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1. Introduction

Ramanujan was the first mathematician to discover some of the arith-
metical properties of p(n), the number of unrestricted partitions of n. His
congruence,

(1) />(5»+4) = 0 (mod 5),

for example, is famous [2; 3]. Some progress has been made since then;
it is known that the congruence,

(2) p(n)=r (mod 5),

has an infinitude of solutions for any arbitrary value of r [4]. This is a some-
what weak relation, and one would have liked to obtain, if possible, stronger
results of the type,

(3) T(«) = 0 (mod 5),

for 'almost all' values of n, which in its turn is derivable from another
stronger relation, viz.,

(4) T(«) E= na(n) (mod 5),

also established by Ramanujan [2], where r(n) is Ramanujan's function
defined by

(5)

What is done in this paper is to modify the unrestricted character of
the partition function, p(n), by the introduction of some simple restrictions,
so that not only relations of the type (1) but also others including those
of types (3) and (4) may be found.

2. The main results

It is obviously necessary to explain the nature of the above restrictions.
The restriction merely imposes the condition that no number of the forms
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75M, 15n±r, (where r is a specified number), shall be a part (necessarily
positive integral) of the relevant partitions. In other words, in order to
determine the value of

the partition function restricted in this way, one should count all the un-
restricted partitions of n excepting those which contain a number of any
of the above forms as a part. We shall assume ™p{n) and p(n) to be unity
when n = 0, and vanishing when n is negative. In this paper we shall deal
mainly with the five restricted partition functions corresponding to r = 5p,
p = 1, 2, 4, 5 and 7.

The restricted partition function Up(n) corresponding to f = 25,
(or p = 5), has a somewhat simpler interpretation. It is easily seen that
this particular function requires the count of all the unrestricted partitions
of n excepting those which contain 25 or any multiple thereof as a part.
We have, in this case, considered it desirable to use the simpler notation,

(6) 2 5 , / , ^ =

in order to emphasize the simpler interpretation.
We can now state our main results.

THEOREM 1. For almost all values of n,

np(n) == 0
Hp{n) ̂  7lP(n-5)

THEOREM 2. For all values of n,

= 0

and more generally for p = 0, 1, 2, 3, 4, 5, 6, 7,

5>(5«+4) = 0

THEOREM 3. For all values of n,

(mod 5),
(mod 5),
(mod 5).

(mod 5);

(mod 5).

i—2) (mod 5),
•5) (mod 5).= -X25W-5) +1

THEOREM 4. The following linear expressions in the restricted partition
functions are multiplicative modulo 5 (n > 0),

2-Hp(n-2)-2
2 • lU(n)
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3. Definitions and notations

We shall use m to denote an integer positive, zero or negative, but n
is reserved to denote a positive or a non-negative integer only.

We define the function ur{x), or simply uT, by
oo oo

(7) ur= 2 > r « n * n - lP(n)x",
»=0 n=0

where an is defined by the well-known 'pentagonal number' theorem of
Euler,

OO +OO OO

(8) f(x) = H(l—xn) = 2(—l)ma;im(3m+1) = £ «»^".
n = l —oo n=0

and/) (w) is the number of unrestricted partitions of n given by the expansion,

[
oo - ] _ ! oo

11(1-*") = lP{n)x\
7 1 = 1 J n=0

When n = r = 0, nr is to be interpreted as unity, so that
oo oo

(10) uo= Zanx
n

n=0 n=0

We shall use v to denote the pentagonal numbers,

(11) v = |w(3m+l) , w = 0, ± 1 , ±2, • • •;

and with each v there corresponds an 'associated' sign, viz., (—l)m. We
shall come across sums of the type

where it is understood that the sign to be prefixed is the 'associated' one,
which would thus be (a) negative if v is 1, 2, 12, 15, 35, • • •, that is, when it
is of the form (2m + l)(3m+l), and (b) positive if it is 0, 5, 7, 22, 26, • • •,
that is, when it is of the form m(6m+l). It is clear that with the above
notation,

(12) ur = 2 (^vrx')lf(x),
V

(13) 2 (T

We shall also require the functions Ut, i = 0, 1, 2 which are certain
linear functions of uT's, r = 0, 1, 2, as given below

(14) Uo = -2

(15) U1 = -u2+2Ul,

(16) U2 = — 2
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We also need certain polynomials P,(w) in v, i = 0, 1, 2, which are
obtained by replacing Ut by P^v), and ur by vr in the above relations
(14) etc. Thus

(17) P0(v) = -

(18) P » = -v2+2v

(19) P2(v) = —

4. Lemmas

Remembering that the pentagonal numbers fall only in the residue
classes 0, 1, 2 modulo 5, the truth of the following lemma can be easily
verified.

LEMMA 1.

P,(») s 1 (mod 5), if v = i (mod 5),

= 0 (mod 5), if v ^k i (mod 5).

