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Abstract

Using a method suggested by E. S. Barnes, it is shown that the simultaneous inequalities
r(p — arf < c, r(q — fir)2 < c have an infinity of integral solutions p, q, r (with r > 0), for arbitrary
irrationals a and /3, provided that c > 1/2.6394. This improves an earlier result of Davenport,
who shows that the same conclusion holds if c > 1/46"" = 1/2.6043 • • •.

1. Introduction

Let a, (i be irrational numbers. Davenport (1952) has shown that the
simultaneous inequalities

(1) r(p~arf<c, r(q - (3rf < c

have an infinity of integral solutions p, q, r (with r > 0) provided that

1 1
c > 46"4 2.6043 •

In the opposite direction, Cassels (1955) has shown that if c < 2/7 = 1/3.5,
there exist a and /3 for which the inequalities (1) have only a finite number of
solutions. Both results are obtained by using the fact that if C is the infimum
of constants c such that the inequalities (1) admit an infinity of solutions for
all choices of a and /3, then C = I/A, where A is the lattice constant of the
three-dimensional star body defined by the inequality | z \ max(x2, y2) < 1.
This result, which is a particular case of a general theorem of Davenport
(1955), is first mentioned in Cassels (1955), although the analogous result for a
closely related problem had been obtained much earlier by Davenport and
Mahler (1946). The value of C is unknown.
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Davenport obtained his estimate by using a technique previously em-
ployed by Mullender (1950). Essentially, a method of Mordell is used to find a
lower bound for A by reducing the problem to a two-dimensional problem in
the geometry of numbers, and by using the known lattice constant of the
star-body \z | (x2 + y2)< 1. In the present paper, a different reduction will be
used to show that the inequalities (1) have an infinity of solutions provided that

c> 2.6394 •

This method again reduces the problem of finding a lower bound for A to a
two-dimensional problem; however the regions which arise are bounded,
whereas the corresponding regions studied by Davenport and by Mullender
are unbounded star-domains.

In §2, we describe Barnes' method, and we analyse the two-dimensional
regions obtained from it in §§3-5. The constructions used to obtain the
requisite lower bound for A are described briefly in §6, suppressing most of
the routine calculations. Some final comments are made in §7.

2. Reduction to a two-dimensional problem

Let L, M, N be real linear forms of determinant 1 in the variables u, v, w,
and let

(j. = inf(|N|max(L2, M2)),

where the infimum is taken over integral u, v, w, not all zero. Suppose /x > 0,
and assume first that /J. is attained. Thus there exist integers ua, vn, w,h not all
zero, such that (in an obvious notation)

ix = | N,, | max (Lf,,M2,).

We suppose Lf, S Ml, so that j L(,/M,,| = t, where 0 S ( S l . Define new linear
forms

X = L/M,,, Y = M/Mn, Z = N/Nlh

of determinant l//u.. We may assume that the forms X, Y, Z take the values t,
1, 1 respectively at «„, vlt, w,,. Now consider the three-dimensional lattice A
given by

x = X - tZ, y = Y - Z, z = Z,

for integral u, u, w. A has determinant l//x, and the definition of y. implies that

(2) |z |max((x + rz)2, ( y + z ) 2 ) g l
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for all points of A other than the origin. Further, since (0,0,1) is a primitive
point of A, there is a basis of A with respect to which its points are given by
x = x,v + x2w, y = y , v + y 2 w , z = u + z,v + z2w, w i th i n t e g r a l u, v, w. L e t i ?
be the two-dimensional lattice obtained by considering only the x and y
coordinates. 5£ has determinant l//x, and (2) implies that HE has the property
that for any lattice point (x, y) of ££ other than the origin, there is a real
number K such that

infflu + K |max(0 + t(u + K))2, (y + u + K ) 2 ) ^ 1,

where the infimum is taken over all integers u. Therefore, if we define S(t)
( 0 S ( i 1) to consist of those points (JC, y) such that for any real K there is a A
congruent to K modulo 1 for which

| A \max((x + t\)2, ( y + A ) 2 ) < l ,

it follows that 5£ is admissible for S(t). If as t varies from 0 to 1 the lattice
constant, A(f) say, of S(t) is at least Ao, then A,,S l/fi. In the case where /* is
not attained, we may obtain the same result by applying the above argument
for a sequence of values /xn tending to the infimum /J., and observing that the
corresponding sequence of sets thus obtained satisfies the conditions of a
theorem of Mahler (c.f. Cassels 1959, p. 140) which asserts that the sequence
of lattice constants then tends to the lattice constant of S(t). Rewriting the
inequality above as /x S 1/A«, and recalling the definition of /JL, we see that this
inequality implies that the lattice constant of the star-body \z \ max(x2, y2)<
I/A,, is at least 1, whence the lattice constant A defined in §1 satisfies A g A,,.
Hence our result will be established if we can show that A,, g 2.6394.

