WITT'S THEOREM
 FOR SYMPLECTIG MODULAR FORMS ${ }^{1}$

D. G. JAMES

(Received 25 July 1967)

Let L denote a free Z-module of rank $2 n$ and Φ an alternating bilinear mapping from $L \times L$ into the rational integers Z. Writing $\alpha \cdot \beta$ for $\Phi(\alpha, \beta)$, where $\alpha, \beta \in L$, we have

$$
\alpha \cdot \beta=-\beta \cdot \alpha \quad \text { and } \quad \alpha^{2}=0
$$

We shall assume that Φ is non-singular and unimodular (see Bourbaki [1]). L is now a (symplectic) lattice.

The automorphisms φ of L that preserve Φ, that is satisfying

$$
\varphi(\alpha) \cdot \varphi(\beta)=\alpha \cdot \beta
$$

for all $\alpha, \beta \in L$, are called (symplectic) isometries and form the symplectic modular group $S p(2 n, Z)$. It is the purpose of this paper to give necessary and sufficient conditions for a map Θ between two sublattices of L to extend to an isometry in $S p(2 n, Z)$. This is an extension of the problem first considered by Witt [6] for an orthogonal geometry over fields. More general forms (in both the symplectic and orthogonal cases) can be found in Bourbaki [1] and Dieudonné [2]. There are also many integral generalizations of this result in the literature, some of which are mentioned in O'Meara [5] and James [3].

Let J_{1} and J_{2} be two sublattices of L and $\Theta: J_{1} \rightarrow J_{2}$ a bijective, linear transformation that preserves Φ, that is for each $\alpha, \beta \in J_{1}$

$$
\Theta(\alpha) \cdot \Theta(\beta)=\alpha \cdot \beta
$$

A vector $\alpha \in L$ is called imprimitive if it can be written $d \beta$ with $\beta \in L$ and d not a unit of Z; otherwise α is primitive. The maximal d, as above, will be called the divisor of α. It is clear from linearity, that an isometry of L must preserve the divisor of each vector. We shall prove the following:

Theorem. A bijective linear transformation $\Theta: J_{1} \rightarrow J_{2}$ between two sublattices J_{1} and J_{2} of L extends to an isometry in $\operatorname{Sp}(2 n, Z)$ if and only if

[^0](i) it preserves the symplectic form Φ
(ii) it preserves the divisor of each vector in J_{1}.

Although the proof will be given for Z-modules, it immediately generalizes to R-modules with R any principal ideal domain.

1. Preliminaries

We recall first some results about L and $S p(2 n, Z)$. Denote by $\left\langle\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\rangle$ the sublattice of L spanned over Z by the vectors α_{i}. The vectors α and β in L are said to be orthogonal if $\alpha \cdot \beta=0$. The notation $L=J \oplus K$ indicates that L is the orthogonal sum of the two sublattices J and K. We may decompose L into the orthogonal sum of binary sublattices (Bourbaki [1, p. 79]):

$$
L=\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus\left\langle\lambda_{2}, \mu_{2}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{n}, \mu_{n}\right\rangle
$$

where $\lambda_{i} \cdot \mu_{i}=1,1 \leqq i \leqq n$. The vectors λ_{i}, μ_{i} form a symplectic basis of L. More than this, any chosen primitive vector in L may be taken as λ_{1}. In fact any pair $\lambda, \mu \in L$ where $\lambda \cdot \mu=1$, may be split off into an orthogonal component of L

$$
L=\langle\lambda, \mu\rangle \oplus J .
$$

For fixed primitive $\tau \in L$, we denote by φ_{τ} the mapping

$$
\varphi_{\tau}(\alpha)=\alpha+(\tau \cdot \alpha) \tau .
$$

Then $\varphi_{\tau} \in S p(2 n, Z)$; in fact, although we do not need this, $\varphi_{\tau}(\tau \in L)$ generate the symplectic modular group. Notice, for $t \in Z$,

$$
\varphi_{\tau}^{t}(\alpha)=\alpha+t(\tau \cdot \alpha) \tau .
$$

The following lemma establishes the theorem in the case where the rank of J_{1} (and J_{2}) is one.

