THE STRUCTURE OF THE MULTIPLICATIVE GROUP OF RESIDUE CLASSES MODULO \mathfrak{p}^{N+1}

NORIKATA NAKAGOSHI

§]1. Introduction

Let k be an algebraic number field of finite degree and \mathfrak{p} be a prime ideal of k, lying above a rational prime p. We denote by $G(\mathfrak{p}^{N+1})$ the multiplicative group of residue classes modulo \mathfrak{p}^{N+1} ($N \geq 0$) which are relatively prime to \mathfrak{p} . The structure of $G(\mathfrak{p}^{N+1})$ is well-known, when N=0, or k is the rational number field Q. If k is a quadratic number field, then the direct decomposition of $G(\mathfrak{p}^{N+1})$ is determined by A. Ranum [6] and F.H-Koch [4] who gives a basis of a group of principal units in the local quadratic number field according to H. Hasse [2]. In [5, Theorem 6.2], W. Narkiewicz obtains necessary and sufficient conditions so that $G(\mathfrak{p}^{N+1})$ is cyclic, in connection with a group of units in the \mathfrak{p} -adic completion of k.

The structure of $G(\mathfrak{p}^{N+1})$ is confirmed by that of the p-Sylow subgroup and the p-rank of $G(\mathfrak{p}^{N+1})$ is given by T. Takenouchi [8]. If an algebraic number field k contains a primitive p-th root of unity, the p-rank is also given by H. Hasse [3, Teil I_a , § 15].

In the present paper we shall establish the direct decomposition of $G(\mathfrak{p}^{N+1})$ for each N which gives another proof of T. Takenouchi's results [8].

§ 2. Notation and an outline of the investigation

Let e and f be the ramification index and the degree of \mathfrak{p} over Q, respectively. Put $e_1 = \left[\frac{e}{p-1}\right]$, where [x] is the maximal integer $\leq x$. We denote by Z(m) a cyclic group of order m.

Let H_{N+1} be the (N+1)-th unit group of the p-adic completion $k_{\mathfrak{p}}$ of k, that is,

Received October 3, 1977.

$$H_{N+1} = \{ \eta \in k_{\mathfrak{p}} | \eta \equiv 1 \bmod \mathfrak{p}^{N+1} \} \qquad (N = 0, 1, \cdots).$$

 H_1 is called a group of principal units of $k_{\mathfrak{p}}$. Then one verifies easily that

$$G(\mathfrak{p}^{N+1}) \cong Z(p^f - 1) \times H_1/H_{N+1}$$
 (direct),

whence H_1/H_{N+1} is isomorphic to the p-Sylow subgroup of $G(\mathfrak{p}^{N+1})$.

Let $b_N(\nu)$ be a number of elements of a basis of H_1/H_{N+1} whose orders are exactly $p^{\nu}(\nu \ge 1)$. Then H_1/H_{N+1} is expressed as direct product:

$$H_1/H_{N+1}\cong\prod_{\nu=1}^{\infty}\left(Z(p^{\nu})\underbrace{\times\cdots\times Z}_{b_N(\nu) ext{-times}}(p^{\nu})
ight)$$
 .

For our purpose it will suffice to establish a basis of H_1/H_{N+1} for each $N \ge 0$.

For any multiplicative group G we denote by $G^{p^{\nu}}$ a subgroup of G generated by $\sigma^{p^{\nu}}$ where $\sigma \in G$ and $\nu \geq 1$. We define the p-rank R_N of $G(p^{N+1})$ by

$$p^{R_N} = (G(\mathfrak{p}^{N+1}) : G(\mathfrak{p}^{N+1})^p).$$

 R_N will be given by Theorem 1 in §3.

We let π be a prime element of k_{ν} , fixed once for all. Put

$$-p=\varepsilon\pi^e,$$

where ε is a unit of $k_{\mathfrak{p}}$. Moreover, we let $\{\omega_i\}_{1\leq i\leq f}$ be a system of representatives in $k_{\mathfrak{p}}$ for a basis of the residue class field modulo \mathfrak{p} over the prime field.

Let Z_p be the ring of p-adic integers. Then H_1 is a multiplicative Z_p -group and its system of generators over Z_p is given by H. Hasse [2].

THEOREM A (H. Hasse [2]). Suppose that k_* does not contain a primitive p-th root of unity. Put

$$\eta_{is} = 1 + \omega_i \pi^s \qquad egin{pmatrix} i = 1, \cdots, f \ 1 \leq s \leq pe/(p-1), s
otin 0 \mod p \end{pmatrix}.$$

Then $\{\eta_{is}\}$ is a Z_p -basis of H_1 .

Let ζ_{μ} be a primitive p^{μ} -th root of unity for each $\mu \geq 0$. Then we have

THEOREM B (H. Hasse [2]). Suppose that k_{ν} contains ζ_{μ} ($\mu \geq 1$), but does not contain $\zeta_{\mu+1}$. Let λ and e_{0} be integers such that

$$e = \varphi(p^{\lambda})e_0$$
,

where φ is Euler's function and e_0 is prime to p. Put

$$egin{aligned} \eta_{is} &= 1 + \omega_i \pi^s & egin{aligned} i &= 1, \cdots, f \ 1 &\leq s \leq e + e_i = pe/(p-1), s
otin 0 & 0 & 0 \end{aligned}
ight),$$

where $\omega_1, \dots, \omega_f$ satisfy the following conditions:

$$\omega_i^{p^{\lambda}} - \varepsilon \omega_i^{p^{\lambda-1}} \equiv 0 \mod \mathfrak{p}$$
, $\omega_i^{p^{\lambda}} - \varepsilon \omega_i^{p^{\lambda-1}} \not\equiv 0 \mod \mathfrak{p}$ $(2 \leq i \leq f)$

and ω_0 is a unit of k_n for which a congruence

$$X^p - \varepsilon X \equiv \omega_0 \mod \mathfrak{p}$$

has no solution X in k_{n} .

Then $\{\eta_{is}, \eta_*\}$ is a system of generators of H_1 over Z_p .

We note that $\lambda \geq \mu$.

Now we sketch a plan to determine a basis of H_1/H_{N+1} . Let $\mu e + e_1 \le N < (\mu+1)e + e_1$ and $t \ge 1$. Then we see by Lemma 7 in § 5 that if $\mu = 0$, $b_{te+N}(\nu+t) = b_N(\nu)$; if $\mu \ge 1$, $b_{te+N}(\mu) = 1 + b_N(\mu-t)$, $b_{te+N}(\mu+t) = b_N(\mu) - 1$ and $b_{te+N}(\nu+t) = b_N(\nu)$, where $\nu \ne \mu$ and $\nu+t \ne \mu$. Hence it is enough to compute $b_N(\nu)$ for $0 \le N < (\mu+1)e + e_1$.

We assume that k_{μ} contains ζ_{μ} ($\mu \geq 0$) but does not contain $\zeta_{\mu+1}$.

First suppose that $\mu=0$. Let $\eta_{is}H_{N+1}$ be cosets of H_{N+1} in H_1 , where η_{is} are principal units defined by Theorem A. From Theorem A a system of canonical generators for H_1/H_{N+1} is given by

$$\{\eta_{is}H_{N+1}\},$$

where $1 \le i \le f$, $1 \le s \le \min(N, pe/(p-1))$ and $s \equiv 0 \mod p$. Let $g_N(\nu)$ be a number of generators of (2) such that $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. In § 5 we shall prove

(3)
$$g_N(1) + \sum_{\nu=2}^{\infty} \nu (g_N(\nu) - g_N(\nu - 1)) = Nf$$

(see (17) in § 5), hence (2) is a basis of H_1/H_{N+1} . Then $b_N(\nu)$ are given as follows:

(4)
$$\begin{cases} b_N(1) = g_N(1), \\ b_N(\nu) = g_N(\nu) - g_N(\nu - 1), & (\nu \ge 2). \end{cases}$$

Furthermore, we shall compute orders $p^{\nu(N;i,s)}$ of η_{is} modulo \mathfrak{p}^{N+1} , using Corollary 8 in § 5. Then we can determine a basis of H_{N+1} for each N (see Proposition 11 in § 5). Since a basis of H_1 is given by Theorem A, the direct decomposition of H_1/H_{N+1} is easily obtained.