3. Determination of S(t)

The regions S(t) may in theory be determined as follows. First, deter-
mine the region

so that for each y, the set

/ (y) = {A:(A,y)eK(l)}

is known. Then, for each ( in ( )§f S I , determine

and, for fixed y and t, study the set

(3)
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as a function of x. Those x for which this set covers the reals mod 1 yield
points (x, y) S S(t). As y varies, we obtain the whole of S(t) in this way, and
as t varies, we obtain all the regions S(t). In order to see how to implement
this programme, we need first to examine the shape of R(t). If we define
functions L, = L,(A), U, = U,(X) by

(4) L,(A)= - A r - | A | " " 2 , £/,(A}= -Af + |A| "2

then

R(t) = {(\,x):L,<x<U,} ( O S / S I ) ,

while

= {(A,y):L1<y < U,}.

From these descriptions, we see that R(t) is symmetric in the origin and
contains the lines A = 0 and x + t\ = 0. Except for t = 0 (when there is no
turning point T), R{t) (shown in Figure 2) has a shape of the form shown in
Figure 1, which depicts R(\) for y i? 0. Figure 1 shows that the set I(y)
defined above is either an interval of a disjoint union of two intervals.
Further, the concavity of the boundary curves of R(t), together with the fact
that for each A, (A x R) n R(t) is an interval, suggests that the set (3) at first
increases with x and then decreases as x increases. This result would imply
that S(t) n (R x {y}) is either empty or else of the form / x {y}, where / is an
interval. That this latter result is true follows most readily from the observa-
tion that, for each y and / considered,

I(y)x{ty}CR(t),

since it then follows from the shape of R(t) that (3) is monotone decreasing
with respect to \x - ty |. We collect together in a Lemma this result and two
other immediate results which will be used frequently in the sequel.

LEMMA 1. (i) Let I be a closed interval of length 1 such that I C/(y) and
Ix{x}CR(t). Then ( i , y ) e S ( l ) .

(ii) Let I be a closed interval of length 2 and J C / an open interval of
length at most 1 such that I\JCl(y) and (I\J)x{x}CR(t). Then (x,y)E
S(t).

(iii) / / (x\ y')G S(t), then {x : (x, y') E S(t)} is an open interval.
Since S(t) is symmetric in the origin, the practical problem reduces to the

following: determine those y & 0 for which I(y) covers the reals mod 1, and
then for each such y, and each t, determine numbers m(t,y) and M(t, y) such
t h a t { x : m ( t , y ) < x < M ( t , y ) } x { y } C S ( t ) a n d f o r w h i c h M ( t , y ) - m ( t , y ) is
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Fig. 1. The region R (1)

[5]

R ( t ) ( t o < t « 1 l

o V

Fig. 2. The shapes of the regions R(i)(0<r § 1)
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as large as possible. We begin by identifying certain points on the boundary of
R(t), and values of x, y, and / which will be significant later.

The turning points T on the boundary of R(l), and on the boundary of
/?(/) for f > 0 (see Figs. 1, 2) strongly influence the shape of S(t). The
coordinates (\m,xm) of T on R(t) are given by

(5) Am = - (2ty2'\ xm =

and we denote the coordinates of T on R{\) by (Am, ym). Thus

(6) Am = - 2'2B = - 0.6300, ym = 3(l/4)"3 = 1.8899.

[Approximate values are rounded off to four decimal places wherever they
appear.] The value A * > 0 such that (A *, xm) is on the boundary of R (t) (see
Figure 2) may be found by putting A * = c2t~2/\ where c > 0 then satisfies the
equation

c3 + 3 ( l / 4 ) ' / 3 c - l = 0 .

Solving this, we find

(7) A * = 0.2238r2/3.

The difference A * - Am decreases as / increases, and the equation A * — Am = 1
holds for t = t* say, where

(8) t* = 0.7889.

For any t, we shall need the values A(l > 0 and xu > 0 such that (Ao, x0) and
(A,, — 1, Xo) both lie on the boundary of R (t) (see Figure 2). Note that the latter
point is to the right of T for t < t*, and to the left of T for t > t*. Solving the
relevant equations, we find

(9) A() = ( l-( l-4/32)1 / 2 ) /2, where p = ((1 + t2)"2 - l)/t2,

and

(10) Xo=f/,(AO),

where U, is given by (4). It follows from this that x0 is an increasing function
of /. Again, we shall denote the coordinates of the point corresponding to
(Ao, Xo) on R(l) by (A,,, y0), so that

(11) Ao =AO(1) = 0.2200, y o =x o ( l )= 1.9123.