Lemma. Let α and β be two vectors in L with the same divisor. Then there exists an isometry $\varphi \in S p(2 n, Z)$ such that

$$
\varphi(\alpha)=\beta .
$$

Proof. By linearity it suffices to consider the case where α and β are primitive vectors. Take two symplectic bases of L, one with α as the first basis vector, the other with β as the first vector. The mapping which takes the j-th vector in the first basis into the j-th vector in the second basis, $1 \leqq j \leqq 2 n$, is the desired isometry.

A general consideration of transitivity in symplectic forms, not necessarily unimodular, is given in James [4].

2. Proof of the theorem

We start by making a few simplifications.
It suffices to consider the case where J_{1} and J_{2} are primitive sublattices of L. That is, if $\alpha \in J_{1}$ is primitive in J_{1}, then α is also primitive in L. For suppose $\alpha \in J_{1}$ may be written $\alpha=d \beta$ with $\beta \in L$. By condition (ii) of the theorem $\Theta(\alpha)$ is of the form $d \gamma, \gamma \in L$. We may therefore extend Θ to β by defining $\Theta(\beta)=\gamma$. We shall therefore assume in future that J_{1} and J_{2} are primitive.

Since J_{1} is a symplectic lattice, it has a basis $\xi_{i}, \eta_{i}, \zeta_{j}, \mathbf{l} \leqq i \leqq s$, $1 \leqq j \leqq t$, such that $\xi_{i} \cdot \eta_{i}=a_{i}$ and all other products are zero. Furthermore each a_{i} divides \boldsymbol{a}_{i+1}. We may make a further simplification if $a_{1}=1$. For then we have

$$
L=\left\langle\xi_{1}, \eta_{1}\right\rangle \oplus K_{1}=\left\langle\Theta\left(\xi_{1}\right), \Theta\left(\eta_{1}\right)\right\rangle \oplus K_{2} .
$$

Since K_{1} and K_{2} have the same rank, there is an obvious isometry of L mapping ξ_{1}, η_{1} and K_{1} into $\Theta\left(\xi_{1}\right), \Theta\left(\eta_{1}\right)$ and K_{2}, respectively. We may therefore assume $\Theta\left(\xi_{1}\right)=\xi_{1}$ and $\Theta\left(\eta_{1}\right)=\eta_{1}$. The remaining basis vectors of J_{1} and J_{2} are in the orthogonal complement of $\left\langle\xi_{1}, \eta_{1}\right\rangle$. In this case we complete the proof by induction on the rank of J_{1}. We therefore assume that for no vectors ξ and η in J_{1} is $\xi \cdot \eta=1$.

We now outline the method of proof. We first relabel any vectors of the type ζ_{j} in the basis of J_{1} alternately as ξ_{i} and η_{i}; thus $\zeta_{1}=\xi_{s+1}$, $\zeta_{2}=\eta_{s+1}, \zeta_{1}=\xi_{s+2}, \cdots$. Then

$$
\xi_{s+i} \cdot \eta_{s+i}=a_{s+i}=0
$$

(If the rank of J_{1} is odd the last ξ_{i} will have no mate η_{i}). Then, including these new a_{s+i}, we have

$$
\begin{equation*}
\left(a_{1}, a_{2}, a_{3}, \cdots\right)=a_{1}>1 . \tag{1}
\end{equation*}
$$

We shall show that L has a symplectic basis $\lambda_{i}, \mu_{i}, \mathbf{l} \leqq i \leqq n$, such that

$$
\xi_{i}=\lambda_{i}, \quad 1 \leqq i \leqq m
$$

and

$$
\eta_{i}=a_{i} \mu_{i}+\lambda_{m+i}, \quad 1 \leqq i \leqq m(\text { or } m-1) .
$$

Having done this the proof of the theorem is simple, for if we embed $\Theta\left(\xi_{i}\right)$, $\Theta\left(\eta_{i}\right)$ in a similar symplectic basis $\lambda_{i}^{\prime}, \mu_{i}^{\prime}$ of L, the isometry $\varphi\left(\lambda_{i}\right)=\lambda_{i}^{\prime}$, $\varphi\left(\mu_{i}\right)=\mu_{i}^{\prime}, 1 \leqq i \leqq n$, will map J_{1} onto J_{2}.