Secondly we assume $\mu \geq 1$. Put

(5)
$$S = \{(i,s) | 1 \le i \le f, 1 \le s \le e + e_1 = pe_1, \\ s \equiv 0 \mod p, (i,s) \ne (1,e_0) \}.$$

The number of elements of S is equal to (ef-1). If $\lambda = \mu$, then $\eta_{1e_0} = \zeta_{\mu}$ and $\{\eta_*, \eta_{is}\}_{(i,s) \in S}$ is a Z_p -basis of $H_1([2, p. 232])$. If $\lambda > \mu$, then we observe by [2, p. 231] that

(6)
$$\eta_{1e_0}^{p^{\lambda-\mu}} = \zeta_{\mu} \cdot \eta_{*}^{\beta_{*}} \prod_{\substack{i, j \in S \\ (i, j) \in S}} \eta_{is}^{\beta_{is}},$$

where β_* and β_{is} are *p*-adic integers. Let H_{01} be a multiplicative Z_p -group generated by $\{\eta_*, \eta_{is}\}_{(i,s) \in S}$. Then by [2, p. 230] we have a direct decomposition of H_{01} :

(7)
$$H_{01} = \langle \eta_* \rangle \times \prod_{(i,s) \in S} \langle \eta_{is} \rangle$$
 (direct),

where $\langle \eta \rangle$ stands for a cyclic group generated by η .

Let η_*H_{N+1} , $\eta_{is}H_{N+1}$ be cosets of H_{N+1} in H_1 and $p^{\nu(N:*)}$, $p^{\nu(N:*)}$ be their orders in H_1/H_{N+1} , respectively. From Theorem B we have a system of canonical generators for H_1/H_{N+1} as follows:

$$\{\eta_{is}H_{N+1}\}, \quad \text{if } 1 \leq N < e + e_1,$$

$$\{\eta_* H_{N+1}, \eta_{is} H_{N+1}\}, \quad \text{if } e + e_1 \leq N,$$

where $1 \le i \le f$, $1 \le s \le \min(N, e + e_1)$ and $s \ne 0 \mod p$. Let $g_N(\nu)$ be a number of generators defined by (8_1) or (8_2) such that $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$, $\eta_*^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. Then (8_1) or (8_2) is a basis of H_1/H_{N+1} if and only if the equality (3) holds. It will be proved by (17) in § 5 that (i) (8_1) is a basis of H_1/H_{N+1} , (ii) (8_2) is a basis of H_1/H_{N+1} if and only if $\nu(N:1,e_0) = \lambda$. If the equality (3) holds, then $b_N(\nu)$ are given by (4).

If $N \ge e + e_1$ and $\nu(N:1, e_0) \ne \lambda$, then it will be possible to determine a basis of H_{N+1} (see Proposition 11 in §5) and we observe that

 H_{N+1} is a subgroup of H_{01} . Hence we can find a relation between η_* , η_{1e_0} and η_{is} modulo \mathfrak{p}^{N+1} (see (18) in § 6) which is induced by (6). Let Z be the ring of rational integers. Let M be a free Z-module generated by $\tilde{\eta}_*$, $\tilde{\eta}_{1e_0}$ and $\tilde{\eta}_{is}$ ($(i,s)\in S$). Let $\psi:M\to H_1/H_{N+1}$ be a homomorphism defined by $\psi(\tilde{\eta}_*)\equiv \eta_* \bmod \mathfrak{p}^{N+1}$, $\psi(\tilde{\eta}_{1e_0})\equiv \eta_{1e_0} \bmod \mathfrak{p}^{N+1}$ and $\psi(\tilde{\eta}_{is})\equiv \eta_{is} \bmod \mathfrak{p}^{N+1}$. Then we shall have a system of canonical generators for Ker ψ . Hence the direct decomposition of $H_1/H_{N+1}\cong M/\mathrm{Ker}\,\psi$ will be obtained using elementary divisors of a certain matrix (see (9) of Theorem 3) whose entries are $p^{\nu(N:i,s)}$, $p^{\nu(N:*)}$ and p-components of exponents appearing in the relation (18) in § 6.

§ 3. Theorems

We shall prove the following assertions:

THEOREM 1 (cf. [3] and [8]). The p-rank R_N of $G(\mathfrak{p}^{N+1})$ is given by

$$R_N = \begin{cases} \left(N - \left[\frac{N}{p}\right]\right)f, & \text{if } 0 \leq N < e + e_1, \\ ef, & \text{if } N \geq e + e_1 \text{ and } k_{\mathfrak{p}} \ni \zeta_1, \\ ef + 1, & \text{if } N \geq e + e_1 \text{ and } k_{\mathfrak{p}} \ni \zeta_1. \end{cases}$$

Theorem 2. Suppose that k_{ν} does not contain ζ_1 . Let $0 \leq N \leq e + e_1$. Then it follows that for each $t \geq 0$

$$G(\mathfrak{p}^{te+N+1}) \cong Z(p^f-1) imes \prod_{\nu=1}^{\infty} (Z(p^{\nu+t}) imes \cdots imes Z(p^{\nu+t})) \\ imes (Z(p^t) imes \cdots imes Z(p^t)) \\ imes (Z(p^t) imes \cdots imes Z(p^t))$$

where R_{te+N} , R_N are p-ranks of $G(\mathfrak{p}^{te+N+1})$, $G(\mathfrak{p}^{N+1})$, respectively, and

$$b_{N}(\nu) = \left(\left[\frac{N}{p^{\nu-1}} \right] - 2 \left[\frac{N}{p^{\nu}} \right] + \left[\frac{N}{p^{\nu+1}} \right] \right) f.$$

THEOREM 3. Suppose that k_{ν} contains ζ_{μ} ($\mu \geq 1$) but does not contain $\zeta_{\mu+1}$. Let λ and e_0 be as in Theorem B. Then the direct decomposition of $G(\mathfrak{p}^{N+1})$ is expressed as follows:

(I) In the case where $1 \leq N < e + e_1$,

$$G(\mathfrak{p}^{N+1}) \cong Z(p^{f}-1) imes \prod_{
u=1}^{\infty} \left(Z(p^{
u}) \underset{b_{N}(
u) ext{-times}}{ imes} \underline{Z(p^{
u})}
ight)$$
 ,

where $b_N(\nu)$ are equal to those of Theorem 2.

(II) In the case where $e + e_1 \leq N < (\mu + 1)e + e_1$ and $\nu(N:1, e_0) = \lambda$,

$$G(\mathfrak{p}^{N+1}) \cong Z(p^f-1) \times \prod_{\nu=1}^{\infty} (Z(p^{\nu}) \times \cdots \times Z(p^{\nu}));$$

 $b_N(\nu)$ are given as follows:

Let a be a rational integer $(1 \le a \le \mu)$ such that $ae + e_1 \le N < (a+1)e + e_1$.

For
$$\nu \leq \alpha - 1$$
, $b_N(\nu) = 0$.

For
$$\nu = a$$
, $b_N(a) = \left((a+1)e - N + \left[\frac{N-ae}{p}\right]\right)f + \beta_N(a)$.

For $\nu \geq a+1$,

$$\begin{split} b_{N}(\nu) &= \left(\left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta}} \right] - 2 \left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 1}} \right] \right. \\ &+ \left. \left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 2}} \right] \right) f \, + \, \beta_{N}(\nu) \ , \end{split}$$

where

$$eta_N(a) = egin{cases} 2 \;, & if \; a = \lambda = \mu \;, \ 1 \;, & if \; a
eq \lambda \;, \end{cases} egin{cases} eta_N(
u) = egin{cases} 1 \;, & if \;
u = \lambda \geqq a + 1 \;, \ -1 \;, & if \;
u = \lambda + a \;, \ 0 \;, & otherwise \; (
u \geqq a + 1) \end{cases}$$

and

$$\delta = egin{cases} 0 ext{ ,} & ext{ if } N=ae+e_1 ext{ ,} \ 1 ext{ ,} & ext{ if } ae+e_1 < N < (a+1)e+e_1. \end{cases}$$

(III) In the case where $e + e_1 < N < (\mu + 1)e + e_1$ and ν $(N:1, e_0) > \lambda$, there exists a rational integer a $(1 \le a \le \mu)$ such that $ae + e_1 \le N < (a+1)e + e_1$. Let $p^{a_{is}}$ be p-components of $\beta_{is}p^{\mu}$ where β_{is} are p-adic integers defined by (6). Put

$$a_{is} = \min \{ \nu(N:i,s), a'_{is} \}$$
 for $(i,s) \in S$,

where S is given by (5). If $N = ae + e_1$ and $(e + e_1)/p^{\nu-a+1} < s \le (e + e_1)/p^{\nu-a}$, then $\nu(N:i,s) = \nu \ge a$; if $ae + e_1 < N < (a+1)e + e_1$ and $(N - ae)/p^{\nu-a} < s \le (N - ae)/p^{\nu-a-1}$, then $\nu(N:i,s) = \nu \ge a$. Let $p^{e_0}, p^{e_1}, \dots, p^{e_{sf}}$ be elementary divisors of the following $(ef + 2) \times (ef + 1)$ -matrix

$$(9) \qquad \begin{array}{c} \left(p^{a} \\ p^{\nu(N:1,e+e_{1}-1)} \\ \vdots \\ p^{\nu(N:i,e)} \\ \vdots \\ p^{\nu(N:i,e_{0})} \\ \vdots \\ p^{\nu(N:f,e_{0})} \\ \vdots \\ p^{\nu(N:f,e_{0})} \\ \vdots \\ p^{\nu(N:f,e_{1},1)} \\ \vdots \\ p^{\nu(N:f,1)} \\ (i,s) \in S \end{array} \right)$$

It then follows that

$$G(\mathfrak{p}^{N+1}) \cong Z(p^f-1) \times Z(p^{c_0}) \times Z(p^{c_1}) \times \cdots \times Z(p^{c_{ef}})$$
 .