Another pair of interest is (A,, x,), where (A,, xx) and (A, - 1, Xi) both lie
on the boundary of R(t) and Am < A, < 0 (see Figure 2 again). A, is in fact a
root of the equation

(12) f4A4+(4r2-2(4)A3 + (r4-6r2)A2 + 2/2A + l = 0,
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and

(13) x ,= l/,(A,).

When t = 1, equation (12) factorises, with two of its roots given by

A = ( - 1 - 2V2 ± V(5 + 4V2))/2
(14)

= -0.2820,-3.5465.

Hence, for R(l), the coordinates of the corresponding point (Ai, y,) are given
by

(15) A,= -0.2820, y, = 2.1652.

The remaining value for A in (14) is also of interest, since it corresponds
to a value of y such that (A, y) and ( A - l , y ) lie on the arcs TD, EF
respectively of R(l) (see Figure 1). Examination of R(l) shows that for values
of y just greater than this value, the set I(y) cannot cover the reals mod 1.
Hence S(t) has no points (x, y) with y just greater than this particular value of
y, which we denote by ymax. We have

(16) ymax = U,( - 3.5465) = 4.0800.

We remark here that there do exist values y > ymax yielding points
(x, y ) £ S(t), at least for some values of t. For example, (4.525,4.525)G S(l).
This shows that S(t) is not always connected, and hence is not always a
two-dimensional star-body. However, as we can see no way of using that part
of S(t) lying outside |y|s=ymax, we discuss it no further.

We define one more value of A related to x,(f). The value fit = ^\(t) is
defined by the conditions

(17) M , > 0 , x1(r)=l/,(/*1).

The difference xo(t) — Xi(t), initially positive, decreases steadily as t
increases, vanishing for a unique value t = tu. t<> is thus defined by the equation

(18)

and the value of t0 is approximately 0.46.

4. Estimation of m(t,y)

We now obtain values for m(t, y), thus giving a lower bound for the
interval of x-values such that (x, y ) £ S(t) for each t and y. We shall discuss
later whether or not these values can be improved. We consider separately
certain ranges of values for y.
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(i) y = 0. We have, by Lemma l(i) with I = [ A,,, 1 - A,,],

(19) w(r,0)= -x,,(r) ( O i i s i * ) ,

where x,, = x()(t) is given by (10). For t* tk t t= 1, the turning point, - T say, on
the boundary of R(t) in x < 0, limits the values of A that can be used, and
consequently

(20) m(t,0)= -xm = - 3(r/4)"3 ( r ' ^ r g l ) .

(ii) 0 < y § ym. Define y * = y *(r) by

y* = L/,(l - A,,(0) ( O ^ f S / * ) ,

y* = 17,(1-A*(/)) ( f * S f S l ) ,

where Ao and A * are defined by (9) and (7) respectively. Then we may put

(21) m( / ,y )= m(r,0) ( 0 < y < y * ) ,

since Lemma l(i) applies exactly as for (i) above, with the same sets /.
For y * S y S ym, the largest value of A G /(y) is less than 1 - A,,(f) (or

1 - A *(t)), and is that A > 0 such that y = U,(\). For this value of A, we may
take / = [A - 1, A] and hence obtain

(22) m(t,y)=L,(X-l) (y* =i y = l7,(A)=i ym).

We note that the curve (m(t, y), y), for y * g y g y m , is a smooth concave
curve.

(iii) y = ym. As y —* ym — , m(t, y) approaches the value given by (22)
with A = A *(1). As y —» ym + , since any set used in Lemma 1 must cover Am

mod 1, we see that by choosing an interval / in Lemma l(i) with its right-hand
endpoint on the arc TD in Figure 1, we may choose m (t, y) for y > ym so that

m(t,ym+)=L,(\m-\).

We note that the difference m (f, ym +)- m (t, ym - ) is positive for t = 0 and
increases with t.

(iv) y > ym. As remarked above, by choosing A such that (A, U,(A)) lies
on TD in Figure 1, we may put

m ( r , y ) = L , ( A - l ) ( y . < y S y 4

By doing this, we ignore those A G /(y) with A > \m, and for some y > ym, we
can use these A to improve our estimate. Recall that yn and y, are given by
(11) and (15) respectively. We now put, as above,

(23) m ( f , y ) = L , ( A - l ) (ym < y g y,, and y , < y § y m ) ,
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while for the remaining values of y, we appeal to Lemma l(ii) with
J = [A' - 2, A'], and where (A', y) lies on the arc AB in Figure 1. It follows
from this that we may put

(24) m(/,y) = L,(A'-2) (y , ,<y<y . ) .

In each of the intervals where (23) or (24) are used, the curves (m (t, y), y) are
again concave. Further, (24) implies that there is a jump in the value of m (t, y)
as y passes through y,.

