Yoshihei Hasegawa
Nagoya Math. J.
Vol. 40 (1970), 67-84

C-FLOWS ON A LIE GROUP FOR EULER EQUATIONS

YOSHIHEI HASEGAWA

§0. Introduction

The purpose of this paper is to determine left-invariant vector fields on
a Lie group G with a left-invariant Riemannian metric which induces C-
flows on G.

In his paper [1], V.I. Arnol’d has obtained a differential equation (Euler
equation) analogous to that of motion of a rigid body about a fixed point
under no forces. Let {g,; R} be a geodesic on a Lie group G with a
left-invariant Riemannian metric and let ® be its Lie algebra. Then

(1) X, = (L;})*gte@i
satisfies the following differential equation (Euler equation),
(2) Xc = B(X;, Xy),

where B is a bilinear map of ®x® into ® depending on the Riemannian
metric.

In particular, Arnol’d has paid attention to the geodesic expressed as
a one-parameter subgroup of G, which is analogous to a closed (periodic)
geodesic, to study the stability of the stationary points X (B(X,X)=0) of
the equation (2) in & rather than the stability of the corresponding geodesics
of one-parameter subgroups.

In connection with ergodic theory, we are interesed in the exact form
of the Euler equation with a particular choice of the Lie group. Namely,
we consider the Euler equation on the projective special linear group PSL
(2.R) of 2-nd order over R with the natural left-invariant Riemannian met-
ric, and determine its instable stationary points. Then we shall see that
each instable stationary point induces a C-flow on PSL (2.R) in our sense
(Cor. 3.1.).

Being inspired by the remarkable property above, we shall determine
left-invariant vector fields, each of which induces a C-flow on a Lie group.

Received June 30, 1969.

67

https://doi.org/10.1017/50027763000013866 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013866

68 YOSHIHEI HASEGAWA

Our main results read as follows. We employ the usual notations such

as Ad and ad to denote the adjoint representation of a Lie group and the
adjoint representation of its Lie algebra.

THEOREM 2. Let G be an n-dimensional oriented, connected real Lie group
with the unit element e, and let & be its Lie algebra. Assume that & contains an
element X satisfying the following conditions:

1) ad(X) is diagonal on the complexification &° of ®.
2) The multiplicity of the eigenvalue O is exactly equal to 1.

3)  The rest of the eigenvalues of ad (X) is divided into two parts, call them
Qi o v o Ay pe 0 ooy, tn such a way that

Re; >0, i =1, +,k,
Rep, <0, i=1,+--,1,

where k=1, |=1 and k+ | +1=n.
4) Tr ad(X)=0.

Then the one-parameter group of the diffeomorphisms ExptX of G is a C-flow with
respect to any left-invariant Riemannian metric ds® on G.
If we specify the Lie group to be semi-simple, we shall have the fol-

lowing

THEOREM 4. The semi-simple real Lie algebra & is isomorphic to 8L(2.R), if
® contains an element satisfying the conditions 1), 2), 3), 4) of Theorem 2.

Observing the above-mentioned situation, we are led to pay specific
attention to PSL (2.R) and to transform C-flows on PSL (2.R) formed as
above to the unitary tangent bundle T,L of the Lobachevsky-plane L. There
we shall see an interesting result:almost all C-flows thus transformed can not
be geodesic flows on the upper half-plane respect to any Riemannian metric
(Theorem 5).

Finally, the author hopes that our approach to the stability of a
stationary point of the equation (2) will be useful in the investigation of the
stability of a stationary current for Euler equation appearing in the hydro-
dynamics on a Riemannian manifold (see Arnol’d [1]).

The author wishes to express his deepest gratitude to the members of
the seminar on probability at Nagoya University.
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§1. Notations and Definitions

We shall list some notations and give definitions used in the later sec-
tions. .

Let G be a real connected Lie group and let ® be its Lie algebra over
real numbers R with the bracket [ , ]. Assume that G has a left-invariant
Riemannian metric ds? i.e. the pull-back Lids® of ds® by any left-translation
L,(g=G) is equal to ds?.. Then an inner product ¢ , > is naturally induced
in & from ds®. By means of this inner product, we define a bilinear

map B:
B: 6x03(X,Y)— B(X,V)e®
of the product space &x® into ® as follows:
(1) BXY),Z>=(Y,Z,X> for X, Y,ZsG.