If we replace the w/s appearing in the expressions for U{ by

2 (Tv'x')lf(z),
V

which is justified according to (12), we obtain

and then the use of Lemma 1 leads to Lemma 2 given below.

LEMMA 2.

Ut= 2(Tx*)lf(x) (mod 5),
v=i

the summation being extended over all pentagonal numbers v = i (mod 5).
The truth of the following lemma can be verified without much diffi-

culty by writing 5m-\-j with j = 0, — 2;— 1; 1, 2 respectively in place of m
in the expression Jm(3m-fl) for the pentagonal numbers, and in (—l)m

its associated sign. It is also to be remembered (when / is negative, say,
—/') that £(5m-j')(15*»—3/'+l) and %(5m+j')(15m+3j'—1) represent
the same set of numbers.

LEMMA 3. With respect to the modulus 5 the pentagonal numbers v fall
in the three residue classes i = 0, 1, 2; and the solutions of

v = i (mod 5)

are given below together with the associated signs.
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i

0
1
2

solutions (1st set):

£(75m2 + 5>») :
i(75wa+25»») + l:
|(75m»+35»i) + 2:

D. B. Lahiri

sign

(-l)m

(-1J-+1

(-!)«+»

solutions (2nd set):

l{15m*+55m)+5 :

£(75m*+65m) + 7 :

[5]

sign

(-1)"

(-1)"

The identities given in the next lemma are simple applications of a
special case of a famous identity of Jacobi [3, p. 283], viz.,

(20) fl[(l—x2kn+k-l)(l— x2kn+k+l){l—x2kn+2k)] = 2(—l)mxkm'+lm.
n=0 —oo

In establishing this lemma k and I are given values which are in conformity
with the quadratic expressions in m given in Lemma 3. As an illustration,
we have the initial steps for 2«=2(T#B) as

+OO +00

V l^fxv) = T ( l)"»+la;i<75ma+35»n)+2_L V 1^. l\
D=2 —OO —OO

+00 +00

_ X2 V / J^ma.J(75m2+35m)_|_a;7 y / \\
—OO —00

LEMMA 4. Writing v = i simply for v = i (mod 5),

y (=px
r) = JI[(1—a;75n+35)(l—x78"+4<))(l—a;75n+75)]

v=0 n=0

+ * 5 fi [(1 -a; 7 5 n + 1 °) (1 -x 7 8 "+ 6 S ) (1 -a ; 7 5 n + 7 5 ) ] ,
n=0

v=l n=0

y (^xv) = - x 2 T J [(l-x75n+20)(l— a;78"+58)(l-a;78"+75)]
o=2 n=0

+X1* n [(l-x'5n+8)(l-a;78"+7(>)(l-x78"+78)].
n=0

The next lemma is derived from Lemma 2 after the substitution in it
of the product expressions for X^^^T^") as given in Lemma 4. The following
fact is to be used in addition.

(21) f | C(l-a;76n+r)(l-a;75"+75-r)(1-^7

n=0
oo

= IT [(1—x78n+r)(l-x78n+78-r)(l-x75B+75)]/[(l-x)(l-a;2)(l-a;3)---]
n=0
oo

n=0
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LEMMA 5.

Uo= 2HP(n)x" +2loP(n-5)xn (mod 5),
n=0 n=0

U1 = — J, 2Sp{n—l)zn (mod 5),
n=0

U2 = - I Hp(n-2)xn+ 17lp(n-7)x" (mod 5).
n=0 n=0

We require another set of congruences. These are obtained from the
classical result, — due to Catalan [1, p. 290], —

(22) p(n—l) + 2p(n—2)—5p(n—5) — lp(n-l)-\ = a(n),

and the fairly old result, — due to Glaisher [1, p. 312], —

(23) p(n

These results can be re-written according to our notation as

(24) 2 [Tvp{n-v)] = -a[n),
V

(25) 12 J [Tv2p{n—v)] = 5o3(n) — (18n—l)o(n).

V

Now from (12) we have

(26) ur = 2 (TVx°)lf(x)

n=0

zvrp(n-v)]}x", r>0.
» = 1 V

It is now easy to establish the validity of the following lemma from the
above three relations (24), (25) and (26).

LEMMA 6.

n=l

u2 = — 2 2 (2w+l)ff(»)a;n (mod 5).
n=l

The following lemma can be easily obtained by the application of
Lemma 6 to the expressions (14) etc. for U/s in terms of uT's.
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LEMMA 7.

Uo— 1 = - 2 j [n+l)a(n)xn (mod 5),
n=l

U-L = — \na(n)xn (mod 5),
n = l

C72 = — 2 2 (n— l)a{n)xn (mod 5).
n = l

It is of special interest to note that the five restricted partition functions
appearing in our theorems are connected by the identical relation given in
Lemma 8.

LEMMA 8.