Finally, we remark that examination of the estimates obtained above
shows that no improvement in m(t, y) is possible, except perhaps by defining
values of y analogous to y« and y,, but where the difference in A-values is 2
instead of 1, and studying m(t,y) between these two values of y. Any
improvement obtained would be small, and would have no effect on the
argument in §6. Thus (m(t, y), y) effectively gives part of the boundary of
S(t).

5. Estimation of M(t,y)

The estimation of an upper bound for the interval of x -values such that
(x, y) G S(t) is further complicated by the fact that the arguments necessarily
involve that part of the boundary of R (t) upon which the turning point T lies.
As t increases, the boundary near T has more and more effect on our
estimates. For this reason, and also because the estimates we give are valid
over intervals of y-values which vary with /, it is better to describe the
estimates for ranges of values of t than for ranges of values of y. Briefly, as /
increases, the effect of T is to influence the estimation first for y near ymax,
and then for smaller values of y.

(i) O^r^O.0516. Since Am(0.0516) = -4.5465, and since from (16)
ymax = L,(-4.5465), we see that T on R(t) has no influence on S(t) for t in
the range being considered.

Since S{t) is symmetric in the origin, we should be able to choose

(25) M(t,0)= -m(r ,0) = Jc,,(r),

and this is possible, since we may take / = [A,,(f)- l,A,>(f)] >n Lemma l(i),
where An and x(1 are given by (9) and (10) respectively. Further, since the same
interval / is applicable for each value of y such that

(26)

we may

(27)

put

M(t, >') =

V "

xn(t)

I/, (A

(0

"(0).

= y
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As y increases, the positive A such that y = U,(\) decreases, and this
forces us to decrease our estimate. For this A we may put

(28) M(t,y)= C7,(A-1) (A > 0, t/,(A()(0)S y < ym),

by using / = [A - 1, A] in Lemma l(i). In particular,

(29) M(t,ym -) = C/,(A*(1)-1)= 1.135+ 0.7762f.

For y > ym, the fact that the relevant part of the boundary of R(t)
remains the curve to the right of T means that we should choose / to be as far
to the right as possible in I(y). Thus we may repeat the argument leading to
(23) and (24) in §4 (iv). With A and A' precisely as defined there, we may select

(30) M(f, y )= U,(\ - 1) ( y m < y S y 0 and y ,<y=iy m a x ) ,

(31) M ( f , y ) = l / , ( A ' - 2 ) ( y , , < y < y , ) .

These imply that M(t, y) decreases as y increases. Further, on examining the
case t = 0 and comparing with the results of §4, we find M(0, y) = — m(Q, y)
for O g y g ymax, which is desirable since 5(0) is symmetric in the y-axis.

(ii) 0.0516 g t S 0.075. For t in this range,

- 4.5465 SA m ( f )g - 3.5465,

and consequently the estimates for M(t, y) obtained in (i) remain valid, except
when A - 1 < \m(t)\ for this case we use

(32) M(t,y)=xm(t) ( l / , ( A m ( / ) + l ) S y g y m a x ) .

This is so because Lemma l(i) applies with / as before (i.e., as used in
obtaining (23) and (30)) to x = xm(t). The estimates for M{t, y) are thus (27)
and then (28) for 0 S y < ym, (30) for ym < y < y(), (31) for y,,< y < y,, (30) for
y, < y < l/,(AM(0+ 1), and (32) for U , ( A . ( / ) + l ) s y g ymax.

(iii) 0.075 S t g 0.267. In this range, T on R(t) has moved sufficiently far
to the right for us to be able to use the curve EF in Figure 1 to estimate
M(f, y) for some values of y such that y = ym, while still using previous
estimates for other y. To be precise, we shall use (32) only for t/,(Am (t) + 1) S
y = U,(\m(t)), and, for larger y, if (A, y) lies on EF, we shall put

(33) M(f ,y)=l / , (A + 1) ( t / ; (A m (0)<ygy™») .

We may do this, since Lemma l(i) applies with / = [A, A + 1].
We note that for t = 0.24 approximately,

while for / = 0.267 approximately,
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Ul(\m(t)) = ym.

Hence, if t g 0.24, (32) may be used only for ym < y g C/,(Am (f)), while for
t> 0.267, (32) is no longer applicable. As for (31), since the argument
justifying it is inapplicable as soon as Am (t) lies in the interval / = [A' — 2, A']
used to obtain (24), we prefer to dispense with it.

The estimates for M(t, y) are therefore (27) and (28) for 0 g y < ym, (30)
for ym <y < t/,(Am(f)+l) (and so only for 0.075 § t § 0.24), (32) for
I/,(Am ( r ) + l ) g y s £/,(Am (r)) if 0.075 s r g 0.24, (32) for ym < y g [/,(AM(0)
if 0.24^ t §0.267, and (33) for the remaining values of y.