(IV) In the case where $\mu e + e_1 \leq N < (\mu + 1)e + e_1$, we let $G(\mathfrak{p}^{N+1})$ be of type $(p^f - 1, p^{\mu}, p^{d_1}, \dots, p^{d_{ef}})$ which is determined by (II) and (III). Then $G(\mathfrak{p}^{te+N+1})$ is of type $(p^f - 1, p^{\mu}, p^{d_1+t}, \dots, p^{d_{ef}+t})$ for each $t \geq 0$.

Remarks. Under the hypothesis of Theorem 3 (i) if $\lambda = \mu$ and $N \ge e + e_1$, then $\nu(N:1,e_0) = \lambda$ (cf. [2, p. 216]); (ii) if $N = ae + e_1$, then $\lambda \le \nu(N:1,e_0) \le \lambda + a - 1$; (iii) if $ae + e_1 < N < (a+1)e + e_1$, then $\lambda \le \nu(N:1,e_0) \le \lambda + a$ (cf. proof of Corollary 10 of § 5); (iv) if $N \ge \mu e + e_1$, then H_{N+1} is a subgroup of a free part of H_1 .

COROLLARY 4. If \mathfrak{p} is an unramified prime ideal of k, lying above a rational prime p, then we have

$$G(\mathfrak{p}^{N+1})\cong egin{cases} Z(p^f-1) imes Z(p^N) imes imes Z(p^N) \ , & if \ p\geqq 3 \ , \ Z(2^f-1) imes Z(2) imes Z(2^{N-1}) imes Z(2^N) imes imes Z(2^N) \ , & if \ p = 2 \ . \end{cases}$$

§ 4. Proof of Theorem 1

It follows from (1) that

LEMMA 5 (cf. [2, p. 220] and [3, Teil I_a , § 15]). Let γ be an integer of k_v . Then

$$(1+\gamma\pi^s)^p\equivegin{cases} 1+\gamma^p\pi^{ps}mod\mathfrak{p}^{ps+1}\ ,& if\ 1\le s< e/(p-1)\ ,\ 1+(\gamma^p-arepsilon\gamma\pi^{ps}mod\mathfrak{p}^{ps+1}\ ,& if\ s=e/(p-1)\ ,\ 1-arepsilon\gamma\pi^{s+e}mod\mathfrak{p}^{s+e+1}\ ,& if\ if\ s> e/(p-1)\ . \end{cases}$$

Now we shall prove Theorem 1. First we note that k_* contains a primitive p-th root of unity if and only if $e \equiv 0 \mod (p-1)$ and a congruence

$$(*) X^p - \varepsilon X \equiv 0 \bmod \mathfrak{p}$$

has a solution $X \not\equiv 0 \bmod \mathfrak{p}$ in $k_{\mathfrak{p}}$ (cf. [2, p. 215]).

According to H. Hasse [3], we shall use the following notation:

 α : a number of $k_{\mathfrak{p}}$, prime to \mathfrak{p} .

 γ : an integer of k_{ν} .

 γ_0 : an integer of k_p such that $\gamma_0 \equiv 0 \mod p$.

 η : a principal unit of k_{ν} .

 μ_s : an integer of k_p such that $\mu_s \equiv \alpha^p \mod p^s$ $(s \ge 1)$.

 α_s : an integer of k_p such that $\alpha_s^p \equiv 1 \mod p^s$.

 γ_s : an integer of k_p such that

(10)
$$\alpha_s^p \equiv 1 + \gamma_s \pi^s \bmod \mathfrak{p}^{s+1}.$$

Each of these notations stands for a general element of a group, but will sometimes be used to stand for the group itself. The p-rank R_N of $G(p^{N+1})$ is then given by

(11)
$$p^{R_N} = (G(\mathfrak{p}^{N+1}) : G(\mathfrak{p}^{N+1})^p) = (\alpha : \mu_{N+1}) \\ = (\alpha : \mu_1)(\mu_1 : \mu_2) \cdots (\mu_N : \mu_{N+1})$$

and we have

$$(12) \qquad (\mu_s: \mu_{s+1}) = (\gamma: \gamma_s) \qquad (1 \leq s \leq N).$$

It will be verified that

$$(\alpha:\mu_1)=1,$$

(b)
$$(\mu_s \colon \mu_{s+1}) = \begin{cases} 1, & \text{if } 1 \leq s < e + e_1 \text{ and } s \equiv 0 \text{ mod } p, \\ p', & \text{if } 1 \leq s < e + e_1 \text{ and } s \equiv 0 \text{ mod } p, \end{cases}$$

$$(a) \qquad \qquad (\alpha:\mu_1)=1 \; ,$$

$$(b) \qquad (\mu_s:\mu_{s+1})=\begin{cases} 1 \; , & \text{if } 1 \leq s < e+e_1 \; \text{and} \; s \equiv 0 \; \text{mod} \; p \; , \\ p^f \; , & \text{if } 1 \leq s < e+e_1 \; \text{and} \; s \not \equiv 0 \; \text{mod} \; p \; , \end{cases}$$

$$(c) \qquad (\mu_{e+e_1}:\mu_{e+e_1+1})=\begin{cases} 1 \; , & \text{if } e \equiv 0 \; \text{mod} \; (p-1) \; \text{and} \; k_{\flat} \ni \zeta_1 \; , \\ p \; , & \text{if } k_{\flat} \ni \zeta_1 \; , \\ p^f \; , & \text{if } e \not \equiv 0 \; \text{mod} \; (p-1) \; , \end{cases}$$

(d)
$$(\mu_s: \mu_{s+1}) = 1$$
, if $s > e + e_1$.

Proof of (a). Since $(\alpha : \mu_1) = (\alpha : \alpha^p \eta)$ is a power of p and α/η is a cyclic group of order $(p^f - 1), (\alpha : \mu_1) = 1$.

Proof of (b), (c) and (d). Since $\alpha_s^p \equiv 1 \mod \mathfrak{p}$ and the order of $G(\mathfrak{p})$ is equal to $p^f - 1$ which is prime to p, $\alpha_s \equiv 1 \mod \mathfrak{p}$. If $\alpha_s = 1$, then by (10) we see that $\gamma_s \equiv 0 \mod \mathfrak{p}$. Let $\alpha_s \neq 1$. We can put

$$\alpha_s = 1 + \varepsilon_s \pi^{\bar{s}}$$
,

where $\bar{s} \geq 1$ and ε_s is a unit of k_p . Then it follows from Lemma 5

If $1 \le s < e + e_1$ and $s \equiv 0 \mod p$, then by (10) γ_s modulo \mathfrak{p} contains $(\varepsilon_s^p + \gamma_0)$ modulo \mathfrak{p} . Hence $(\gamma : \gamma_s) = 1$, because of $(\gamma : \gamma_s) \le (\gamma : \varepsilon_s^p + \gamma_0) = 1$.

Suppose that $1 \le s < e + e_1$ and $s \equiv 0 \mod p$. Then from the above congruences and (10) we can conclude that

$$\begin{cases} \gamma_s \equiv 0 \bmod \mathfrak{p} \;, & \text{if} \; 1 \leqq \bar{s} < e/(p-1) \; \text{and} \; s < p\bar{s} \;, \\ \varepsilon_s^p \pi^{p\bar{s}} \equiv 0 \bmod \mathfrak{p} \;, & \text{if} \; s > p\bar{s} \\ \gamma_s \equiv 0 \bmod \mathfrak{p} \;, & \text{if} \; \bar{s} \geqq e/(p-1) \;. \end{cases}$$

Hence we have $(\gamma:\gamma_s)=(\gamma:\gamma_0)=p^f$ which shows (b) by (12).

