The Absolute Summability (A) of Fourier Series

By B. N. Prasad, University of Liverpool.

(Received 8th March 1930. Read 2nd May 1930.)
§1. In a recent paper ${ }^{1}$ Dr J. M. Whittaker has shown that the Fourier series

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

of a function $f(\theta)$ which has a Lebesgue integral in $(-\pi, \pi)$, is ${ }^{2}$ absolutely summable (A) to sum l, if
(a) $\quad \int_{0}^{\delta}|\phi(t)| t^{-1} d t$
exists, where

$$
2 \phi(t)=f(\theta+2 t)+f(\theta-2 t)-2 l .
$$

In this paper two other forms of criterion for absolute summability (A) of a Fourier series are obtained. In §2, it is shown that the series is absolutely summable (A), if
$(\beta) \quad \phi(t)$ is absolutely continuous in $(0, \delta)$.
In § 3, another criterion is found, viz.
$(\gamma) \quad$ the existence of the integral $\int_{0}^{\delta}|\Phi(t)| t^{-2} d t$,
where

$$
\Phi(t)=\int_{0}^{t} \phi(u) d u
$$

In §4, the mutual relations of these three criteria are discussed, where it is shown that, while (β) is independent of (α) and $(\gamma),(\gamma)$ includes (α).
${ }^{1}$ Proc. Edinburgh Math. Soc. (2), 2 (1930), 1-5.
${ }^{2}$ A series

$$
\sum_{n=0}^{\infty} a_{n},
$$

has been defined to be absolutely summable (A), if

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is convergent in ($0 \leqslant x<1$) and if $f(x)$ is of bounded variation in (0,1).

In the last article it is proved that a Fourier series may be absolutely summable (A) at a point, without being convergent in the ordinary sense at that point.
§2. From the Poisson's series ${ }^{1}$ (convergent for $0 \leqslant x<1$)

$$
P(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} x^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

we get

$$
\begin{aligned}
\frac{1}{2} \pi Q(x) & =\frac{1}{2} \pi\{P(x)-l\} \\
& =\int_{0}^{\pi / 2} \phi(t) \frac{1-x^{2}}{1-2 x \cos 2 t+x^{2}} d t \\
& =\int_{0}+\int_{\delta}^{\pi / 2} \phi(t) \frac{1-x^{2}}{1-2 x \cos 2 t+x^{2}} d t \\
& =Q_{1}(x)+Q_{2}(x), \text { say }
\end{aligned}
$$

where δ is a constant such that $0<\delta<\frac{\pi}{2}$.
It is easy to prove that

$$
\int_{0}^{x_{1}}\left|Q_{2}^{\prime}(x)\right| d x
$$

where $0<x_{1}<1$, is less than a constant and hence $Q_{2}(x)$ is of bounded variation in (0,1).

Now suppose $\phi(t)$ is absolutely continuous in ($0, \delta$). Hence, integrating by parts

$$
\begin{aligned}
Q_{1}(x) & =\phi(\delta) \tan ^{-1}\left\{\frac{1+x}{1-x} \tan \delta\right\}-\int_{0} \tan ^{-1}\left\{\frac{1+x}{1-x} \tan t\right\}\left(\frac{d \phi(t)}{d t}\right) d t \\
& =J(x)-K(x)
\end{aligned}
$$

Here $J(x)$ is obviously a function of bounded variation in (0,1), whilst

$$
\begin{aligned}
\int_{0}^{x_{1}}\left|K^{\prime}(x)\right| d x & =\int_{0}^{x_{1}}\left|\int_{0}^{\delta} \frac{d \phi(t)}{d t} \cdot \frac{d}{d x}\left[\tan ^{-1}\left\{\frac{1+x}{1-x} \tan t\right\}\right] d t\right| d x \\
& \leqslant \int_{0}^{x_{1}} d x \int_{0}^{\delta}\left|\frac{d \phi(t)}{d t}\right|\left|\frac{\sin 2 t}{1-2 x \cos 2 t+x^{2}}\right| d t \\
& =\int_{0}\left|\frac{d \phi(t)}{d t}\right| U\left(x_{1}, t\right) d t
\end{aligned}
$$

inverting the order of integration ${ }^{2}$; here

[^0]\[

$$
\begin{aligned}
U\left(x_{1}, t\right) & =\int_{0}^{x_{3}}\left|\frac{\sin 2 t}{1-2 x \cos 2 t+x^{2}}\right| d x \\
& =\tan ^{-1}\left\{\frac{1+x_{1}}{1-x_{1}} \tan t\right\}-t \leqslant \frac{\pi}{2} .
\end{aligned}
$$
\]