As a result of these estimates, we see that M{t,y) increases with y for
y > Ui(\m(t)), since (33) is an increasing function of y. We may further show
that when M(t, y) is defined by (33), the curve (M(u y), y) is smooth and
convex. Further, by (30),

(34) M(t,ym + ) = U,(Am - 1) = 0.7833+ 1.63/ (OS (S0.24),

while

(35) M(t,ym+) = xm(t) (0.24§ f §0.267),

by (32), while from (33) and our remark above,

(36) M(t,y)^xm (y>ym)

for 0.0516 S ? § 0.267, and (36) is trivially true for 0 g / S 0.0516.
(iv) 0.267 S ( S (0. Recall that f« is defined by (18), so that in the present

range of values of t, xo(O= *i(0-
For y > ym, we shall define M(t, y) by (33), so that (36) holds, and in fact

(37) M(t,ym +)= U,(- 1.5198) = 0.811+ 1.5198/,

because ym = L , ( - 42/1) = L , ( - 2.5198).
For 0 < y < ym, we use (27) and (28) to define M(t, y), until / reaches the

value where M(t, ym -)= x,(t). From (29) and (13), this occurs when A,(r) =
- 0.7762, and so, from (12), when t = 0.385 approximately. For 0.385 < t S t0,
the use of (28) is restricted to the range

because for any larger value of y less than ym, we may put

(38) M0,y) = x,(0,

by using Lemma l(ii) with / = [A - 2, A], where (A, t/,(A)) lies on the arc AB
in Figure 1.
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Note that M(f,,, y) = M(f,,,0) for 0 S y < ym, by the definition of to, and
that M(f, ym - ) is a lower bound for M(t, y) for 0.267 § I g („ and 0 S y < ym.

(v) i , ,S(g(*. For t > r,,, xo(f)< x,(t). We therefore use (27) only for
0 = y = Li(A,,(0~ 2), after which we may use the arc EF in Figure 1. If
(A - 2, y( = L,(A - 2))) lies on EF, then we may put

(39) M(f,y)=[/,(A),

valid for

(40) LI(Ao(r)-2)£ySL1(/i,(r)-2),

where, by (17), (/x,(r),*i(f)) lies on the boundary of R(t). This estimate is
justified by using / = [A — 2, A] in Lemma l(ii).

For the remaining values of y less than ym, we may use (39) with
A = fj-i(t), giving M(t,y) = xt(t) and thus agreeing with (38). However, (33)
can be used to give a better estimate for M(t, y) for some values of y less than
ym if, with A as used above in (39), / = [A - 2, A - 1] satisfies I x{x}CR(t)
for some x > x,(t). By (37) and (38), we see that

M(t, ym + ) = M(t, ym - )

when

U,(- 1.5198) =

and so when A,(<) = —0.5198, which occurs for t = 0.575 approximately. For
t> 0.575, we may use (33) for all y such that y g L,(A,(f)-2).

Summing up, we have the following results for the present range of
values of I. M(t, y) is given by (27) for 0 g y g L,(A0(0 - 2), and by (39) for
those y specified in (40). For to^t< 0.575, M(t, y) is given by (38) for
L,(fi,(t)-2)<y <ym, and by (33) for y > ym. For 0.575 g/ ;§?*, M{t,y) is
given by (38) for

LI( /x ,(0-2)<y<L,(A1(0-2) ,

and by (33) for y s L,(A,(f)-2).
It follows from the above that M(t, y) is an increasing function of y for

[ g 0.575.
(vi) ( * < ( g l . An argument similar to that used in obtaining (20) for

m (t, 0) when t > t * shows that we must put M(t, 0) = xm (t), and we must then
have

(41) M(t,y)=xm(t) (0SySL, (A m (O- l ) ,

for until y reaches the upper value given in (41), we cannot use the arc EF in
Figure 1 to improve M(t, y). Since xo{t)> xm(t), we put
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M(t,y)= W ( A - l ) ( L , ( A M ( O - K y sL,(A,,(r)-2),

where (A - 2, y) is on EF, and so, for the given range of y, (A - 1, M(t, y)) is
on the boundary of R(t) between T and (A<>(f)~ l,x,,(r)).

For larger values of y, we use (39) for those y given by (40), then (38) for
L , ( M , ( / ) -2 )<y <L,(A,(r)-2), and finally (33) for y g L,(A,(0-2).

As a result of these estimates, we see that M(t, y) remains an increasing
function of y (as remarked at the end of (v) for t g 0.575), and further, that a
comparison of the estimates for m(l ,y) given in §4 with the estimates for
M(l ,y) given above shows that they are symmetric about y = x, i.e.,
M(l, m(l, y)) = y. We note that S(l) is also symmetric about y = x.

