�
vm. The added-mass force on

the particle phase is F a = αv∂xpf . In constant-density flows, the fluid pressure is fixed by
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the constraint αp + αf = 1, which forces the mixture velocity to be divergence free. Thus,
the added-mass force is mainly determined by the choice of αv and Ga.

The next step is to find an expression for ∂xpf that does not depend on g by taking a linear
combination of (A 18) and (A 19). Multiplying the result by αv provides the definition of
the added-mass force

F a = αv

ρf αf Gp − ρpαpGf + ρpρf αpαf (Df vf − Dpvp)

ρf αf (αp − αv) − ρpαp(αf + αv)
. (A 20)

If the added-mass force were to depend neither on Gp nor on Gf , then we would have to
define Ga such that ρf αf Gp = ρpαpGf . However, such a choice makes Ga independent of
αa and is inconsistent with Cook & Harlow (1984). For consistency, one must choose αv

such the coefficient of the convected velocity difference is the same as in (A 16), i.e.

αvρpρf αpαf

ρf αf (αp − αv) − ρpαp(αf + αv)
= ρf αa

αf

α�
f
, (A 21)

which yields (as found after equation (19) in Cook & Harlow (1984))

αv = αaαp

(
ρf − ρp

ρpαp + ρf αa

)
= αa

αp

α�
p

(ρf − ρp)

ρe
(A 22)

and

F a = ρf αa
αf

α�
f
(Df vf − Dpvp) + ρf αa

αf

α�
f

(
Gp

ρpαp
− Gf

ρf αf

)
. (A 23)

The first term on the right-hand side is the usual virtual-mass force in two-fluid models,
i.e.

F vm = ρf αa
αf

α�
f
(Dpvp − Df vf ). (A 24)

The second term modifies Gp and Gf in the momentum balances, and can be used to
determine Ga. It is interesting to note that the pressure coefficient from (A 22) depends
on the material-density difference, and changes sign at ρf = ρp. Replacing αa by cmαf αp,
the usual virtual-mass constant in (A 24) is Ca = cmα2

f /α
�
f so that in the limit αf = 1, the

standard value of Ca = cm = 1/2 (Milne-Thomson 1968).
The final step is to determine a form for Ga. In Cook & Harlow (1984), the particle

pressure and R are null and the two-fluid momentum balances have the form

ρf αf Df vf + αf ∂xpf + αf

α�
f
∂x · Pvm = −αf

α�
f

Gfp + F vm + ρf αf g, (A 25)

ρpαpDpvp + αp∂xpf − αa

α�
f
∂x · Pvm = αf

α�
f

Gfp − F vm + ρpαpg (A 26)

which can be compared to the ones found above

ρf αf Df vf + αf ∂xpf + ρf αa

ρeα�
p

∂xpp + αf

α�
f
∂x · P�

vm = −αf

α�
f

F + F vm + ρf αf g, (A 27)

ρpαpDpvp + αp∂xpf + ρpαp

ρeα�
p

∂xpp − αa

α�
f
∂x · P�

vm = αf

α�
f

F − F vm + ρpαpg, (A 28)
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where the exchange force F is defined by

F = ρeα
�
p

ρpαp

(
Gfp + Ga

)− ρf αa

ρeα�
p

(
ρeα

�
p

ρpαp
+ α�

f

αf

)
∂xpp. (A 29)

In order for (A 27) to agree with (A 25) when R is null, we must have

F = Gfp − α�
f

αf

ρf αa

ρeα�
p

∂xpp, (A 30)

and, hence,

Ga = ρf αa

ρeα�
p

(
∂xpp − Gfp

)
, (A 31)

where the pre-factor is the ratio of the added mass to the mass moving with velocity vp.
The momentum balances for the two-fluid model in terms of vf and vp are thus

ρf αf Df vf + αf ∂xpf + αf

α�
f
∂x · P�

vm = −αf

α�
f

Gfp + F vm + ρf αf g, (A 32)

ρpαpDpvp + αp∂xpf + ∂xpp − αa

α�
f
∂x · P�

vm = αf

α�
f

Gfp − F vm + ρpαpg, (A 33)

where Gfp is given in (A 9). From a numerical perspective, the two-fluid model in table 1
should be preferable because it is not necessary to approximate F vm numerically.