We now show how to construct the basis λ_{i}, μ_{i}. It will suffice to show that an isometric image $\psi\left(J_{1}\right)=\left\langle\psi\left(\xi_{1}\right), \psi\left(\eta_{1}\right), \cdots\right\rangle$, with $\psi \in S p(2 n, Z)$, has such a basis, for applying the inverse isometry ψ^{-1} we transform the basis obtained for $\psi\left(J_{1}\right)$ into the basis required for J_{1}.

We shall use induction. Let λ_{i}, μ_{i} be a symplectic basis for L. Suppose that

$$
\begin{equation*}
\xi_{i}=\lambda_{i}, \quad \eta_{i}=a_{i} \mu_{i}+\lambda_{m+i} \tag{2}
\end{equation*}
$$

for $\mathbf{l} \leqq i \leqq r$. We shall explain how to put ξ_{r+1} and η_{r+1} into this form. Let

$$
\begin{aligned}
L_{r}=\left\langle\lambda_{1}, \mu_{1}\right\rangle \oplus \cdots \oplus\left\langle\lambda_{r}, \mu_{r}\right\rangle & \oplus\left\langle\lambda_{m+1}, \mu_{m+1}\right\rangle \oplus \cdots \\
& \oplus\left\langle\lambda_{m+r}, \mu_{m+r}\right\rangle
\end{aligned}
$$

so that $L=L_{r} \oplus U$, where U is the orthogonal complement of L_{r}. We show first that ξ_{r+1} has a component in U. Suppose on the contrary that

$$
\xi_{r+1}=\sum_{i=1}^{r}\left(x_{i} \lambda_{i}+y_{i} \mu_{i}+u_{i} \lambda_{m+i}+v_{i} \mu_{m+i}\right) \in L_{r}
$$

Then, since $\xi_{r+1} \cdot \xi_{i}=\xi_{r+1} \cdot \eta_{i}=0$ for $1 \leqq i \leqq r$, we have, using (2), $y_{i}=0$ and $v_{i}=a_{i} x_{i}$. Now consider

$$
\xi_{r+1}-\sum_{i=1}^{r}\left(x_{i} \xi_{i}+u_{i} \eta_{i}\right)=\sum_{i=1}^{r}\left(-a_{i} u_{i} \mu_{i}+a_{i} x_{i} \mu_{m+i}\right)
$$

The left hand side is a primitive vector since J_{1} is primitive, but the vector on the right hand side has divisor at least $a_{1}>1$ by (1). This contradiction means that ξ_{r+1} must have a component in U, which after applying an isometry in U (as in the lemma), we may assume to be $u \lambda_{r+1}$. Thus ξ_{r+1} has the form

$$
\begin{equation*}
\xi_{r+1}=\sum_{i=1}^{r}\left(x_{i} \lambda_{i}+u_{i} \lambda_{m+i}+a_{i} x_{i} \mu_{m+i}\right)+u \lambda_{r+1} . \tag{3}
\end{equation*}
$$

Moreover, $\xi_{r+1}-\sum_{i=1}^{r}\left(x_{i} \xi_{i}+u_{i} \eta_{i}\right)$ is primitive, since J_{1} is a primitive sublattice, so that

$$
\begin{equation*}
\left(a_{1} x_{1}, \cdots, a_{r} x_{r}, a_{1} u_{1}, \cdots, a_{r} u_{r}, u\right)=1 \tag{4}
\end{equation*}
$$

We shall now apply isometries to L that leave $\xi_{i}, \eta_{i}, \mathbf{1} \leqq i \leqq r$, invariant, but transform ξ_{r+1} into λ_{r+1}. We first transform ξ_{r+1} into the form (3) with $u=1$. Let

$$
\sigma_{i}=\mu_{r+1}+\lambda_{m+i}, \quad 1 \leqq i \leqq r
$$

and

$$
\tau_{i}=\mu_{r+1}+\lambda_{i}+a_{i} \mu_{m+i}, \quad 1 \leqq i \leqq r
$$

Then $\sigma_{i} \cdot \xi_{j}=\sigma_{i} \cdot \eta_{j}=\tau_{i} \cdot \xi_{j}=\tau_{i} \cdot \eta_{j}=0$ for $1 \leqq i, j \leqq r$. Hence $\varphi_{\sigma_{i}}$ and $\varphi_{\tau_{i}}$ leave all the vectors ξ_{j}, η_{j} invariant, $1 \leqq i, j \leqq r$. However,

$$
\begin{aligned}
\varphi_{\sigma_{i}}\left(\xi_{r+1}\right) & =\xi_{r+1}+\left(\sigma_{i} \cdot \xi_{r+1}\right) \sigma_{i} \\
& =\xi_{r+1}+\left(a_{i} x_{i}-u\right) \sigma_{i} .
\end{aligned}
$$