This completes the task of finding estimates for M(t, y) for 0 § t fs 1 and
O^y g ymai. Examination of the arguments used shows that there are two
places where (slight) improvements may be possible. First, as described at the
end of §4, by investigating x-values analogous to xo(t) and x,(t), but where the
appropriate values of A differ by 2 instead of 1, M(t,y) could perhaps be
improved for some ; and some y. Second, by examining more closely the set
/(y) for y near ym, and its relation to those A such that (A, x,(t))E R(t), one
can improve (33) (and so (37)) for y very close to but just greater than ym, for
0.385 <f < 0.575. However neither of these improvements would alter the
result obtained in §6.

6. Calculation of a lower bound for A(<)

The results of sections 4 and 5 give values for m(t, y) and M(t, y) such
that for each t ( O g ( S l ) and each y (0§ y g ymax),

(42) {(x, y): m(t, y )< x < M(t,y)}CS(t).

By the symmetry of S(t) in the origin, we may put, for 0 s y g - ymax,

m(t,y)= - M(t,~ y), M(t,y)= - m(t, - y),

and then (42) holds for | y | g ymax. We shall use (42) to construct for each / a
convex symmetric parallelogram or hexagon inscribed in S(t). A lower bound
for the area of these inscribed figures leads immediately by Minkowski's
convex body theorem to a lower bound for the lattice constant A(f) of S(t).
Before embarking on the construction, we remark that the principal difficulty
in obtaining a good estimate for A(/) using the above method occurs for t near
0.9. For other values of t, we have nevertheless tried to obtain reasonably
good estimates for A(f), even though these can have no effect on the final
result.

The constructions will be given explicitly for y = 0, since they can be
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extended by symmetry to y < 0 . Figures 3, 4, 5 and 6 show the constructions
used for t = 0, 0.4, 0.5 and 1, respectively, inside the relevant part of the
corresponding regions S(t). The regions drawn are of course based on the left
hand side of (42), but we have previously remarked that except for some small
intervals of values of y, the values for m(t, y) and M(t, y) obtained in sections
4 and 5 cannot be improved. It is also clear that any component of S(t) lying
outside |y | = ymax has no effect on the present calculations.

Fig. 3. The region S (r) for r = 0.

Three points which lie on or close to the boundary of S(t) and which are
of use in the subsequent constructions will now be identified and labelled.

The point {m(t, y0), y(>), where y0 is given by (11) and m(t, y<>) by (23) with
A = A o - 1 = -0.7800, will be approximated by the interior point

F,,= (1.78f-0.749,1.912).

The point (m(t, y, + ), y,), where y, is given by (15) and m(t, yi + ) by (23)
with A = A i - 1 = — 1.2820, will be approximated by the interior point

P, = (2.282f-0.661,2.165).

For / s 0.267, the point (M(t,ym +), ym), where ym is given by (6) and
M(t, ym +) by (37), will be approximated by the interior point

M = (1.519f+0.811,1.889).
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Fig. 4. The region S (t) for ( = 0.4.

The construction used varies with t, and therefore we consider certain
subintervals of 0 g t g 1 in turn.

(i) 0^fS0.29. (See Figure 3.) We show the triangle with vertices
A(-V2,0) , B(3.75r,3.75) and C(V2,0) lies inside S{t) for 0 g t S0.29. By
the results of §3, and in particular of §4 (iv), the edge AB lies in S(t) if it
passes to the right of Po and P,, and if its slope is less than the slope of the
tangent to the curve * = m(t, y) at y,, where in (t, y) is given by (23). This is so
because if y > y,, the relevant boundary of S{t) lies above this tangent. The
necessary simple calculations show these conditions are met for t g 0.296. By
the results on M(t, y) obtained in §5, it suffices to study BC for y g ym.

For 0 § t SO. 145, we note that if (30) is used to estimate M{t, y) for
y = ym, then the boundary of S(r) lies on or to the right of the concave curve
thus obtained. The tangent to this curve at y = y, is to the right of BC for

y = y -
For 0.145 g t § 0.267, xm is, by (36), a lower bound for M(t, y) in y g yn,

while for 0.267 g t ±=0.29, when M(t,y) is defined by the increasing function
(33), a lower bound for M(t, y) in y i? ym is given by (37). In each case it is
easily verified that BC lies inside S(t).

Hence the triangle ABC, and so the convex symmetric parallelogram
obtained by adding the reflection of B in the origin, lies entirely in S(t) for
0 S / g 0.29. The area of this parallelogram is 15/V2 > 10.6.

(ii) 0.29 g r g ( ' , where t' is the value of t at which M (t, ym + ) (given by
(33)) equals M(/,0) (given by (27)). (f lies between 0.487 and 0.488). (See
Figure 4.) For t a 0.29, the points A ( - 1.465,0) and D(1.465,0) lie in S{t), by
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§4(i) and the equation M(t, 0) = - m(t, 0). For y = (7,(0.45), m(t, y) is given
by (22) and we approximate (m(t,y),y) by the interior point B(0.55f-
1.348,1.04). The point C is defined to be the intersection of the lines BP0 and
DM. The figure obtained from ABCD and its reflection in the origin is easily
verified to be a convex symmetric hexagon for the given range of t. It remains
to check that it lies inside S(t).