Let $s = e + e_1$. Using the above congruences and (10) we see that

$$\left\{egin{aligned} &arepsilon_s^par{p}^{ar{s}}\equiv 0\ \mathrm{mod}\ \mathfrak{p}^{par{s}+1},\ \mathrm{a\ contradiction}\ , & \mathrm{if}\ 1\leqq ar{s}< e/(p-1)\ , \ &\gamma_s\equiv arepsilon_s^p-arepsilon_s \ \mathrm{mod}\ \mathfrak{p}\ , & \mathrm{if}\ ar{s}=e/(p-1)\ , \ &\gamma_s\equiv 0\ \mathrm{mod}\ \mathfrak{p}\ , & \mathrm{if}\ ar{s}> e/(p-1)\ . \end{aligned}
ight.$$

If $k_{\mathfrak{p}} \ni \zeta_1$, then $\gamma/\gamma_0' \cong ((\gamma^p - \varepsilon \gamma) + \gamma_0)/\gamma_0$, where γ_0' are solutions of $X^p - \varepsilon X \equiv 0 \mod \mathfrak{p}$, and $(\gamma : \gamma_0)/(\gamma : \gamma_0') = p$. Hence $(\gamma : \gamma_s) = (\gamma : (\gamma^p - \varepsilon \gamma) + \gamma_0) = p$. If $e \equiv 0 \mod (p-1)$ and $k_{\mathfrak{p}} \ni \zeta_1$, then $\gamma_s \equiv \varepsilon_s^p - \varepsilon \varepsilon_s \not\equiv 0 \mod \mathfrak{p}$ and $(\gamma : \gamma_s) = 1$. If $e \not\equiv 0 \mod (p-1)$, then $(\gamma : \gamma_s) = (\gamma : \gamma_0) = p^f$. Therefore (c) is obtained by (12).

Assume that $s > e + e_i$. Then we have by Lemma 5

$$(1 + \gamma \pi^{s-e})^p \equiv 1 - \varepsilon \gamma \pi^s \mod \mathfrak{p}^{s+1}$$
.

Hence by (10) γ_s modulo \mathfrak{p} contains $(-\varepsilon \gamma + \gamma_0)$ modulo \mathfrak{p} and $(\gamma : \gamma_s) = (\gamma : (-\varepsilon \gamma + \gamma_0)) = 1$, thereby proving (d). By (11) and (12) we have Theorem 1.

For instance, we compute R_N when $N \ge e + e_1$ and $e \ne 0 \mod (p-1)$. Put $e = (p-1)e_1 + r$, $1 \le r \le p-2$. Then by (11), (a), (b), (c) and (d) we have

$$egin{align} R_{\scriptscriptstyle N} &= \Big(e + e_{\scriptscriptstyle 1} - 1 - \Big[rac{e + e_{\scriptscriptstyle 1} - 1}{p}\Big]\Big)f + f \ &= \Big(e + e_{\scriptscriptstyle 1} - 1 - \Big[e_{\scriptscriptstyle 1} + rac{r - 1}{n}\Big]\Big)f + f = ef \;. \end{split}$$

§ 5. Preliminaries to the proof of Theorem 2 and Theorem 3

In order to prove Theorem 2 and Theorem 3 we need some results which we obtain in this section. Throughout this section we assume that $k_{\mathfrak{p}}$ contains ζ_{μ} ($\mu \geq 0$) but does not contain $\zeta_{\mu+1}$.

The following proposition is well-known:

PROPOSITION 6 (cf. [2, § 15] and [5, Chap. V]). If $N \ge e_1$, then H_{N+1} is a free Z_p -group and $H_{N+1} \cong H_{e+N+1}$ by $\eta \to \eta^p$ $(\eta \in H_{N+1})$.

LEMMA 7. Suppose that $N \ge e_1$ and H_{N+1} is a subgroup of a \mathbb{Z}_p -free part $\overline{H_0}$ of H_1 . Let H_1/H_{N+1} be of type $(p^{s_0}, p^{s_1}, \dots, p^{s_{ef}})$. Then we can take $s_0 = \mu$ and H_1/H_{te+N+1} is of type $(p^{s_0}, p^{s_1+t}, \dots, p^{s_{ef}+t})$ for each $t \ge 0$.

Remark. In Lemma 7 we allow that $s_j = 0$ $(0 \le j \le ef)$.

Proof. We have an expression of H_1 as direct product (cf. [2, p. 222]):

$$H_{\scriptscriptstyle 1} = \langle \zeta_{\scriptscriptstyle \mu}
angle imes \overline{H_{\scriptscriptstyle 01}}$$
 ,

where $\langle \zeta_{\mu} \rangle$ is a cyclic group generated by ζ_{μ} and \overline{H}_{01} is of rank ef. By the hypothesis of the Lemma 7 we have

$$H_1/H_{N+1} \cong \langle \zeta_{\mu} \rangle \times \overline{H_{01}}/H_{N+1}$$
 (direct).

Hence there exists a \mathbb{Z}_p -basis $\{\eta_1, \dots, \eta_{ef}\}$ of $\overline{H_{01}}$ such that $\{\eta_1^{p^{s_1}}, \dots, \eta_{ef}^{p^{s_e}}\}$ is a \mathbb{Z}_p -basis of H_{N+1} . It then follows from Proposition 6 that $\{\eta_1^{p^{s_1+1}}, \dots, \eta_{ef}^{p^{s_e}}\}$ is a \mathbb{Z}_p -basis of H_{e+N+1} . Thus the Lemma 7 is proved by induction. q.e.d.

If $\mu=0$ and $N\geq e_1$, then we observe by Lemma 7 that $b_{te+N}(\nu+t)=b_N(\nu)$ for each $t\geq 0$. Hence all $G(\mathfrak{p}^{N+1})$ are determined by factor groups $H_1/H_1, \dots, H_1/H_{e+e_1}$. If $\mu\geq 1$ and $N\geq \mu e+e_1$, then H_{N+1} is a subgroup of $H_1^{p\mu}=\{\eta^{p\mu}|\eta\in H_1\}$. Hence H_{N+1} is a subgroup of a free part of H_1 . In this case for each $t\geq 1$ it follows that $b_{te+N}(\mu)=1+b_N(\mu-t)$,

 $b_{te+N}(\mu+t) = b_N(\mu) - 1$ and $b_{te+N}(\nu+t) = b_N(\nu)$, where $\nu \neq \mu$ and $\nu+t \neq \mu$. Hence all $G(\mathfrak{p}^{N+1})$ are determined by factor groups $H_1/H_2, \cdots, H_1/H_{\mu e+e_1}$.

In order to compute $g_N(\nu)$, $\nu(N:i,s)$ and $\nu(N:*)$ defined in §2 we need the following corollary to Lemma 5 (cf. [7] and [9, Corollary 1.2]):

COROLLARY 8. Let η be an element of $k_{\mathfrak{p}}$ such that $\eta \equiv 1 \mod \mathfrak{p}^s$ and $\eta \equiv 1 \mod \mathfrak{p}^{s+1}$ ($s \geq 1$). Let τ be the least non-negative integer such that $\mathfrak{p}^{\tau}s \geq e/(p-1)$. Then

$$\eta^{p^{
u}} \equiv 1 mod \mathfrak{p}^{sp^{
u}}$$
, $\eta^{p^{
u}} \not\equiv 1 mod \mathfrak{p}^{sp^{
u+1}}$ for $u = 0, 1, \dots,
u$

and

$$\eta^{p\nu} \equiv 1 \mod \mathfrak{p}^{s p^{\tau + (\nu - \tau)e}} \quad \text{for } \nu \geqq \tau .$$

More precisely we have the following congruences by (1):

$$= \begin{cases} 1 + \gamma^{p\nu}\pi^{sp\nu} \mod \mathfrak{p}^{sp\nu+1} \;, & \text{if } e/(p-1) < p^{\tau}s \; \text{and} \; 1 \leq \nu \leq \tau \;, \\ 1 + \gamma^{p\nu}\pi^{sp\nu} \mod \mathfrak{p}^{sp\nu+1} \;, & \text{if } e/(p-1) < p^{\tau}s \; \text{and} \; 1 \leq \nu \leq \tau \;, \\ 1 + \gamma^{p\nu}\pi^{sp\nu} \mod \mathfrak{p}^{sp\nu+1} \;, & \text{if } e/(p-1) < p^{\tau}s \; \text{and} \; 1 \leq \tau < \nu \;, \\ 1 + \gamma^{p\nu}\pi^{sp\nu} \mod \mathfrak{p}^{sp\nu+1} \;, & \text{if } e/(p-1) = p^{\tau}s \; \text{and} \; 1 \leq \nu \leq \tau \;, \\ 1 + (\gamma^{p\tau+1} - \varepsilon\gamma^{p\tau})p^{\nu-\tau-1}\pi^{e+e_1} \mod \mathfrak{p}^{(\nu-\tau)e+e_1+1} \;, & \text{if } e/(p-1) = p^{\tau}s \; \text{and} \; 0 \leq \tau < \nu \;, \\ 1 + \gamma p^{\nu}\pi^{s} \mod \mathfrak{p}^{\nu e+s+1} \;, & \text{if } e/(p-1) < s \;, \end{cases}$$

where γ is an integer of k_{p} .