To conclude, it is interesting to note that the fluid drag in (A 9) depends on the added
mass (see Osnes et al. 2019, for a discussion of this issue for compressible flow). For
example, with αa = αf αp/2 the drag coefficient increases like 1/α2

f with decreasing αf ,
which is reminiscent of the drag law of Richardson & Zaki (1954) (see, also Kramer
et al. 2019). Inversely, the dependence of the drag coefficient on αf may be interpreted
as resulting from the added volume αa. It would therefore be interesting to explore the
connection between added mass and the drag law using particle-resolved direct numerical
simulation data with a model for the velocity wake (see, e.g. Moore & Balachandar 2019).

Appendix B. Hyperbolicity of the incompressible bubbly flow model

In this appendix, we investigate the hyperbolicity of the incompressible bubbly flow
model in table 6. Here, we consider the limit case Z → +∞. Following the method
described in Panicker et al. (2018) (see also Drew & Passman 1998), the independent
variables are X = (αa, α

�
f , pf /ρf , up, uf , Ep)

t. The variable kf does not affect the fluxes
of the other variables and its balance equation has a real eigenvalue equal to uf . The
remaining six equations in the 1-D model without source terms are then

∂tαp + X4∂xαp + αp∂x X4 = 0,

∂tX1 + X4∂x X1 + X1∂x X4 = 0,

∂tX2 + X5∂x X2 + X2∂x X5 = 0,

X1∂tX4 + X1X4∂x X4 + ∂x Pp + α�
p∂x X3 + F′

pf ∂x X5 = 0,

X2∂tX5 + X2X5∂x X5 + X2∂xX3 − ∂x Pa
fp − F′

pf ∂x X5 = 0,

X1∂tX6 + X1X4∂x X6 + X4∂x Pp + pp∂x X4 + X4α
�
p∂x X3 + X4F′

pf ∂x X5 = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 1)
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with αf = X1 + X2, α�
p = 1 − X2, αp = 1 − X1 − X2, pp = X1Θp(1 + 4α�

pg0),

Pa
fp = 1

γp
X1(X4 − X5)

2(1 + 4α�
pg0), Θp = (γp − 1)

(
X6 − 1

2 X2
4

)
, g0 = 1 + αf

2α3
f

,

(B 2a–c)

where Pp = pp + Pa
fp and F′

pf = (γp − 1)(1 − X2)(X5 − X4). Note that Pp and Pa
fp depend

on (X1, X2, X4, X5, X6). As discussed in Drew & Passman (1998), the incompressible model
has two infinite and four finite eigenvalues.

The canonical form of (B 1) is
A(X )∂tX + B(X )∂x X = 0 (B 3)

with coefficient matrices

A =

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 X1 0 0
0 0 0 0 X2 0
0 0 0 0 0 X1

⎤
⎥⎥⎥⎥⎥⎦ (B 4)

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X4 −X4 0 1 − X1 − X2 0 0

X4 0 0 X1 0 0

0 X5 0 0 X2 0

∂Pp

∂X1

∂Pp

∂X2
1 − X2 X1X4 + ∂Pp

∂X4
F′

pf +
∂Pa

fp

∂X5

∂pp

∂X6

−
∂Pa

fp

∂X1
−

∂Pa
fp

∂X2
X2 −

∂Pa
fp

∂X4
X2X5 − F′

pf −
∂Pa

fp

∂X5
0

X4
∂Pp

∂X1
X4

∂Pp

∂X2
X4(1 − X2) pp + X4

∂Pp

∂X4
X4

(
F′

pf +
∂Pa

fp

∂X5

)
X4

(
X1 + ∂pp

∂X6

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B 5)

The four finite eigenvalues, denoted by λ, for this system are found from the fourth-order
characteristic polynomial defined by |Aλ− B| = 0. If the roots of this polynomial are
scaled as

λ� = λ− uf

up − uf
and Θr = Θp

(up − uf )2
, (B 6a,b)

then two eigenvalues depend on cm, αp and Θr, and the other two are λ� = 1 (which
corresponds to Mas in the main text). Examples of the αp-dependence of the two
non-constant eigenvalues are shown in figure 10. As noted in the main text when discussing
(2.1), these eigenvalues do not represent the speed of sound in the fluid, which is infinite
in this model.