Since the curve x = m(t, y) is concave near B, AB is inside S(t). From
the results of §4, BC lies to the right of the curve x = m{t, y) if it passes to the
right of the chord P,,Pi, and if its slope is less than that of the tangent to this
curve from above at P,, and greater than that of the tangent from below at P».
Carrying out the calculations, we find these conditions are all met for t S 0.59.
hence for t in the range being considered.

For the side CD, we discuss y g ym and y < ym separately. For y S ym,
where M(t, y), given by (33), increases with y and determines a convex curve,
we note that for t S= 0.431 the slope of CD is negative and hence all is well,
while for 0.431 g t g t', the slope of CD is greater than the slope at M of this
convex curve, and again all is well.

For 0 ^ y < ym, note that by §5 (iv), M(t, ym - ) is a lower bound for
M(f, y) if t § t0, and by §5 (v), M(t, 0) is a lower bound for M(t, y) if t g tt).
Further, M(t, ym+)^ M(t, ym -) and M(t, ym + ) s M(t, 0) for t g t'. Hence
CM lies inside S(t) whenever M(t, ym - ) g 1.465 (the coordinate of D), and
so for 0.425 S / § ( ' . For 0.29 § t S 0.425, CM has negative slope and meets
the line x = M(t, ym ~ ) in a point, W say, with ordinate less than 1. From (9)
and (27), it follows that M(t, 0) is a lower bound for M(t, y) for 0 g y ^ 1 and
r g 0.29, and so CW lies in S(t). WM clearly lies in S(t). Hence CM lies in
S(t) and consequently so does CD.

The area of ABCD is the sum of the area of the triangle ABD, which is
independent of t, and the area, A say, of the triangle BCD. The coordinates
of C, and hence the value of A, can be given explicitly in terms of t. When this
is done, the derivative A'(t) is negative for 0 . 2 9 S ? g 0 . 5 , hence a lower
bound for A is given by A (0.5) = 3.8716. Since the area of ABD is 1.5236, we
find that the resulting convex symmetric hexagon has area greater than 10.79
for 0.29S t^t'.

(iii) f ' S f S 0 . 6 9 . (See Figure 5.) In this range of t, we construct an
inscribed hexagon as follows. Put A(- xo(t),0) and E(xo(t),0) on the x-axis.
The tangent to the curve x = m(t, y) at the point N((t/2)- y/2, \fl - (1/2))
meets the perpendicular to the x-axis through A at the point B on the
boundary of S(t), and it meets the chord P0P, at the interior point C of S(t).
The chord P0P, meets the perpendicular to the x-axis through E at the
interior point D of S(t). ABCDE, together with its reflection in the origin,
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A(-xo.0l EU,.o)

Fig. 5. The region 5 (t) for t = 0.5.

forms a convex symmetric hexagon, which is readily verified to lie within S(t)
— recall that M(t,ym + )& M(t,0) for / g t'. The area A{t) of the polygon
ABCDE can be calculated explicitly in terms of t, but it is rather complicated.
We can find a lower bound for A (f) by the following method. Fix the vertices
A and E at their positions A', E' say corresponding to / = rh and allow N, Po,
P, (and hence C) to vary with t for t g T{. Since xa{t) increases with t, the area
Ai(t) say of A 'B'CD'E' (the resulting polygon) is a lower bound for A (t) for
t g Tj, and A,(/) can be shown to decrease as ( increases. We choose T,, • • -,T7

equal respectively to 0.48, 0.57, 0.62, 0.65, 0.67, 0.68 and 0.69, and then find
the smallest value of A , ( T , ^ ) to be A6(r7) = 5.2839. (Calculation of A(t)
shows that its least value is A(r7) = 5.3031). Consequently we conclude that
the corresponding inscribed hexagon has area at least 10.5678 for r ' g r S
0.69.

(iv) 0.69 g / § l . (See Figure 6.) We have remarked before that values of
t near 0.9 present the greatest difficulty. We shall use one construction for
0.69 § t S 0.9, and another for 0.91 S r S l , and discuss briefly the modifica-
tions necessary to cover the range 0 . 9 g / g 0.91. It is convenient to begin with
t = 1. Figure 16 shows 5(1). P is the point (x, ym) where, by (23), x =
L , (A m - l ) .