LEMMA 9. Let η_{is} be principal units defined by Theorem A or Theorem B $(1 \le i \le f, 1 \le s \le pe/(p-1), s \equiv 0 \mod p)$. Let $1 \le N < 2e + e_1$. Then we have for $\nu \ge 1$

$$\eta_{is}^{p^{\mathbf{v}}} \not\equiv 1 \bmod \mathfrak{p}^{N+1}$$

if and only if indices i and s satisfy the following conditions:

- (i) $1 \le s \le N/p^{\nu}$, when $1 \le N < e + e_1$;
- (ii) $1 \le s \le (e + e_1)/p^{\nu}$, but if $\mu \ge 1$ and $\nu = \lambda$, then $(i, s) \ne (1, e_0)$, when $N = e + e_1$;
- (iii) $1 \le s \le (N e)/p^{\nu-1}$, but if $\nu = \lambda$ and $\lambda \ge \nu(N : 1, e_0)$, then $(i, s) \ne (1, e_0)$, when $e + e_1 < N < 2e + e_1$ and $\mu \ge 1$.

Proof. Let τ be the least non-negative integer such that

$$p^{r-1}s < e/(p-1) \leq p^rs$$
.

Let $1 \le N < e + e_1$. If $1 \le s \le N/p^{\nu}$, then $\nu \le \tau$, otherwise it follows that $p^{\nu}s = p^{\tau}s \cdot p^{\nu-\tau} \ge pe/(p-1) \ge e + e_1 > N$. Hence we see by Corollary 8 that $\eta_{is}^{p\nu} \not\equiv 1 \bmod \mathfrak{p}^{N+1}$. If $N/p^{\nu} < s$, then by Corollary 8 we have $\eta_{is}^{p\nu} \equiv 1 \bmod \mathfrak{p}^{N+1}$.

Let $N=e+e_1$. If $1 \le s \le N/p^{\nu}$ and $p^{\tau-1}s < e/(p-1) < p^{\tau}s$, then $\nu \le \tau$. Hence by Corollary 8 we have $\eta_{is}^{p^{\nu}} \not\equiv 1 \mod \mathfrak{p}^{N+1}$. If $e \equiv 0 \mod (p-1)$, we put $e=\varphi(p^{\lambda})e_0$, $(e_0,p)=1$. If $1 \le s \le N/p^{\nu}$ and $p^{\tau}s=e/(p-1)$, then $\nu \le \tau+1$. In this case $s=e_0$ and $\tau=\lambda-1$, because of $s \not\equiv 0 \mod p$. If $\nu \le \tau=\lambda-1$, then by Corollary 8 we have $\eta_{is}^{p^{\nu}}=\eta_{ie_0}^{p^{\nu}}\not\equiv 1 \mod \mathfrak{p}^{N+1}$. If $\nu=\tau+1=\lambda$, then we observe by Corollary 8 that

$$\eta_{is}^{p^{\nu}}=\eta_{ie_0}^{p\lambda}\equiv 1+(\omega_i^{p\lambda}-\varepsilon\omega_i^{p\lambda-1})\pi^{e+e_1} \,\mathrm{mod}\,\,\mathfrak{p}^{e+e_1+1}$$
 .

If $\mu = 0$, then $\eta_{ie_0}^{p\lambda} \not\equiv 1 \mod \mathfrak{p}^{e+e_1+1}$, because of $\omega_i^{p\lambda} - \varepsilon \omega_i^{p\lambda-1} \not\equiv 0 \mod \mathfrak{p}$ (cf. (*) of § 4). If $\mu \geq 1$, then by Theorem B we have

$$\eta_{1e_0}^{p\lambda} \equiv 1 mod \mathfrak{p}^{e+e_1+1}$$
 , $\eta_{ie_0}^{p\lambda} \not\equiv 1 mod \mathfrak{p}^{e+e_1+1}$ for $i \not\equiv 1$.

Suppose that $(e+e_1)/p^{\nu} < s \le e+e_1=N$. If $0 < \nu \le \tau$, then by Corollary 8 we get $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. If $p^r s > e/(p-1)$ and $0 \le \tau < \nu$, then $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. If $p^r s = e/(p-1)$, then $s=e_0$ and $\tau=\lambda-1$. By the inequality $(e+e_1)/p^{\nu} < s=e_0=e_1/p^{\lambda-1}$, it follows $\nu > \lambda$. Hence $\eta_{ie_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$.

Let $e+e_1 < N < 2e+e_1$ and assume $\mu \ge 1$. If $1 \le s \le (N-e)/p^{\nu-1}$, then $\nu \le \tau+1$, otherwise $p^{\nu-1}s=p^{\iota}s\cdot p^{\nu-\tau-1} \ge pe/(p-1)=e+e_1 > N-e$. If $e/(p-1) < p^{\iota}s$ and $s \le (N-e)/p^{\nu-1}$, then by Corollary 8 we have $\eta_{is}^{p\nu} \equiv 1 \bmod \mathfrak{p}^{N+1}$. If $e/(p-1)=p^{\iota}s$ and $\nu \le \tau$, then $\eta_{is}^{p\nu} \equiv 1 \bmod \mathfrak{p}^{N+1}$. If $e/(p-1)=p^{\iota}s$ and $\nu=\tau+1$, then $s=e_0$ and $\tau=\lambda-1$. In this case we see by Theorem B that $\eta_{ie_0}^{p\nu} \equiv 1 \bmod \mathfrak{p}^{N+1}$ for $i \equiv 1$. On the other hand we have for i=1

$$\eta_{1e_0}^{p^{
u}} \equiv egin{cases} 1 + \omega_1^{p^{
u}} \pi^{e_0p^{
u}} & ext{mod } \mathfrak{p}^{e_0p^{
u}+1} & ext{if }
u \leq \lambda - 1 \ , \ 1 + (\omega_1^{p^{\lambda}} - \varepsilon \omega_1^{p^{\lambda-1}}) p^{
u-\lambda} \pi^{e+e_1} & ext{mod }
u^{(
u-\lambda+1)e+e_1+1} \ , & ext{if }
u \geq \lambda \ , \end{cases}$$

where $\omega_1^{p^{\lambda}} - \varepsilon \omega_1^{p^{\lambda-1}} \equiv 0 \mod \mathfrak{p}$. If $\nu \leq \lambda - 1$, then $\eta_{1e_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$, and $e_0 \leq (N-e)/p^{\nu-1}$. If $\nu > \lambda$, then $\eta_{1e_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$ and $e_0 > (N-e)/p^{\nu-1}$. If $\nu = \lambda$, it may happen that $\eta_{1e_0}^{p\lambda} \equiv 1 \mod \mathfrak{p}^{N+1}$, namely $\lambda \geq \nu(N:1,e_0)$. Hence $\eta_{1s}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$, where $1 \leq i \leq f, 1 \leq s \leq (N-e)/p^{\nu-1}, s \equiv 0 \mod p$,

but if $\nu=\lambda$ and $\lambda \geq \nu$ $(N:1,e_0)$, then $(i,s) \neq (1,e_0)$. Finally, suppose $(N-e)/p^{\nu-1} < s \leq e+e_1$, where $e+e_1 < N < 2e+e_1$. It then follows that $\nu \geq \tau+1$. If $e/(p-1) < p^\tau s$, then $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$, because $sp^\tau+(\nu-\tau)e>e_1+2e>N$, if $\tau \leq \nu-2$; $sp^\tau+(\nu-\tau)e=sp^{\nu-1}+e>N$, if $\tau=\nu-1$. If $e/(p-1)=p^\tau s$, then $s=e_0$ and $\tau=\lambda-1$. By the inequality $(N-e)/p^{\nu-1} < s=e_0=e_1/p^{\lambda-1}$ we have $\nu>\lambda$ and then $\eta_{ie_0}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. If s>e/(p-1) and $(N-e)/p^{\nu-1} < s$, then $\eta_{is}^{p\nu} \equiv 1 \mod \mathfrak{p}^{N+1}$. Thus Lemma 9 is proved.