For αp = 0, the two non-constant eigenvalues λ� are

1 + 1
γp

±
√

1 + 1
γ 2

p

+ γpΘr (B 7)

and, thus, do not depend on cm (as is the case in (3.7a–d) for Z → +∞). In (B 7), the γp
contribution outside the radical comes from Pa

fp. As seen in figure 10, these two eigenvalues
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FIGURE 10. Eigenvalues of incompressible bubbly flow model versus αp with αa = cmαf αp,
Θr = 2/γ 2

p and γp = 5/3. For cd = 1 the eigenvalues are found with g0, whereas for
cd = 0 the eigenvalues are found with g0 = 0. Unlike in the compressible model, g0 is
not required to keep the system hyperbolic for large αp. This ‘equilibrium’ value for Θr
results in one eigenvalue at zero when g0 = 0, which corresponds to the fluid velocity.
Conversely, the equilibrium value for Θr found from direct-numerical simulation could be
used to specific γp for bubbly flow (i.e. γp = 4.714 using data from Tavanashad et al.
2019). (a) cm = 0.5, cd = 1; (b) cm = 0.5, cd = 0; (c) cm = 0.05, cd = 1; (d) cm = 0.05,
cd = 0.

are real valued for all αp with cm = 1/2, including with g0 = 0. It is noteworthy that
the particle-phase eigenvalues from (3.7a–d) in the limit Z → +∞ are equal to (B 7).
This would not be the case if the transport equation for Ep were replaced by an algebraic
expression for Θp. In any case, it is remarkable that by adding a transport equation for the
added mass and a model for the particle-pressure tensor that does not depend on granular
temperature, the incompressible two-fluid model becomes globally hyperbolic.

Alternative forms for the particle-pressure tensor are also possible. For example, it is not
necessary for αaPa

fp to depend on g0 or αa. In figure 11, the eigenvalues for a fluid-mediated
particle-pressure model that is quadratic in α�

p

Pp = pp + cf γp(α
�
p)

2α�
f u2

fp (B 8)

are plotted versus αp. For αp = 0, the two non-constant eigenvalues with this
particle-pressure model are

1 ±√
γpΘr, (B 9)

and they remain real valued for all αp ∈ [0, 1] if 0.1 ≤ cf , independent of cm. Comparing
figures 10 and 11, we observe that with 0 < cm the quadratic dependence on α�

p causes
the two eigenvalues to be equal at αp = 0 when Θr = 0. (Here, cm = 0 is a singular
case where the lower eigenvalue jumps to zero as αp increase from zero.) For cf < 0.1,
the eigenvalues are complex for small αp, before becoming real valued for larger volume
fractions. Replacing α�

p by αp in (B 8) gives qualitatively equivalent results, but the value of
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FIGURE 11. Eigenvalues of incompressible bubbly flow with an alternative fluid-mediated
particle-pressure model versus αp with αa = cmαf αp, Θr = 0 and cf γp = 5/30. Here, the
particle pressure is Pp = pp + cf γp(α

�
p)

2α�
f u2

fp and the system is hyperbolic for 0.1 ≤ cf with
0 ≤ cm ≤ 1. (a) cm = 1, (b) cm = 0.5, (c) cm = 0.25, (d) cm = 0.

cf must be slightly larger to ensure hyperbolicity. Although it introduces a new parameter
cf into the hyperbolicity analysis, the form of (B 8) is physically motivated by the fact
that binary interactions between particles mediated by the fluid scale with α2

p in a dilute
system. Also, note that the partial derivative of the second term in (B 8) with respect to α�

p

has the form of the ‘turbulent-dispersion’ force that is used to make bubbly flow models
hyperbolic (see, e.g. Panicker et al. 2018).

Finally, it is noteworthy that the partial derivatives of Pp appearing in the fourth row of
B in (B 5) could be interpreted as arising due to separate forces. For example, ∂Pp/∂X2
might be attributed to ‘turbulent dispersion’, while ∂pp/∂X6 acts like a pseudo-turbulent
turbophoresis. Nonetheless, they all have a common origin in the particle-phase pressure
tensor.
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