Now let us consider the following differentisl equation for C!-curve
{X()e®; teR}):

@) £ x)|_ = BX(), X()

t=3

This equation is called the Euler equation on G (or on ®) associated with the
left-invariant Riemannian metric ds?.

Next let us consider the following differential equation in the #-
dimensional vector space R™:

o o] = sixe. xoere

Then we can think of the equation (3) as the expression of the infinitesimal
transformation on R®, A point X,eR" is said to be stationary if fF(X,) =O0.
A stationary point X, is said to be stable if X, satisfies the following con-
ditions: Let X(#) be the solution of

LX) _ = £X(s)

dt t=s

X(0) = X.
Then, for any & >0, there exists § >0 such that

IX(¢) — Xl <€ for any ¢=0 and any XeR" with [|[X— X| < 4,
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where
@y« « v, 2l = max {|a;]; ¢ =1,--,n}.

If a stationary point is not stable, it is said to be instable.

Remark. The uniqueness of the solution of the equation (2) is guaranteed
in our case. It should be noted that we are always given the solutoin
X(¢) for which (2) holds for all s.

§2. Euler equation on the projective special linear group PSL
(2. R) of second order

In this section we construct Euler equation on the Lie group PSL (2.R)
with some natural left-invariant Riemannian metric, and determine the
stability of its stationary points.

Let us list some notations.
The Lobachevsky-plane is denoted by (L,ds?) i.e.

da? 4+ dy?
——

L={(x,y)leeR, y >0}, dsi= ”

A tangent vector v at a point (z,y)L is expressex as follows:
_ . P 0
v = — hysing (Tx )(Nl) + 2y cosf ——

ay (.7::1!)’

where #=0 and —r<0<m.
The vector v, always means

= (.90
Yo ( oy /.’

We denote by g an isometry on L induced from the element g=PSL (2.R)
under the natural identification of PSL (2. R) with the isometries on L.
Under this identification, we define a diffeomorphism ¢ of the unitary
tangent bundle T,L (see [2] for definition) of L onto PSL (2.R) as follows:

(g4 vo) = g=PSL (2. R),

where g, denotes the differential of the isometry g on L. By means of the
following unique decomposition of elements of PSL(2.R), we parametrize
PSL(2.R)
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where

T

With these notions the following propositions can easily be proved.

PropositioN 2.1.  Making use of the parameters (x,vy,60) in T,\L and the
parameters (x,y,0) in PSL(2.R), the diffecomorphism @ of T.L onto PSL(2.R) is
expressed as jfollows :

0: T, L>(,y.0) ———)(my _g_)ePSL 2.R).

ProrosiTioN 2.2. The Riemannian metric ds} on T,L induced from dsi on
T.\L in the usual manner is expressed in the form

dsi =2 dat+ Ly dy*+ 2 dwdo + do
Y Y Y

ProrosiTioN 2.3. The Riemannian metric ds} on T,L induces by @' the
JSollowing Riemannian metric ds®* on PSL (2.R)

ds® = (@)*ds} = -2 do? + L dy? + -4 dwdd + 4den,
Y Y Y
ProPOsSITION 2.4, The above Riemannian meitric ds* on PSL (2.R) is lefi-
wnvariant :
Lids® = ds® for g=PSL (2.R).

(Proof) Let g, n be elements of PSL (2.R) with the unit element”e.
Then by the definition of @,

Gl = (9 h)yvo = @7 (g+ h) = O L,y ne
= Q'L DD Lye = O L Dh,v,,

that is,

oL, = 9,07,
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This implies
@;I(Lg)* = (04) 05" for g PSL (2. R).

Therefore, denoting by |/-|| the norn given by ds? and by ||’ the norm
given by ds}, the following equalities hold for any tangent vector v of
PSL (2.R) and any element g=PSL (2.R):

I(Lo)soll = 105} (Lo)svll” = 1(ga)s@5 0]l = |05 0]" = loll,

which complete the proof. Q.E.D.

The Lie algebra of PSL(2.R), as is well known, coincides with 3{(2. R).
We now introduce the following left-invariant vector fields X, X;, X, given
by

X = (55), Xe=2(31), x.=(F).