The component of $\varphi_{\sigma_{i}}\left(\xi_{r+1}\right)$ in $H_{r+1}=\left\langle\lambda_{r+1}, \mu_{r+1}\right\rangle$ is $u \lambda_{r+1}+\left(a_{i} x_{i}-u\right) \mu_{r+1}$. By applying the lemma in H_{r+1} we may map this into $u^{\prime} \lambda_{r+1}$ where $u^{\prime}=\left(u, a_{i} x_{i}-u\right)$, so that u^{\prime} divides $a_{i} x_{i}$. We do this for all $\sigma_{i}, 1 \leqq i \leqq r$, in turn. Similarly

$$
\begin{aligned}
\varphi_{\tau_{i}}\left(\xi_{r+1}\right) & =\xi_{r+1}+\left(\tau_{i} \cdot \xi_{r+1}\right) \tau_{i} \\
& =\xi_{r+1}-\left(u+a_{i} u_{i}\right) \tau_{i}
\end{aligned}
$$

The component of $\varphi_{\tau_{i}}\left(\xi_{r+1}\right)$ in H_{r+1} is $u \lambda_{r+1}-\left(u+a_{i} u_{i}\right) \mu_{r+1}$, so that as above we may replace u with a new u^{\prime} dividing $a_{i} u_{i}$. It now follows from (4) that $u=1$ (or $u=-1$, which we can easily transform to $u=1$).

We now show how, by a similar argument, to reduce the coefficients x_{i}, u_{i} in (3) to zero. First put

$$
\pi_{i}=\lambda_{m+i}+\left(u_{i}+a_{i} x_{i}\right) \mu_{r+1}, \quad 1 \leqq i \leqq r
$$

and apply the isometry $\varphi_{\pi_{i}}$. Again, since $\pi_{i} \cdot \xi_{j}=\pi_{i} \cdot \eta_{j}=0$ for $1 \leqq i$, $j \leqq r, \xi_{j}$ and η_{j} are left invariant by $\varphi_{\pi_{i}}$. However,

$$
\varphi_{\pi_{i}}\left(\xi_{r+1}\right)=\xi_{r+1}-u_{i} \pi_{i}
$$

so that the coefficient of λ_{m+i} in $\varphi_{\pi_{i}}\left(\xi_{r+1}\right)$ is zero. The component of $\varphi_{\pi_{i}}\left(\xi_{r+1}\right)$ in H_{r+1}, namely $\lambda_{r+1}-u_{i}\left(u_{i}+a_{i} x_{i}\right) \mu_{r+1}$, may be restored to λ_{r+1} by an isometry as in the lemma. Thus each of the u_{i} in (3) may, in turn, be reduced to zero.

Finally, put

$$
\rho_{i}=\lambda_{i}+a_{i} \mu_{m+i}+x_{i} \mu_{r+1}, \quad 1 \leqq i \leqq r
$$

and apply $\varphi_{\rho_{i}}$. As before $\xi_{j}, \eta_{j}, \mathbf{1} \leqq j \leqq r$, are invariant, but now

$$
\varphi_{\rho_{i}}\left(\xi_{r+1}\right)=\xi_{r+1}-x_{i} \rho_{i}
$$

The coefficients of both λ_{i} and μ_{m+i} are now zero. We have therefore succeeded in mapping ξ_{r+1} into λ_{r+1}.

We now consider η_{r+1}. We show first that $\eta_{r+1} \notin L_{r} \oplus H_{r+1}$. For if

$$
\eta_{r+1}=\sum_{i=1}^{r}\left(x_{i} \lambda_{i}+y_{i} \mu_{i}+u_{i} \lambda_{m+i}+v_{i} \mu_{m+i}\right)+u \lambda_{r+1}+v \mu_{r+1}
$$

using the various orthogonality conditions on η_{r+1}, we obtain $y_{i}=0$, $v_{i}=a_{i} x_{i}$ and $v=a_{r+1}$. Then as before