Therefore $\quad \int_{0}^{x_{1}}\left|K^{\prime}(x)\right| d x \leqslant \frac{\pi}{2} \int_{0}^{\delta}\left|\frac{d \phi(t)}{d t}\right| d t<c$,
where c is a constant. ${ }^{1}$ Hence $K(x)$ is a function of bounded variation in (0,1). Therefore $Q_{1}(x)$ and consequently $Q(x)$ from (2) is a function of bounded variation in (0,1), so that the series (1) is absolutely summable (A) at θ, if it converges in virtue of $\phi(t)$ being absolutely continuous in $(0, \delta)$.
§3. Let
and

$$
\begin{aligned}
W(x, t) & =\frac{1-x^{2}}{1-2 x \cos 2 t+x^{2}} \\
\Phi(t) & =\int_{0}^{t} \phi(u) d u
\end{aligned}
$$

Taking $\delta=\frac{\pi}{4}$, we have

$$
\begin{aligned}
\int_{0}^{x_{1}}\left|Q^{\prime}(x)\right| d x & =\int_{0}^{x_{1}}\left|\int_{0}^{\pi / 4} \phi(t) \cdot \frac{\partial W(x, t)}{\partial x} d t\right| d x \\
& =\int_{0}^{x_{1}}\left|\left[\Phi(t) \frac{\partial W(x, t)}{\partial x}\right]_{0}^{\pi / 4}-\int_{0}^{\pi / 4} \Phi(t) \frac{\partial^{2} W(x, t)}{\partial t \partial x} d t\right| d x \\
& \leqslant A+\int_{0}^{x_{1}} \int_{0}^{\pi / 4}|\Phi(t)| \cdot\left|\frac{\partial^{2} W(x, t)}{\partial t}\right| d t d x
\end{aligned}
$$

where A is a constant. Inverting the order of integration, we have

$$
\int_{0}^{x_{1}}\left|Q^{\prime}(x)\right| d x \leqslant A+\int_{0}^{\pi / 4}|\Phi(t)|\left\{\int_{0}^{x_{1}}\left|\frac{\partial^{2} W}{\partial t} \frac{(x, t)}{\partial x}\right| d x\right\} d t
$$

Now

$$
\begin{aligned}
\int_{0}^{x_{1}}\left|\frac{\partial^{2} W(x, t)}{\partial t \partial x}\right| d x & =\int_{0}^{x_{1}}\left|4 \sin 2 t \frac{1+x^{4}-6 x^{2}+2 x\left(1+x^{2}\right) \cos 2 t}{\left(1-2 x \cos 2 t+x^{2}\right)^{3}}\right| d x \\
& =\int_{0}^{x_{1}}|V(x, t)| d x
\end{aligned}
$$

where

$$
V(x, t)=4 \sin 2 t \frac{1+x^{4}-6 x^{2}+2 x\left(1+x^{2}\right) \cos 2 t}{\left(1-2 x \cos 2 t+x^{2}\right)^{3}}
$$

[^1]Let us write

$$
t_{1}=\sin ^{-1} \frac{1-x_{1}}{\sqrt{ } 2 \sqrt{ }\left(1+x_{1}^{2}\right)}, \quad\left(0<t_{1}<\pi / 4\right)
$$

Then, if $0 \leqslant t \leqslant t_{1}$, we have

$$
\begin{aligned}
\int_{0}^{x_{1}}\left|\frac{\partial^{2} W(x, t)}{\partial t \partial x}\right| & =\int_{0}^{x_{3}} V(x, t) d x \\
& =\frac{4 \sin 2 t \cdot x_{1}\left(1-x_{1}{ }^{2}\right)}{\left(1-2 x_{1} \cos 2 t+x_{1}^{2}\right)^{2}}
\end{aligned}
$$

Now since

$$
\begin{aligned}
\left(1-2 x_{1} \cos 2 t+x_{1}{ }^{2}\right)^{2} & =\left(1-x_{1}\right)^{4}+8 x_{1}\left(1+x_{1}^{2}\right) \sin ^{2} t-16 x_{1}^{2} \sin ^{2} t \cos ^{2} t \\
& \geqslant 8 x_{1}\left(1-x_{1}\right)^{2} \sin ^{2} t
\end{aligned}
$$

it follows that, for $0 \leqslant t \leqslant t_{1}$,

$$
\int_{0}^{x_{1}}\left|\frac{\partial^{2} W(x, t)}{\partial t \partial x}\right| d x \leqslant \frac{\left(1+x_{1}\right) \cos t}{\left(1-x_{1}\right) \sin t}<\frac{\pi^{2}}{2 t^{2}} .
$$