The points Q, Qo and Q, are the reflections of P, Pu, P, in the line y = x.
N is the point ((1/2) — \ / 2 , \ /2 — (1/2)), and the tangent to the boundary of
5(1) at N is perpendicular to ON. The perpendicular bisector of ON meets
the boundary of 5(1) at a point P' lying between P and Po. The hexagon
obtained by taking the tangents at N and at P' and their reflections in the
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Fig. 6. The region S(r) for ( = 1.

lines y = ± x is in fact the optimal inscribed convex hexagon for S(l). So that
we may generalise to other /, we approximate it by replacing the tangent at P'
by the tangent from below at Po, and regarding its reflection in y = x as the
tangent from below at Qo. Denote the hexagon obtained from these three
tangents (and their reflections in 0) by H(t). (The coordinates of Qo for
general t are given by (39) and (40) and are (xn(t), L,(A0(f) - 2)). The arc QQ0

appears only for t > t * = 0.7889. The coordinates of Q, are, by (33) and §5
(vi), (jci(r), L,(\,(t)- 2)).) The area, A(t) say, of H(t) can be given as a
function of t, but is too complicated to be of use. If the coordinates of Q,, are
held fixed at their value for t = r, but N and Pn allowed to vary, then the
resulting hexagon HT{t) has area AT(t) which decreases as t increases and
which is a lower bound for A(t) (t § T). Explicit computer calculation of
A(t), and then of AT(t) for suitably spaced T, shows that A(t) increases with t
and that a lower bound for A(t) in 0.91 S t S 1 is 10.5573. Again there is no
difficulty in showing H(t) to be properly inscribed in S(t).

For 0.69S(S0.9 we use the hexagon H,(f) formed by the tangent at N,
the chords P0P, and QOQU and the images of these three lines in the origin.
H,(t) is inscribed in S(t), and its area is again too complicated to discuss
explicitly, although it can again be approximated arbitrarily closely by
introducing a further parameter T fixing Q<> and Q,. Calculations show that
the area of H,(t) is a decreasing function of t and is not less than 10.5612 (its
value at t = 0.9) for 0.69 S t g 0.9.

There remains the interval 0.9 S t g0.91. An investigation of the lattice
generated by Po and Qo shows that it has a point To on the boundary of S(t)
near N for / = 0.9073. For this value of t, it is possible to modify both H(t)
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and H,(t) so that Tu, Pn and O(, are the midpoints of their respective sides.
This is done by replacing the tangents at P,, and O,, by tac-lines. The resulting
construction yields the following procedure for dealing with the outstanding
values of t. We replace the point N, which is obtained by choosing A = 1/2 in
(22), by the adjacent point T, obtained by choosing A = 0.5047 in (22). If H(t)
is modified by replacing the tangent at N by the tangent at T, the tangent at Po

by a tac-line at P« of slope 0.269, and the tangent at Qo by a tac-line at Qo of
slope 6.66, the resulting hexagon has area greater than 10.5572 for 0.9073 §
t ^ 0.91. If H,(t) is modified by replacing the tangent at N by the tangent at T
and the chord PnP\ by a tac-line at Po of slope 0.457, the resulting hexagon has
area greater than 10.5572 for 0.9 g t §0.9073. In each case the modified
hexagons are inscribed in S(t), and consequently we have a lower bound of
10.5572 for the area of a convex symmetric inscribed hexagon, in the range
0.9gf ^0.91.

Collecting together the estimates obtained in (i)-(iv), we see that 10.5572
is a lower bound for the areas of the convex symmetric parallelograms or
hexagons inscribed in S(t) ( 0 g ( S l ) , hence, by an application of Min-
kowski's convex body theorem,

S 10.5572/4 = 2.6394,

which was required to prove the result stated in §1.

7. Conclusion

We have remarked before that S(t) has a component outside the range
I)' I = Vmax, at least for / = 1. Until one has some idea of the critical lattices for
the component of S(t) studied above, it is hard to see how to improve upon
the present result by using all of S(t). By examining the construction used to
obtain good hexagons for t near 0.9073, it is clear that the "spike" in S(t) (the
part between y, and ymax) must be used more effectively if critical lattices are
to be found. In fact, by modifying that construction so that Pn is moved left, a
lattice of determinant 2.88 can be obtained which is admissible for S(l). This
implies that no method based on the argument of §2 can close the gap which
separates the present upper and lower estimates for the simultaneous
approximation constant C. There is at present no reason to suppose any
particular value for C, so any improvement on the bounds obtained above for
A(f) would be of interest, especially for large /. The exhaustive computer
investigation carried out in order to find good hexagons for t near 0.9
precludes the possibility of any improvement resulting from different choices
of inscribed convex symmetric regions for / near 0.9. There are other general
methods for finding lattice constants (e.g., the method of Mordell described in
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Cassels (1959), §111.6) pr bounds for them, but applying them to S(t) will not
be easy. A further difficulty is provided by the fact that for t near 1, the shape
of the boundary of S(t) between the points Pn and F, (see Figure 4) implies
that the component of S(t) containing the origin is not a star-body.
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