$$
\eta_{r+1}-\sum_{i=1}^{r}\left(x_{i} \xi_{i}+u_{i} \eta_{i}\right)-u \xi_{r+1}=\sum_{i=1}^{r}\left(-a_{i} u_{i} \mu_{i}+a_{i} x_{i} \mu_{m+i}\right)+a_{r+1} \mu_{r+1}
$$

leads to a contradiction. Therefore we may assume (again using the lemma)

$$
\eta_{r+1}=\sum_{i=1}^{r}\left(x_{i} \lambda_{i}+u_{i} \lambda_{m+i}+a_{i} x_{i} \mu_{m+i}\right)+u \lambda_{r+1}+a_{r+1} \mu_{r+1}+v \lambda_{m+r+1}
$$

We proceed as before, first reducing v to 1 , and then the coefficients u, x_{i} and u_{i} to zero. Since $\eta_{r+1}-\sum_{i=1}^{r}\left(x_{i} \xi_{i}+u_{i} \eta_{i}\right)-u \xi_{r+1}$ is primitive, we obtain

$$
\begin{equation*}
\left(a_{1} x_{1}, \cdots, a_{r} x_{r}, a_{1} u_{1}, \cdots, a_{r} u_{r}, a_{r+1}, v\right)=1 \tag{5}
\end{equation*}
$$

First let $\sigma=\mu_{m+r+1}+\lambda_{r+1}$ and apply φ_{σ}. Then φ_{σ} leaves $\xi_{i}, \mathrm{l} \leqq i \leqq r+1$, and $\eta_{j}, 1 \leqq j \leqq r$, invariant. But

$$
\varphi_{\sigma}\left(\eta_{r+1}\right)=\eta_{r+1}+\left(a_{r+1}-v\right) \sigma,
$$

so that by the usual argument, we replace v by v^{\prime} with v^{\prime} dividing a_{r+1}. As in the discussion with ξ_{r+1} (after replacing μ_{r+1} by μ_{m+r+1} in the definitions of σ_{i} and $\left.\tau_{i}\right), v$ may be further assumed to divide each of $a_{i} x_{i}$ and $a_{i} u_{i}$, $1 \leqq i \leqq r$, so that by (5) we must have $v=\mathbf{l}$.

Now let $\pi=\lambda_{r+1}+\left(a_{r+1}+u\right) \mu_{m+r+1}$. Then φ_{π} leaves each of ξ_{i}, $\mathrm{l} \leqq i \leqq r+\mathrm{l}$, and $\eta_{j}, \mathrm{l} \leqq j \leqq r$, invariant. However,

$$
\varphi_{\pi}\left(\eta_{r+1}\right)=\eta_{r+1}-u \pi,
$$

so that the coefficient of λ_{r+1} in $\varphi_{\pi}\left(\eta_{r+1}\right)$ becomes zero. As with ξ_{r+1}, we may reduce in turn, all the coefficients x_{i} and u_{i} in η_{r+1} to zero. We have therefore succeeded in mapping η_{r+1} into the desired form $a_{r+1} \mid \mu_{r+1}+\lambda_{m+r+1}$.

This completes the inductive construction of ξ_{i} and η_{i}. Of course, if the rank of J_{1} is odd, we stop after constructing ξ_{m}. The construction given above also includes, as a special case, the construction of $\xi_{1}=\lambda_{1}$ and $\eta_{1}=a_{1} \mu_{1}+\lambda_{m+1}$, to start the induction. As mentioned before, the embedding of an isometric image of J_{1} in this form makes the proof of the theorem trivial.

References

[1] Bourbaki, Algèbre ch. 9, (Hermann, Paris, 1959).
[2] J. Dieudonné, La géométrie des groupes classiques, (Springer-Verlag, Berlin, 1963).
[3] D. G. James, 'Integral invariants for vectors over local fields', Pac. J. Math. 15 (1965), 905-916.
[4] D. G. James, 'Transitivity in integral symplectic forms', J. Aust. Math. Soc. 8 (1968), 43-48.
[5] O. T. O'Meara, 'Quadratic forms over local fields', Amer. J. Math. 77 (1955), 87-116.
[6] E. Witt, 'Theorie der quadratischen Formen in beliebigen Körpern', J. reine angew. Math. 176 (1937), 31—44.

The Pennsylvania State University

[^0]: ${ }_{1}$ This research was partially supported by the National Science Foundation through grant GP-6663.

