WITT’S THEOREM
FOR SYMPLECTIC MODULAR FORMS!

D. G. JAMES
(Received 25 July 1967)

Let L denote a free Z-module of rank 2% and @ an alternating bilinear
mapping from L X L into the rational integers Z. Writing « - § for @(«, ),
where a, B € L, we have

a-f=—f -« and o?=0.

We shall assume that @ is non-singular and unimodular (see Bourbaki [1]).
L is now a (symplectic) lattice.
The automorphisms ¢ of L that preserve @, that is satisfying

p(x) - 9(f) =B

for all «, B e L, are called (symplectic) isometries and form the symplectic
modular group Sp(2n, Z). It is the purpose of this paper to give necessary
and sufficient conditions for a map @ between two sublattices of L to extend
to an isometry in Sp(2x, Z). This is an extension of the problem first con-
sidered by Witt [6] for an orthogonal geometry over fields. More general
forms (in both the symplectic and orthogonal cases) can be found in
Bourbaki [1] and Dieudonné [2]. There are also many integral generaliza-
tions of this result in the literature, some of which are mentioned in
O’Meara [5] and James [3].

Let J; and J, be two sublattices of L and @ : J;, — J, a bijective,
linear transformation that preserves @, that is for each «, g € J;

Ox) - O(f) = «- p.

A vector a € L is called imprimitive if it can be written df with g e L and
d not a unit of Z; otherwise « is primitive. The maximal 4, as above, will be
called the divisor of a. It is clear from linearity, that an isometry of L must
preserve the divisor of each vector. We shall prove the following:

THEOREM. A bijective linear transformation O : J, — J, between two
sublattices J, and J, of L extends to an isometry in Sp(2n, Z) if and only if

1 This research was partially supported by the National Science Foundation through
grant GP-6663.
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(i) it preserves the symplectic form @
(1) ¢ preserves the divisor of each vector in J,.

Although the proof will be given for Z-modules, it immediately gener-
alizes to R-modules with R any principal ideal domain.

1. Preliminaries

We recall first some results about L and Sp(2xn, Z). Denote by
{ay, g, * * *, a,» the sublattice of L spanned over Z by the vectors «,. The
vectors « and f in L are said to be orthogonal if « - f = 0. The notation
L = J @ K indicates that L is the orthogonal sum of the two sublattices
J and K. We may decompose L into the orthogonal sum of binary sub-
lattices (Bourbaki [1, p. 79]):

L=, 1) @ gy ) @00+ @ LAy, o)

where 4;-u; =1, 1 =< ¢ < n. The vectors 4;, 4, form a symplectic basis
of L. More than this, any chosen primitive vector in L may be taken as 4,.
In fact any pair 4, p € L where 4 - p = 1, may be split off into an orthogonal
component of L

L=, p ]
For fixed primitive v € L, we denote by ¢, the mapping

@ (x) = at(z - a)7.

Then ¢, e Sp(2n, Z); in fact, although we do not need this, ¢, (re L)
generate the symplectic modular group. Notice, for f € Z,

oi(x) = a+it(r - o)t

The following lemma, establishes the theorem in the case where the
rank of J; (and J,) is one.

LemMA. Let o and f be two vectors in L with the same divisor. Then there
exists an isometry ¢ € Sp(2n, Z) such that

Pla) = B.

Proor. By linearity it suffices to consider the case where « and g are
primitive vectors. Take two symplectic bases of L, one with « as the first
basis vector, the other with 8 as the first vector. The mapping which takes
the j-th vector in the first basis into the §-th vector in the second basis,
1 <4 < 2#, is the desired isometry.

A general consideration of transitivity in symplectic forms, not
necessarily unimodular, is given in James [4].
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2. Proof of the theorem

We start by making a few simplifications.

It suffices to consider the case where J; and J, are primitive sublattices
of L. That is, if « € J, is primitive in J,, then « is also primitive in L. For
suppose « € J, may be written « = df with g € L. By condition (ii) of the
theorem @ («) is of the form dy, y € L. We may therefore extend @ to f§ -
by defining @(f) = y. We shall therefore assume in future that J, and J,
are primitive.