Then we can easily prove the following

ProposiTioN 2.5.  The commutation-relations for X, X,, X, are expressed in

thr form

[Xn X2] = - 2X19

[Xe, X5] = — 2X, + 4X,,

[X;, X)) = X,.
By the definition of the inner product and with the choice of these X!s we are given
the following formula

Xy + & Xp + X5 1 X, + 7. X, + 7. XD
= 26,1, + 4€5m, + 4€ams + 26175 + 2697y,

where &,, &, &, 14 s, 0; arve all real numbers.
By virtue of the propositions above, we obtain

THEOREM 1. The Euler equation (2) on 3L(2.R) associated with the left-
invariant Riemannian metric ds? is expressed as follows:
éx(t) = 4&,(2) (§:1(2) + 2&4(2))
éz(t) = — () (6:(2) + 265(2))
Es(t) = — 26,(1) (6,(2) + 2&5(2)),

where
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X(t) = &(0)X; + &) X, + &5(8) X
The stationary points X of this Euler equation are expressed in the form

X =§X; (&:€R),

or
X=—=26X + 6X, +6&X;  (§,6:ER).
Further, the stationary points X = &,X; are stable, while the stationary points
X=—26X +&X, + &X; (82 + &1 +0) are instable.
(Proof) Let X,X’ be elements of 3j (2.R):
X=86X +&X + 6X
X' =8{X, + &X; + €35 X,.
Then by Proposition 2.5,
[X, X'] = 2(6:81 — £.67 + 26,85 — 26:69) X,
+ (&8 — §160) X, + 2(6:67 — £260) Xa.
Hence we have by Proposition 2.5,
(X, X1, XD = 4§, + 26,) 57 — 46, + 265)6.67.
Set
B(X, X) = 0. X, + 7. X; + 12X,
then we have
<B(X, X), X"> = 21y + 79)&1 + 49€7 + 207, + 27)&5.
By the definition of the map B we have
BX,X), X" =<I[X,X],X>.
Hence
7y = 46,(€, + 2&)
7 = — §1(§1 + 264)
73 = — 28,(§; + 263).

Consequently, we obtain the following expression:

https://doi.org/10.1017/50027763000013866 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013866

74 YOSHIHEI HASEGAWA

él(t) = 452(” (51(” + 2§3<t))
&5(2) = — &,(2) (&) + 2&4(2))
&a(t) = — 2&,(2) (£1(2) + 264(2)),

where
X(t) = &1(1) X, + &)X, + §5(8) Xs.
Now let us introduce a new variable ¢ by

§=51+2$3.

Then the Euler equation turns out to be

é1(t) = 452(t)§(t)
(*) éz(t) = - E‘(t)é‘(t)
&t =o.
This implies
&,(8) = £,(0) cos28(0)¢ + 2£,(0) sin2£(0)¢

£,(t) = — éé_o)- sin28(0)# + £,(0) cos2£(0)¢
&(t) = £(0).

Hence
{(6.=0,6, =0, = w); weRYU{(&, = u, &, = v,§ =0); u®+ v2+0, u,vER}

is the set of all the stationary points of the equation (), and further it is
easily seen that the stationary point (§, =0, &, =0, ¢ = w) is stable for the
equation (x), while the stationary point (&, = u, & = v,§ =0) (u*+ v25%0) is
inatsble for the equation ().

The following linear map of 3-dimensional vector space R® into itself is

regular,

Ri3(&y, &y &) —> 61y &ay 61+ 265)E RS

Summing up the above results, we obtain the conclusions. (Q.E.D.)
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§3. The left-invariant vector fields which induce C-flows on a
connected real Lie group

Let G be a connected real Lie group with a left-invariant Riemannian
metric. We give a sufficient condition for a left-invariant vector field on G
to induce a C-flow on it in our sense (Theorem 2). We prove that if, in
particular, the Lie group ® is semi-simple, then its Lie algebra ® is iso-
morphic to 8! (2. R) (Theorem 4).

We begin with the definitions of C-flows in our sense.