COROLLARY 10. Suppose $\mu \geq 1$. Let η_{is} and η_* be principal units of Theorem B. Let $ae + e_1 \leq N < (a+1)e + e_1$ and $1 \leq a \leq \mu$. Then we have

$$egin{aligned} \eta_{is}^{p
u} & \equiv 1 mod \mathfrak{p}^{N+1} \;, \quad \eta_*^{p
u} & \equiv 1 mod \mathfrak{p}^{N+1} & for \;
u \leq a-1 \;, \ \eta_{is}^{p
u} & \equiv 1 mod \mathfrak{p}^{N+1} \;, \quad \eta_*^{p
u} & \equiv 1 mod \mathfrak{p}^{N+1} & for \;
u \geq a \;, \end{aligned}$$

if and only if indices i and s satisfy the following conditions:

$$\begin{array}{ll} For \ \nu \leqq a-1, & 1 \leqq s \leqq e+e_{\scriptscriptstyle 1}. \\ For \ \nu \geqq a, & 1 \leqq s \leqq (N-(a+\delta-1)e)/p^{\scriptscriptstyle \nu-a-\delta+1}, \end{array}$$

but if $\nu(N:1,e_0) \leq \nu \leq \lambda + a - 1$, then $(i,s) \neq (1,e_0)$, where

$$\delta = egin{cases} 0 \;, & if \; N = ae \, + \, e_{\scriptscriptstyle 1} \;, \ 1 \;, & if \; ae \, + \, e_{\scriptscriptstyle 1} < N < (a \, + \, 1)e \, + \, e_{\scriptscriptstyle 1} \;. \end{cases}$$

Proof. Let $N=ae+e_1$. It is obvious by Proposition 6 that $H^{p^{a-1}}_{e+e_1+1}\cong H_{N+1}$. Since we have $\eta_{is}\equiv 1 \mod \mathfrak{p}^{e+e_1+1}$ $(1\leq s\leq e+e_1)$ and $\eta_*\equiv 1 \mod \mathfrak{p}^{e+e_1+1}$, $\eta^{p^\nu}_{is}\equiv 1 \mod \mathfrak{p}^{N+1}$ and $\eta^{p^\nu}_*\equiv 1 \mod \mathfrak{p}^{N+1}$ for $\nu\leq a-1$. Let $(i,s)\equiv (1,e_0)$ and $\nu\geq a$. By Lemma 9 we find that $\eta^{p^\nu}_{is}\equiv 1 \mod \mathfrak{p}^{N+1}$ for $1\leq s\leq (e+e_1)/p^\nu$. Hence it follows that $\eta^{p^\nu+a-1}_{is}\equiv 1 \mod \mathfrak{p}^{N+1}$ for $1\leq s\leq (e+e_1)/p^\nu$. Moreover, since $H^{p^a-1}_{e+e_1+1}\cong H_{N+1}$, we see that $\eta^{p^\nu}_{is}\equiv 1 \mod \mathfrak{p}^{N+1}$ for $1\leq s\leq (e+e_1)/p^{\nu-a+1}$. Let $(i,s)=(1,e_0)$. Then $e_0=e_1/p^{2-1}\leq (e+e_1)/p^{\nu-a+1}=e_1/p^{\nu-a}$ if and only if $\nu\leq \lambda+a-1$. By Corollary 8 we have $\eta^{p\lambda}_{1e_0}\equiv 1 \mod \mathfrak{p}^{e+e_1+1}$ and hence $\eta^{p\lambda+a-1}_{1e_0}\equiv 1 \mod \mathfrak{p}^{N+1}$, that is, $\lambda\leq \nu(N:1,e_0)\leq \lambda+a-1$.

Since $\eta_* \equiv 1 \mod \mathfrak{p}^{e+e_1}$, $\eta_* \equiv 1 \mod \mathfrak{p}^{e+e_1+1}$, we have $\eta_*^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{(\nu+1)e+e_1}$, $\eta_*^{p^{\nu}} \equiv 1 \mod \mathfrak{p}^{(\nu+1)e+e_1+1}$ for $\nu = 0, 1, \cdots$.

Let $ae + e_1 < N < (a + 1)e + e_1$. It then follows from Proposition 6 that $H_{N-(a-1)e+1}^{n^{a-1}} \cong H_{N+1}$. Hence by the same arguments as above we have

the latter half of Corollary 10. We note that $\lambda \leq \nu (N:1, e_0) \leq \lambda + a$.

From Lemma 9 and Corollary 10, the numbers $g_N(\nu)$, exponents $\nu(N:i,s)$ and $\nu(N:*)$ defined in §2 are given as follows:

If $1 \le N < e + e_1$, or if $\mu = 0$ and $N = e + e_1$, then

$$(13) g_N(\nu) = \left(N - \left[\frac{N}{p}\right] - \left[\frac{N}{p^{\nu}}\right] + \left[\frac{N}{p^{\nu+1}}\right]\right)f, (\nu \ge 1),$$

and

(14)
$$\nu(N:i,s) = \nu \quad \text{for } N/p^{\nu} < s \leq N/p^{\nu-1},$$

where $1 \le i \le f$, $1 \le s \le N$ and $s \not\equiv 0 \mod p$.

If $\mu \ge 1$ and $ae + e_1 \le N < (a + 1)e + e_1 (1 \le a \le \mu)$, then

(15)
$$\begin{cases} g_N(\nu) = 0, & \text{for } \nu \leq a - 1 \\ g_N(\nu) = \left(e + e_1 - \left[\frac{e + e_1}{p}\right] - \left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 1}}\right] \\ + \left[\frac{N - (a + \delta - 1)e}{p^{\nu - a - \delta + 2}}\right] \right) f + \overline{g}_N(\nu), & \text{for } \nu \geq a, \end{cases}$$

where

$$ar{g}_{\scriptscriptstyle N}(
u) = egin{cases} 2 \;, & ext{if} \;\;
u\left(N:1,e_{\scriptscriptstyle 0}
ight) \leqq
u \leqq \lambda + a - 1 \;, \ 1 \;, & ext{otherwise} \;, \end{cases}$$

and

(16)
$$\begin{cases} \nu (N:*) = a , & \lambda \leq \nu (N:1, e_0) \leq \lambda + a - 1 + \delta , \\ \nu (N:i,s) = \nu & \text{for } (N - (a + \delta - 1)e)/p^{\nu - a - \delta + 1} \\ & < s \leq (N - (a + \delta - 1)e)/p^{\nu - a - \delta} , \end{cases}$$

where $1 \le i \le f$, $1 \le s \le e + e_1$, $s \not\equiv 0 \bmod p$, $(i, s) \not\equiv (1, e_0)$ and δ is given by Corollary 10. We note that if $\lambda = \mu$, or $N = e + e_1$, then $\nu(N: 1, e_0) = \lambda$.

It then follows from (13) and (15) that

$$(17) \qquad g_N(1) + \sum_{\nu=2}^{\infty} \nu(g_N(\nu) - g_N(\nu - 1))$$

$$= \begin{cases} Nf, & \text{if } 1 \leq N \leq e + e_1, \\ Nf + \nu (N : 1, e_0) - \lambda, & \text{if } ae + e_1 \leq N < (a + 1)e + e_1 \\ & \text{and } 1 \leq a \leq \mu. \end{cases}$$

Thus (2) or (8_1) is a basis of H_1/H_{N+1} and (8_2) is a basis of H_1/H_{N+1} if and only if $\nu(N:1,e_0)=\lambda$.

Now we establish a basis of H_{N+1} .

PROPOSITION 11. (A). Suppose that $\mu=0$. It then follows that for each $t\geq 0$ and $1\leq N\leq e+e_1$

$$H_{te+N+1} = \prod_{1 \leq i \leq f} \prod_{\substack{1 \leq s \leq N \\ s \not\equiv 0 \bmod p}} \left\langle \eta_{is}^{p^{\nu(N;\,i,\,s)}+t} \right\rangle \times \prod_{1 \leq i \leq f} \prod_{\substack{N < s \leq pe/(p-1) \\ s \not\equiv 0 \bmod p}} \left\langle \eta_{is}^{p^t} \right\rangle \qquad (direct) \;,$$

where η_{is} are principal units of Theorem A and $\nu(N:i,s)$ are given by (14).