Since J, is a symplectic lattice, it has a basis &,, #,, {;, 1 <7 <,
1 <4 =t such that & - 5, = a, and all other products are zero. Further-
more each a; divides a,,,. We may make a further simplification if ¢, = 1.
For then we have

L =&, m) @ K, =<0(), 9(711)> ® K.

Since K; and K, have the same rank, there is an obvious isometry of L
mapping &,, 7, and K, into @(&,), @(n,) and K,, respectively. We may
therefore assume @(¢,) = &, and @(n,) = n,. The remaining basis vectors
of J, and J, are in the orthogonal complement of <&;, #;>. In this case we
complete the proof by induction on the rank of J,. We therefore assume that
for no vectors £ and 5 in J,is £-9 = L.

We now outline the method of proof. We first relabel any vectors of
the type ¢; in the basis of J, alternately as &, and #,; thus {; = &4,
8o = 441, &1 = &gyp, -+ Then

Eori " Nops = Agp; = 0.

(If the rank of J, is odd the last &; will have no mate %,). Then, including
these new a,,;, we have

(1) (ay, a3, a3, *) = a; > 1.
We shall show that L has a symplectic basis 4;, g;, 1 <7 < », such that

& =24, 157 m,
and
N = @iftitAmisis 1<i<m(orm—1).

Having done this the proof of the theorem is simple, for if we embed @(£,),
O(n;) in a similar symplectic basis 1}, u; of L, the isometry ¢(1,) = 2;,
o) = p;, 1 <4 < n, will map J, onto J,.

We now show how to construct the basis 4;, x,. It will suffice to show
that an isometric image ¢(J,) = <w(&), v(n,), * * >, with yp e Sp(2n, Z),
has such a basis, for applying the inverse isometry p—! we transform the
basis obtained for y(J,) into the basis required for J,.
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We shall use induction. Let 4;, u; be a symplectic basis for L. Suppose

that

(2) Ei=2; M= api+Apy;

for 1 <7 < 7. We shall explain how to put &, and 7,,,; into this form.
Let

I’r = <ll» /,t1> @D <Ar’ lur> ® <z'm+1’ lum+1> @
@ <}'m+r’ /"m+r>

so that L = L, ® U, where U is the orthogonal complement of L,. We
show first that £, has a component in U. Suppose on the contrary that

r

Srp1 = 2 (@At Yiptit Ay i Vi) € Ly
i=1
Then, since &,.,°§, =&, 0, =0 for 1 =7 =<7, we have, using (2),
¥, = 0 and v, = a,z,. Now consider

r r
ra— ‘El (@& tum) = Zl(“‘“t“iﬂi‘i‘“ixiﬂmﬂ)'
= =
The left hand side is a primitive vector since J, is primitive, but the vector
on the right hand side has divisor at least 4, > 1 by (1). This contradiction
means that &, must have a component in U, which after applying an
isometry in U (as in the lemma), we may assume to be #l, ;. Thus &,

has the form
r

(3) b1 = 2 @20 Ay F BT ) F 0y

i=1
Moreover, &,,,— 37, (z,&,+u;n,) is primitive, since J, is a primitive sub-
lattice, so that

(4) (alxl: T By, Ay Uy, t s AUy, M) = L

We shall now apply isometries to L that leave &;,%;,,1 <7 <7,
invariant, but transform &, , into 4,,,. We first transform &, into the form
(3) with 2 = 1. Let

o; = :ur+1+}'m+i! 1= 1 =7,
and

IA
IA

Ty = Pyt A0 s 1 L=

Then o, & =0, n;=1,- & =7,-n;, = 0 for 1 =4, j < Hence ¢, and
P, leave all the vectors &;, #; invariant, 1 = ¢, § < r. However,

‘Pa‘(frﬂ) =&t (0; " &rpa)os

= &+ (a,2,—u)o,.
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The component of q’a’,(gr—{»l) in Hr+1 = <Ar+1: t"‘r+1> s u)‘r+1+ (aixi_%)zur-H'
By applying the lemma in H,,, we may map this into #'A,,, where
u' = (u, a;x;—n), so that «’ divides @,z;,. We do this forallo,, 1 £¢ < 7,
in turn. Similarly

(p-r‘(EH-l) =&t (Ti ) §r+1)7i

= £, —(utau)r,;.