DerintTiOoN.  Let {¢,; t€R} be a one-parameter group of C?-diffeomor-
phisms of n-dimensional oriented, connected C=-manifold M with a Rieman-
nian metric ds?,

If the following conditions are satisfied, ¢, is called a C-flow:

1) The infinitesimal transformation X of ¢, vanishes nowhere, and the
divergence of X vanishes everywhere.
2) The tangent vector space TM, at <M splits into a direct sum:
TM, = A,®B.®C.,
where A, and B, are vector subspaces with dim 4, = k=1, dim B, = I=1,
and where C, is the 1-dimentional subspace spanned by X,.
3) For any veA,
l(pe)wvll = ae**|lvll, t =0,
(sl < betlvll, ¢ =0;
and for any veB,
(@) 50|l =< be~*¢||vl], £ =0,
(@)l = ae™**loll, £ <0,
where |- || denotes the norm ‘given by ds? and where @,b,2 are positive
constants.

We denote by Ad and ad the adjoint representation of a Lie group
and the adjoint representation of its Lie algebra respectively.

THEOREM 2. Let G be a n-dimensional oriented connected real Lie group with
the unti element e, and let & be its Lie algebra. Assume that & contains an element
X satisfying the following conditions : ’

The term “C-flow” is usually used only in the case where the manifold is compact.
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1) ad(X) is diagonal on the complexification &° of &.
2) The multiplicity of the eigenvalue O is exactly equal to 1.

3) The rest of the eigenvalues of ad(X) is divided into two parts, call them
iy * o 2y A3 Bas * * * 5ty I SUch a way that

Reli>0,i=1,"‘,k,
Rep,<0,i=1,+++,1,
where k=1, |=1 and k+ 1+ 1=mn.

4) Trad(X)=0.
Then the one-parameter group of the diffeomorphisms Expt X of G is a C-flow with
respect to any left-invariant Riemannian metric ds® on G.

(Proof ) 1°. By the assumption 3) we can express {4;} in the form
Ay = ai+1/'—lﬁz'! i=1¢,p, p=0

Zt-l-p:ai_]/_]-ﬁi, a; >0, ;>0
>0, i=2p+1,+ ¢,k

Since ad(X) is diagonal on ®&°, there exist Z,(=0) in ® such that
@ad(X)Z;, = — 4 Z;i =2p+ 1, « + ,k,
that is,
exp(—tad(X))Z,=ex*Z, i =2p+1,- - ,lc
Similarly there exist X;(# 05, Y (#0) in ® such that
ad(X) (X +/=1Y) = — (@ +V—=18) (X; +/—=1Y) i=1,---,p.
Therefore we have
exp (— ¢ ad(X)) (X; +/— 1Y) = e«H=1000(X,+/—17,),

which implies

exp (— t ad(X))X, = e=*(cosf;t X; — sinf;tY,)

exp (— t ad(X))Y, = e**(cosp;tY; + sin ;¢ X;).

On the other hand, since B;+0,X; and Y, are R-lineraly independent.
Hence the collection {X;, Y;, Z;} spans a k-dimensional subspace A of ®.
Now for any combination of real numbers
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{x'h Yis i=1,-- ‘;P}U{Zi; i:2p+1’ ° '9k}9
we define Ye® by
k

P
2.X; + _21 v.Y,+ 2 zZ,.

i=2p+1

Y =

e

1

Then we have
exp (— ¢ ad(X))Y = é esctpy(cos(Bit + 00X, + sin (Bt + 0,)Y3)
k
+ O zetZ,
i=2p+1

where p;, 6, (i =1,- - +,p) are determined by the following formulas,
x; = p; cosby, Y; = p;cosby, p; =0, 06, < 2n.

For a moment, we introduce an inner product in A so that {X, Y;, Z;}
forms a complete orthonormal system in A, and denote by | +||’ the norm
given by this inner product. Further we define I(¢) by

I(t)? = |lexp (— ¢ ad (X))Y||"%
Then it holds that

M'e

1) =

] k
ez"i”pf—I-. ST etz?,
i=1 i=2p+1

Hence we have

I(t)2=e>t1(0)?, t=0,
(1)< e>t1(0), t=<0,

where
y = min{Reli; i = 1, ° . ‘,k}.

It is easily seen that there exist positive numbers g, b, for which the fol-
lowing inequalities hold:

llexp (— ¢t ad(X)Y|| =ae* |V, ¢ =0,
llexp (— ¢ ad(X)Y]| < be’?||Y]], t =<0, for any YE A4,

where || -|| denotes the original norm.
Denoting by B the I-dimensional subspace of ® corresponding to the eigen-
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values g, + - +,p;, we can, in a similar manner, find numbers a,, b, such
that
llexp (— ¢ ad(X))Y|| < be™*¢(|Y1l, t =0,
lexp (—¢ ad(X))Y|| = a,e~*¢||Y]], ¢ =0, for any YeB,
where
—pg=max{Rep;; i =1,+++,1}.