(B). Suppose $\mu \ge 1$. Let $ae + e_1 \le N < (a+1)e + e_1$ and $1 \le a \le \mu$. Then it follows that for each $t \ge 0$

$$H_{te+N+1} = \left< \eta_*^{p^{a+t}} \right> imes_{i} \prod_{s \in S} \left< \eta_{is}^{p^{\nu(N:t,s)+t}} \right> \hspace{0.5cm} (direct)$$
 ,

where η_*, η_{is} are principal units of Theorem B, $\nu(N:i,s)$ are given by (16) and S is the set defined by (5).

Proof. We first notice that by Theorem A or (7) multiplicative expressions described as above are surely direct products.

(A). Suppose that $\mu = 0$ and $1 \le N \le e + e_1$. Put

$$H'_{N+1} = \prod_{1 \leq i \leq f} \prod_{\substack{1 \leq s \leq N \ s \neq 0 \bmod n}} \left\langle \eta_{is}^{p
u(N:i,s)} \right
angle imes \prod_{1 \leq i \leq f} \prod_{\substack{N < s \leq pe/(p-1) \ s \neq 0 \bmod n}} \left\langle \eta_{is} \right
angle \qquad ext{(direct)} \;.$$

Then H'_{N+1} is a subgroup of H_{N+1} . It is proved that $H'_{N+1} = H_{N+1}$. Indeed,

$$(H_1: H'_{N+1}) = \prod_{\substack{1 \le i \le f \ 1 \le s \le N \ s \ne 0 \text{ mod } n}} p^{\nu(N:i,s)};$$

from (13) and (17) we have

$$\sum_{1 \leq i \leq f} \sum_{\substack{0 \leq s \leq N \\ s \equiv 0 \bmod p}} \nu \left(N : i, s\right) = g_N(1) + \sum_{\nu=2}^{\infty} \nu (g_N(\nu) - g_N(\nu-1)) = Nf.$$

Hence we have $(H_1: H'_{N+1}) = p^{Nf} = (H_1: H_{N+1})$, as was to be shown.

If $e_1 \leq N \leq e + e_1$, then we observe by Proposition 6 that $H_{N+1}^{pt} \cong H_{te+N+1}$ for each $t \geq 0$. Therefore, we have the direct decomposition of H_{te+N+1} .

(B). Suppose $\mu \ge 1$. Let $ae + e_1 \le N < (a+1)e + e_1$ and $1 \le a \le \mu$.

Put

$$H'_{N+1} = \langle \eta^{p^a}_* \rangle imes_{\prod\limits_{i,s} \sum\limits_{i} \sum\limits_{s}} \langle \eta^{p^{\nu(N};i,s)}_{is} \rangle$$
 (direct).

Then H'_{N+1} is a subgroup of H_{N+1} and H_{01} . We contend $H'_{N+1} = H_{N+1}$. Indeed, since we have $(H_1: H_{01}) = p^i$ by [2, p. 231],

$$(H_1\colon H'_{N+1})=(H_1\colon H_{01})(H_{01}\colon H'_{N+1})=p^{\lambda}p^a\prod\limits_{(i,s)\in S}p^{\nu(N\colon i,s)}$$
 ;

it follows from (15), (16) and (17) that

$$\begin{split} &\sum_{(i,s)\in S}\nu(N:i,s)\\ &=a(g_N(a)-1)+\sum_{\nu=a+1}^{\nu(N:1,e_0)-1}\nu\{(g_N(\nu)-1)-(g_N(\nu-1)-1)\}\\ &+\nu\left(N:1,e_0\right)\{(g_N(\nu(N:1,e_0))-2)-(g_N(\nu(N:1,e_0)-1)-1)\}\\ &+\sum_{\nu=\nu(N:1,e_0)+1}^{\infty}\nu\{(g_N(\nu)-2)-(g_N(\nu-1)-2)\}\\ &=ag_N(a)+\sum_{\nu=a+1}^{\infty}\nu(g_N(\nu)-g_N(\nu-1))-a-\nu(N:1,e_0)\\ &=Nf-(\lambda+a)\;. \end{split}$$

Hence we get $(H_1: H'_{N+1}) = p^{Nf} = (H_1: H_{N+1})$, as desired.

Finally it is clear that $H_{te+N+1} \cong H_{N+1}^{pt}$ for each $t \geq 0$ by Proposition 6. Thus we have the direct decomposition of H_{te+N+1} . q.e.d.

§ 6. Proof of Theorem 2 and Theorem 3

From Theorem A, Proposition 11, (4) and (13) we have Theorem 2. Now we shall prove Theorem 3. Suppose that k_{ν} contains ζ_{μ} ($\mu \ge 1$), but does not contain $\zeta_{\mu+1}$.

- (I). In the case where $1 \le N < e + e_1$, it is verified by (17) that (8₁) is a basis of H_1/H_{N+1} . Hence the direct decomposition of $G(\mathfrak{p}^{N+1})$ is obtained by (4), (13) and (14).
- (II). In the case where $e + e_1 \le N < (\mu + 1)e + e_1$ and $\nu(N:1, e_0) = \lambda$, we know by (17) that (8_2) is a basis of H_1/H_{N+1} . Hence the direct decomposition of $G(\mathfrak{p}^{N+1})$ is obtained by (4), (15) and (16).
- (III). In the case where $e+e_1 \le N \le (\mu+1)e+e_1$ and $\nu(N:1,e_0) \ge \lambda$, we see by Proposition 11 and (7) that $\eta_*,\eta_{is}((i,s)\in S)$ are independent modulo \mathfrak{p}^{N+1} , that is, $\eta_*^{x_s}\cdot\prod_{(i,s)\in S}\eta_{is}^{x_{is}}\equiv 1 \bmod \mathfrak{p}^{N+1}$ if and only if $x_*\equiv 0 \bmod p^a$ and $x_{is}\equiv 0 \bmod p^{\nu(N:i,s)}$ for all $(i,s)\in S$.

From the relation (6) we have a congruence

(18)
$$\eta_{\mathsf{le_0}}^{p^{\lambda(p^{\nu(N:1,e_0)}-\lambda-1)}} \prod_{\substack{(i,s) \in S \\ \nu(N:i,s) \ge \mu+1}} \eta_{is}^{p_{is}p^{\mu}} \equiv 1 \bmod \mathfrak{p}^{N+1} .$$

Since $(H_1: H_{01}) = p^{\lambda}$ and H_{N+1} is a subgroup of H_{01} , p^{λ} is the least positive integer such that $\eta_{1e_0}^{p\lambda} \equiv \eta_0 \mod \mathfrak{p}^{N+1}$ for some $\eta_0 \in H_{01}$. Hence the structure of H_1/H_{N+1} having a system of canonical generators (8_2) is determined by (18) only. We put

$$eta_* p^{\mu} = eta_*' p^{a_i}$$
 , $(eta_*', p) = 1$, $eta_{is} p^{\mu} = eta_{is}' p^{a_{is}}$, $(eta_{is}', p) = 1$ for $(i, s) \in S$.

It is then clear that instead of (8_2)

$$\{\eta_{1e_0}^{p^{\nu(N;1,e_0)-\lambda-1}}H_{N+1},\eta_*^{\beta_*}H_{N+1},\eta_{is}^{\beta_i's}H_{N+1}\}_{(i,s)\in S}$$

is also a system of canonical generators for H_1/H_{N+1} .

Let M, a free Z-module, and $\psi: M \to H_1/H_{N+1}$ be as defined in § 2. Put

$$a_{is} = \min \{ \nu(N:i,s), a'_{is} \}$$
 for $(i,s) \in S$.

Then from Proposition 11 and by (18) a system of canonical generators for $\text{Ker } \psi$ is given by

$$\left\{p^a ilde{\eta}_*,p^{
u(N.1,e_0)} ilde{\eta}_{1e_0},p^{
u(N:i,s)} ilde{\eta}_{is},p^i ilde{\eta}_{1e_0}+\sum\limits_{(i,s)\in S}p^{a_{is}} ilde{\eta}_{is}
ight\}$$
 ,

where $(i,s) \in S$. Then the rank of $\operatorname{Ker} \psi$ is equal to (ef+1) because the rank of H_1/H_{N+1} is equal to (ef+1) from Theorem 1. The direct decomposition of $H_1/H_{N+1} \cong M/\operatorname{Ker} \psi$ is determined by elementary divisors of the matrix (9) of Theorem 3. Thus (III) of Theorem 3 is proved.

Finally, (IV) of Theorem 3 is trivially obtained from Lemma 7. Thus Theorem 3 is completely proved.