The component of g, (&,4,) in H,, is %A, — (u+a,4,) 1,4, 5O that as above
we may replace # with a new #’ dividing a,%;. It now follows from (4)
that # = 1 (or « = —1, which we can easily transform to » = 1).

We now show how, by a similar argument, to reduce the coefficients
x;, u; in (3) to zero. First put

Ty = Appyst (0,2 sy, l=isy,

and apply the isometry ¢, . Again, since m,* & ==, 5, =0 for 1 <4,
7 =7, §; and y; are left invariant by ¢, . However,

(Pﬂ5(§1‘+1) - §r+1—'uini’

so that the coefficient of 4,,,, in ¢, (§,4,) is zero. The component of ¢, (,.,)
in H,,,, namely A, ,—u;(u,+a,x;)u,,,, may be restored to 2,,,; by an
isometry as in the lemma. Thus each of the #, in (3) may, in turn, be reduced
to zero.
Finally, put
P = At T gy 1<y,

and apply ¢, . As before &;, #;, 1 =1 < 7, are invariant, but now

‘Pp,-(‘frﬂ) =& —%p;

The coefficients of both 4, and u,,, are now zero. We have therefore
succeeded in mapping &, into 4,,.
We now consider #,,,. We show first that #,,,¢L, ® H,,,. For if

r

e = 2 (@AY it 8 A i 0 ) + Uy 0

=1

using the various orthogonality conditions on #,,.,, we obtain y, = 0,
v; = a,x; and v = a,,. Then as before

r r

Newa— 2, (@ibitum)—ué, o = 3 (=004 0T )+ Briy Sl

i1 ic1

leads to a contradiction. Therefore we may assume (again using the lemma)
r
Nesr = 2, @idit 8y i 0Tl g ) FWhp gyt g phosg F VA s -

i=1
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We proceed as before, first reducing v to 1, and then the coefficients
u, z; and u; to zero. Since #,,,— Di_(x;&;+un;)—ué,,, is primitive,
we obtain

(5) (ay2y, -, a2, aythy, -+ -, @ 0,, 4,,,v) = 1.

First let 0 = p,1p41+4,44 and apply ¢,. Then ¢, leaves &, 1 =7 <741,
and n;, 1 =7 <7, invariant. But

(Pa(nr+1) = 7]r+1+ (ar+1—v>0'»

so that by the usual argument, we replace v by v’ with v' dividing a,,,.
As in the discussion with &,,; (after replacing g, by #p 4,4, in the definitions
of ¢, and 7,), v may be further assumed to divide each of a,x; and a,u;,
1 < ¢ <7, so that by (5) we must have v = 1.

Now let = = A+ (@ 1+%)tpyrry. Then ¢, leaves each of &,
1<7=7r+1,and 5;, 1 =7 =7, invariant. However,

Pr (771‘+1) = 77,.+1'—%7l,

so that the coefficient of 4, , in ¢, (1,,,) becomes zero. As with &,,,, we may
reduce in turn, all the coefficients z, and #, in 7, to zero. We have therefore
succeeded in mapping 7,,, into the desired form @, |4, 1+ 24 niri1-

This completes the inductive construction of &, and #,. Of course,
if the rank of J, is odd, we stop after constructing &, . The construction
given above also includes, as a special case, the construction of & = 4,
and %, = a,u;+4,,4,, to start the induction. As mentioned before, the
embedding of an isometric image of J, in this form makes the proof of the
theorem trivial.
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