Consequently there exist positive numbers @, b such that the following two
pairs of inequalities hold simultaneously:

llexp (— ¢ ad(X))Y|| = ae*|IY]l, t=0,
llexp (—¢ ad(X))Y |l < be*t|Y|l, t=<0, for any Ye A,

and
llexp (—¢ ad(X))Y|| < be~**||Y]|, t=0,
llexp (— ¢ ad (X))Y|| = ae™**||Y]l, t <0, for any YeB,

where

2= min {y, g}.

2°. We are given by ds? the inner product <, >, and norm | -]/, (or simply
<, II-1) in the tangent vector space TG, at k€G. Let Y be an element
of A, and let # be an element of G. Then, by the left-invariance of ds?,
we obtain the following formulas:
N(Exp ¢ X)Yall = WLi)a(Rexp ex)aY nll = [[(Rexp rx)aYell
= [[(Lexp-1x0)4(Rexp tx)xYell = [| Adexp-enY |l
= |lexp (— ¢ ad(X))YIl.

Hence we have
I(Exp tX)Yoll = aet||Y]| = ae*®||Y.ll, ¢=0
1(Exp £ X). Yol < be?||Y]| = be*t|[Yall, <0 for any YeA.

For any element kG, we can also prove the following formulas:

(Exp tX).Y,ll < be *t|Yall, t=20,
I(Exp tX)Ysll = ae*t||Y,ll, t<0 for any YeB.
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3% For a vector field Z on G we define a one-form w, on G as follows:
wz(+) =<, 2D,
Let {W,,---,W,} be the orthonormal basis in &, Then
2=ow, A+ ANow,

is a volume element on G.
Now let g, 2 be elements of G, and let v be an element of TG,. Then
we have

Loy )n(©) = (0w )g-n(Lgww) = (W )geny Lgvd
= (LGFW )gens 02 = (W, 0> = (0w (0),
that is,
Liow, = ow,.
Hence, for any element Y€® it holds that
(Exp tX)*aw,) (¥) = (LsprnyRexp exow) (¥)
= (W, Adexp-1nY> = (W;, exp (— ¢ ad(X))Y).

Hence we have

(Lxa) (¥) = lim (EXP X 0w, — ow,_(y)

-0

exp(—t ad(X)) —1
. ~

= — <W,;, ad(X)Y) = - <B(Wiy X)9 v,

=W, lim >

where Ly is the Lie derivative with respect to X. Namely, we have proved

LXQ‘W¢ = — OBWw; X)

Let {Cis; 4,4, k=1,--+,n} be the structure-constants of G with respect to
the basis {W,, +--,W,}. Then

BW,X) = .f_]lajC}ka,
Jk=
where

X= i O(jo.
J=1
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By the expression of 2 we see that
— Ly = 0w, 0N+ Now, + <+ + oy, A+ ANosw,, »

= (3 a,C4)2 = (Tr ad(X))Q.

i, 5=1
Hence by the assumption 4) we obtain
divX = 0.
Thus the proof is completed. (G.E.D.)

TueorREM 3. The left-invariant vector field X on PSL (2.R) which induces a
C-flow for left-invariant Riemannian metric on PSL (2. R) is expressed in the form

X=8X + &X, + &X,, &3 — 81— 8,6 >0,
where Xy, X3, X; are lefi-invariant vector fields defined in § 2.
(Proof) Let X be an element of the Lie algebra of PSL (2.R);
X=X+ &X + 6K

Then
252 - 251 - 4‘53 452
ad(X) = fs 0 - 51
0 2§, — 26,

Hence the characteristic equation is expressed in the form
det (ad(X) — JE) = — * — 4(6:&, — €1 + €2 =0,

where E is the unit matrix. Hence, for X to satisty the conditions 1), 2),
3) of Theorem 2,

Eg—$§—5153 >0

is necessary and sufficient.

It is noted that, since PSL(2.R) is a simple Lie group, the condition
4) holds for any left-invariant vector field on PSL (2. R). Thus the theorem
is proved. (Q.E.D.)