§ 7. Proof of Corollary 4

Let $\mathfrak p$ be an unramified prime ideal of k, lying above a rational prime p. Assume that p is odd. Then by Theorem 2 we observe that $b_1(1) = f$ and $b_1(\nu) = 0$ for $\nu \ge 2$. Let p = 2. Then $e = e_1 = 1$ and $\lambda = \mu = 1$. Therefore, we have by (I) and (II) of Theorem 3

$$b_{\mbox{\tiny 1}}(1)=f$$
 , $b_{\mbox{\tiny 1}}(
u)=0$ for $u\geqq 2$, $b_{\mbox{\tiny 2}}(1)=2$, $b_{\mbox{\tiny 2}}(2)=f-1$, $b_{\mbox{\tiny 2}}(
u)=0$ for $u\geqq 3$.

Thus Corollary 4 is obtained from Theorem 2 and Theorem 3.

§ 8. Supplement to Theorem 3

We assume that k_{ν} contains $\zeta_{\mu}(\mu \geq 1)$ but does not contain $\zeta_{\mu+1}$. Suppose that $\lambda > \mu \geq 1$ and $ae + e_1 \leq N < (a+1)e + e_1$ $(1 \leq a \leq \mu)$. In this section we shall prove that if one of exponents ν (N:i,s) satisfies a certain condition, then the direct decomposition of H_1/H_{N+1} is induced by that of H_1/H_{N-e+1} .

If $\lambda > \mu \ge 1$, then a Z_p -basis of H_1 is given as follows (cf. [2, p. 232–233]). Let H_{01} be the free Z_p -group of H_1 defined by (7). By (6) we observe that $\eta_{1e_0}^{p_1^{2}-\mu}\zeta_{\mu}^{-1}$ does not belong to $H_0^p = \{\eta_0^p | \eta_0 \in H_{01}\}$. There exists $\beta_{i_0s_0}$ such that $\beta_{i_0s_0}$ is prime to p. If β_* is prime to p, we may take $\beta_{i_0s_0} = \beta_*$. Hence $\eta_{i_0s_0}$ can be written in the form

(19)
$$\eta_{i_0s_0} = \zeta_{\mu}^{\alpha\mu} \prod_{\substack{(i,s) \in S' \\ (i,s) \neq (i_0,s_0)}} \eta_{is}^{\alpha_{is}} \cdot \eta_{1e_0}^{p^{\lambda-\mu_{\alpha_1e_0}}},$$

where $S' = S \cup \{*\}$, α_{μ} is a rational integer, prime to $p \ (1 \le \alpha_{\mu} < p^{\mu})$, α_{is} are p-adic integers and α_{1e_0} is a p-adic integer, prime to $p \ (\text{cf. [2, II in p. 209]})$. We then have a Z_p -free part \tilde{H}_{01} of H_1 , expressed as direct product:

$$ilde{H}_{01} = \prod_{\substack{(i,s) \in S' \\ (i,s) \neq (j_0,s_0)}} \langle \eta_{is} \rangle imes \langle \eta_{1e_0} \rangle \qquad ext{(direct)} \;.$$

From Proposition 6 we find that $H_{N-e+1}^p \cong H_{N+1}$, where $ae + e_1 \leq N < (a+1)e + e_1$ and $1 \leq a \leq \mu$. Therefore by Proposition 11 we have

$$H_{N-e+1} = \left\langle \eta_*^{p^{a-1}} \right\rangle imes \prod_{(i,s) \in S} \left\langle \eta_{is}^{p^{\nu(N:i,s)-1}} \right\rangle \qquad ext{(direct)} \;.$$

It then follows from (19) that H_{N-e+1} is a subgroup of \tilde{H}_{01} if and only if $\nu(N:i_0,s_0)-1\geq\mu$. We note that $\nu(N:*)=\alpha\langle\mu+1$ (see (16)). If $\nu(N:i_0,s_0)\geq\mu+1$, one see also that

$$H_{\scriptscriptstyle 1}/H_{\scriptscriptstyle N-e+1}\cong \langle \zeta_{\scriptscriptstyle \mu}
angle imes \tilde{H}_{\scriptscriptstyle 01}/H_{\scriptscriptstyle N-e+1}$$
 (direct).

The direct decomposition of $G(\mathfrak{p}^{N-e+1})$ is obtained from (I) \sim (III) of Theorem 3 and by Lemma 7, say of type $(p^f-1,p^\mu,p^{c_i},\dots,p^{c_{i'}})$. Then $G(\mathfrak{p}^{N+1})$ is of type $(p^f-1,p^\mu,p^{c_{i+1}},\dots,p^{c_{i'}+1})$ by Lemma 7.

§ 9. Examples

(i). Let p be an odd prime and ζ_1 be a primitive p-th root of unity. Put $k = \mathbf{Q}(\zeta_1)$ and $\mathfrak{p} = (1 - \zeta_1)$. Then we have an expression of $G(\mathfrak{p}^{N+1})$ as direct product for each $t \ge 0$:

(ii). Let d be a square free rational integer such that $d \equiv 2 \mod 4$. Put $k = Q(\sqrt{d})$ and let $\mathfrak p$ be a prime ideal of k, lying above 2. Then $e = e_1 = 2$, $\lambda = 2$ and $\mu = 1$. By (I) of Theorem 3 we have

$$G(\mathfrak{p}^2)\cong Z(2)$$
 , $G(\mathfrak{p}^3)\cong Z(2^2)$, $G(\mathfrak{p}^4)\cong Z(2)\times Z(2^2)$.

By [4] we see that for $N=e+e_1=4$, $\nu(4:1,1)=2=\lambda>\mu$. Hence for each $t\geq 0$ we obtain by (II) and (IV) of Theorem 3

$$G(\mathfrak{p}^{2t+5}) \cong Z(2) imes Z(2^{1+t}) imes Z(2^{2+t})$$
 .

Furthermore, it is shown in [4] that $-\eta_{11}^2 \equiv \eta_{13} \mod \mathfrak{p}^4$. It then follows that for $N = 5(e + e_1 < N < 2e + e_1)$, ν (5:1,1) = 3 > λ and ν (5:1,3) = 2 = λ > μ . Hence from the arguments of §8 we see that H_4 is a subgroup of the free part of H_1 . From the result of §8 and by Theorem 1 the direct decomposition of $G(\mathfrak{p}^6)$ is induced by that of $G(\mathfrak{p}^4)$, that is, expressed as follows:

$$G(\mathfrak{p}^6)\cong Z(2)\times Z(2)\times Z(2^3)$$
.

Therefore, we see by (IV) of Theorem 3 that for each $t \ge 0$

$$G(\mathfrak{p}^{2t+6}) \cong Z(2) \times Z(2^{1+t}) \times Z(2^{3+t})$$
.

For N=5 the matrix (9) of Theorem 3 is equal to

$$egin{bmatrix} 2 & 0 & 0 \ 0 & 2^2 & 0 \ 0 & 0 & 2^3 \ 2 & 2 & 2^2 \ \end{pmatrix}.$$

It is then clear that

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2^2 & 0 \\ 0 & 0 & 2^3 \\ 2 & 2 & 2^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2^3 \\ 0 & 0 & 0 \end{bmatrix},$$

which shows the direct decomposition of H_1/H_6 , too.

BIBLIOGRAPHY

- [1] Albis Gonzalez, V. S., A remark on primitive root and ramification, Rev. Columbiana Math., 7 (1973), 93-98.
- [2] Hasse, H., Zahlentheorie, Akademie-Verlag, Berlin, 2 Aufl., 1963.
- [3] —, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Physica Verlag, 1965.
- [4] H.-Koch, F., Einseinheitengruppen und prime Restklassengruppen in quadratischen Zahlkörper, J. Number Theory, 4 (1972), 70-77.
- [5] Narkiewicz, W., Elementary and analytic theory of algebraic numbers, Monogr. Math., 57, PWN-Polish Sci. Publishers, 1974.
- [6] Ranum, A., The group of classes of congruent quadratic integers with respect to composite ideal modulus, Trans. Amer. Math. Soc., 11 (1910), 172-198.
- [7] Serre, J.-P., Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France, 89 (1961), 105-154.
- [8] Takenouchi, T., On the classes of congruent integers in an algebraic körper, J. College of Sci. Tokyo Imp. Univ., XXXVI, Article I (1913), 1-28.
- [9] Wyman, B. F., Wildly ramified Gamma extensions, Amer. J. Math., 91 (1969), 135-152.

Department of Mathematics College of Liberal Arts Toyama University