If $t_{1} \leqslant t \leqslant \frac{1}{4} \pi$, and x^{\prime}, such that $(\sqrt{ } 2-1) \leqslant x^{\prime}<1$, be given by

$$
\cos 2 t=\frac{6{x^{\prime 2}}^{2}-1-x^{4^{4}}}{2 x^{\prime}\left(1+{x^{\prime 2}}^{2}\right)}
$$

we see that

$$
\begin{aligned}
\int_{0}^{x}\left|\frac{\partial^{2} W(x, t)}{\partial t \partial x}\right| d x & \left.\leqslant \int_{0}^{1} \frac{\partial^{2} W(x, t)}{\partial t \partial x} \right\rvert\, d x \\
& =\int_{0}^{\sqrt{ } 2-1} V(x, t) d x+\int_{\sqrt{2}-1}^{x^{\prime}} V(x, t) d x-\int_{x^{\prime}}^{1} V(x, t) d x \\
& =\frac{8 \sin 2 t \cdot x^{\prime}\left(1-x^{\prime 2}\right)}{\left(1-2 x^{\prime} \cos 2 t+x^{\prime 2}\right)^{2}} \\
& <D \cos t \operatorname{cosec}^{2} t<\frac{1}{4} \pi^{2} D t^{-2}
\end{aligned}
$$

where D is a constant.
Thus we have

$$
\begin{aligned}
\int_{0}^{x_{1}}\left|Q_{1}^{\prime}(x)\right| d x & \leqslant A+\left(\int_{0}^{t_{1}}+\int_{t_{1}}^{\pi / 4}\right)|\Phi(t)|\left\{\int_{0}^{x_{1}}\left|\frac{\partial^{2} W(x, t)}{\partial t \partial x}\right| d x\right\} d t \\
& <A+\frac{1}{2} \pi^{2} \int_{0}^{t_{1}}|\Phi(t)| t^{-2} d t+\frac{1}{4} \pi^{2} D \int_{t_{1}}^{\pi / 4}|\Phi(t)| t^{-2} d t \\
& <A+B \int_{0}^{\pi / 4}|\Phi(t)| t^{-2} d t
\end{aligned}
$$

where B is a constant.

Hence $Q_{1}(x)$ will be of bounded variation in $(0,1)$ and consequently the Fourier series will be absolutely summable (A), provided that

$$
\int_{0}^{\delta}|\Phi(t)| t^{-2} d t
$$

exists.
§4. The criterion (γ) includes (α).
The proof of this is quite straightforward and is therefore omitted.
(γ) is not included in (a).
Take

$$
\phi(t)=\rho t^{\rho-1} \sin \frac{1}{t}-\frac{1}{t^{2}-\rho} \cos \frac{1}{t},(1<\rho<2)
$$

so that

$$
\Phi(t)=t^{\rho} \sin \frac{1}{t}
$$

Then (γ) exists, but (α) does not exist.
(β) is included neither in (α) nor in (γ).
Thus

$$
\phi(t)=\left(\log \frac{1}{t}\right)^{-1}
$$

satisfies (β), but neither (α) nor (γ).
Again (β) being an especial case of Jordan's test, cannot include (a) or $(\gamma){ }^{1}$
§5. The existence of the integral

$$
\int_{0}^{\delta}|\Phi(t)| t^{-2} d t
$$

is not a sufficient condition for the convergence of the corresponding Fourier series.

For if we take

$$
\phi(t)=r t^{r-1} \sin \frac{1}{t}-\frac{1}{t^{2-r}} \cos \frac{1}{t},\left(1<r<\frac{3}{2}\right)
$$

so that

$$
\Phi(t)=t^{r} \sin \frac{1}{t}
$$

Then we have

$$
\begin{aligned}
I & =\frac{1}{\pi} \int_{0}^{e}\left(r t^{r-1} \sin \frac{1}{t}-\frac{1}{t^{2-r}} \cos \frac{1}{t}\right) \cdot \frac{\sin (2 n+1) t}{t} d t \\
& =\frac{1}{\pi} \int_{0}^{\epsilon} r \sin \frac{1}{t} \cdot \frac{\sin (2 n+1) t}{t^{2-r}} d t-\frac{1}{\pi} \int_{0}^{\epsilon} \frac{1}{t^{2-r}} \cos \frac{1}{t} \cdot \frac{\sin (2 n+1) t}{t} d t \\
& =I_{1}-I_{2} .
\end{aligned}
$$

${ }^{1}$ See G. H. Hardy, Messenger of Math., 49 (1919-20), 150.

Now $\lim _{n \rightarrow \infty} I_{1}$ is zero, but by means of results due to Du BoisReymond, ${ }^{1}$ it can be proved that I_{2} does not tend to any definite limit, as $n \rightarrow \infty$. Hence the corresponding Fourier series will not converge at θ, although

$$
\int_{0}^{\delta}|\Phi(t)| t^{-2} d t
$$

exists.
Thus it has been shown that a Fourier series may be nonconvergent at a point, but nevertheless absolutely summable (A) at that point.

I am much indebted to Dr J. M. Whittaker for his kind interest and advice during the preparation of this paper.

[^2]
[^0]: ${ }^{1}$ E. W. Hobson, Theory of Functions of a Real Variable, 2 (1926), 629.
 ${ }^{2}$ Ibid., 1 (1927), 630.

[^1]: 1 Ibid., 593.

[^2]: ${ }^{1}$ Abhand. d. Bayer. Alad. (1876), II, 37.
 See also G. H. Hardy, Quarterly Journal, 44 (1913), 242-263.