This lemma can be easily derived from (13) which can be put in the form

(27) 2 [ 2 &*>)lf(x)] = 1.
<=o »= i

All that we need do now is to apply Lemma 4 and the relation (21), before
equating the coefficients of xn, n > 0, on both sides of (27).

5. Proof of the Theorems

By comparing the coefficients of like powers of x in the two (right hand)
expressions for U\ modulo 5 given in Lemmas 5 and 7 we obtain the following
congruences for n > 0.

(28) llp(n) +l*p(n-5) = -2(n+l)cr(n) (mod 5),

(29) 25p(n— 1) =no(n) (mod 5),

(30) -llP(n-2) + 'lp(n-7) = -2(»-l)<r(») (mod 5).

These are the basic relations on which our final conclusions are drawn.
Remembering the well-known congruence [5; 2 p. 167],

(31) ak(n) = 0 (modM) for almost all n

for arbitrarily fixed M and odd k, it is a straightforward matter to deduce
Theorem 1 from the above basic relations.

We shall now establish other relations which are stronger being true
for all values of n. Theorem 2 gives one such set of congruence relations.
The first relation of the theorem is directly obtained from (29) by writing

for n. One can also obtain with equal ease the relations,
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HP(5n+±) = -l$p{&n-l) (mod 5),
= 7!p(5n-l) (mod 5),

directly from the other basic relations (28) and (30) by writing 5w+4 and
5n-\-Q respectively in place of n. But still stronger relations asserting the
divisibility of each side of the above congruences by 5 hold. These divisi-
bility properties along with others are covered by the general proposition
enunciated in Theorem 2. This general result actually emanates from the
first relation, viz.,

(32) 25/>(5w+4)s0 (mod 5);

and the process of derivation has two stages. In the first one Ramanujan's
congruence (1) is obtained from the first relation (32), and this derived
relation is used in the second stage to establish the general proposition.
It easily follows from (21), (20) and (9) that l^p(n) can be expressed in the
(really finite) form

(33) l5
pp(n) = P(n)+fe(n')p(n-&n')

n'=l

where e(n') = 0 or ± 1 . For the special case corresponding to p = 5 we have
the fully specified expression,

(34) ™p(n) = 2 [Tp(n-25v)].
V

Keeping in mind the first relation of Theorem 2, viz., (32), Ramanujan's
congruence (1) is seen to be valid by putting successively n = 4, 9,14, 19, • • •
in (34). And to derive the general proposition we merely write 5w+4 for
n in (33) and make use of Ramanujan's congruence.

Theorem 3 involves two differently restricted partition functions in
each of the congruences. As an illustration of the method used we shall
establish the first congruence. Writing 5w in place of n in (30) and making
use of the relation,

(35) a(5n)=a{n) (mod 5),

which is easily established, we have

(36) ^p^n^2) + 7lp(5n-l) = 2a{n) (mod 5).

Subtracting (36) from (30), and then writing 5n-\-5 in place of n again,
we have the first congruence of Theorem 3.

There are of course congruences for linear functions with constant
coefficients involving more than two differently restricted partition func-
tions. Two interesting ones are
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(37) Hp(5n+3)+l*p(5n-2) = -*p(5n+2) (mod 5),

(38) ™p(6n)-7ip(5n-5)=»p(&n+l) (mod 5).

From (28) and (29), and also from (29) and (30) we get the following linear
congruences with variable coefficients.

n • Hp(n) +n • Hp{n-5) = - 2 ( n + l ) • 2 ^ ( w - l ) (mod 5),
—n • Hp(n-2)+n • 7|/>(»—7) = — 2(w— 1) • 2 5 /> (M-1) (mod 5).

In order to pass on to linear functions with constant coefficients it is only
necessary to substitute 5n-\-i, i = 0, 1, 2, 3, 4, for n in these congruences.
Substitutions of 5w+3 in the first one, and 5n-\-2 in the other give (37) and
(38) respectively. Use of other values of i in the substitution process does
not lead essentially to any congruence not already covered. In this connec-
tion the congruence relation (40) given at the end of the paper is to be
kept in mind.

Then there are congruences involving the restricted partition functions
which are the result of exploiting the multiplicative property of a(n). The
multiplicative property modulo 5 of the first expression of Theorem 4,
as given below explicitly,

(39) 2 6 ^ ( M - 1 ) • 2Sp{n'-l) = ™p(nn'-l) (mod 5), («, n') = 1,

is a direct consequence of the multiplicative property of a(n) and the relation
(29). Also the relations (28) and (30) give rise to the congruence

(40) ^ (»)+!&(n-5)+»£(»-2) - ' f r (»-7)=«x(n) (mod 5).

The four unrestricted partition functions appearing in (40) may be reduced
to three with the use of Lemma 8; and the multiplicative property of a(n)
again come to our aid in establishing the multiplicative property modulo 5
of the other two expressions given in Theorem 4.
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