CoroLLARY 3.1. Each instable stationary point described in Theorem 1 induces
a C-flow on PSL (2.R) for any left-invariant Riemannian metric.
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THEOREM 4. The semi-semple real Lie dlgebm ® which contains an element
satisfying the conditions 1), 2), 3), 4) of Theorem 2 is isomorphic to 3L (2. R).

(Proof ) The condition 1) implies that
rank & =1,

Hence the complexification &° of ® is a simple Lie algebra with rank 1.
Appealing to Cartan’s classification of simple -Lie algebras over complex
numbers C, we see that ®° is isomorphic to 8[(2.C). Hence ® is a 3-
dimensional simple Lie algebra, and therefore & is isomorphic to 8{ (2. R) or
30 (3.R). On the other hand, the fact that the group is non-compact shows
that ® can not be isomorphic to 8o (3.R). Therefore, from Theorem 3, &
must be isomorphic to 8! (2.R). (Q.E.D.)

§4. Further discussions on the C-flows on the unitary tangent
bundle 7',L of the Lobachevsky-plane L.

In this section we discuss what movement is given on T7,L by the C-
flow described in Theorem 3.

Let us denote by {¢,; ¢t R} the geodesic flow on the Lobachevsky-plane
L. Then we have

ProrosiTioN 4.1, Let @ be the diffeomorphism of T.L onfo PSL(2.R)
described in §2. Then we have

D, Q! =Exp%X2,

where X, is the element of the Lie algebra 3L (2.R) given in §2.

(Proof) Recall the definition of v,, and define {g,€PSL (2.R); t€R} as
fqllows:

D(0,00) = ;.
Then, we have for ¢, s€R,

Grvs = P(Prasy) = D(@00,) = PP G5, Vo)

= D(0:,Pe00) = D95, 9:.V0) = s+ 92e
Hence there exists X3! (2. R) such that

g, = exp tX.
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For any element g=PSL (2.R), the relations
D¢, 07Hg) = D(Peguvy) = P(0ue,v0) = G+ Ge = Ry, (9)
prove that
¢-0,-07' =ExptX.
On the other hand, the following formulas are easily obtained:
2(pevo) = 0, y(9:00) = €', 9(p.v,) = 0,

where (x,y,60) is the local coordinate in 7,L. Hence by Proposition 2.1,

O(¢.vy) = g, = (0,€",0),

or equivalently,
(0N _ 1
%= (55), = 5 X
Consequently we obtain
0-9,-0' = Exp ~§_X2. (Q.E.D.)

Let us denote by T.(0<a < 2r) the diffeomorphism of T,L onto itself
given by
T.; T\L3(2,y,0) — (¢, 9,0 + a)€T,L,
and denote by H the upper half-plane. Then we obtain
THEOREM 5.
i)  Assume that
26+ 86,70, §f~ & — &6 >0.

Then Exp t@:'(6,X, + &X; + §:X,) ts a C-flow on T,L, but it cannot be a geodesic
Slow with respect to any Riemannian metric on H,

i) Assume that
2+ 6 =0, &+ &1 >0,

Then we have

EXP t@;l(&le + &2X2 + $3X3) = Ta Qo T—u’
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where

&, = psina, 26, = pcosa, p >0, 0= a < 2z,

(Proof) Let us now express X;, X,, X; in terms of the local coordinates
(x,9,0) in T\L;

- 0 s00p 0 4 o2 O
X, = ycos20 F + 2ysin20 37 + sin20 0
. 0 0 . 9
* = — —_— —_— _
) ! X, 2ysin20 — — + 2ycos2f 57 + sin20 —
_ 9
X3 - —67 .

By Proposition 2.1, 93'(&,X, + &X, + &X;) induces the following differential
equations on 7,L;

% = §ycosh — 2&,ysinf
¥ = &y sind + 2&,ycosd

6 = 2(8sin? Lt gsing + &),

which imply

i — ——29;?7 = — (26 + £)7
L 2 gt .
¥+ Yy = (265 + &),
These prove the case i).
We now assume
253 + El = 0.

Then follows

g —el— 6k =&+ & >0,
Let us introduce new parameters p, & as follows:

28, = pcosa, &, = psina, p >0, 0 a < 2r,

Then, by the formulas (+) we have
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O;HE X, + £,X, + &X,) = — pysin (0 — a) _a% + oycos (6 — «) %

+ psin(0—~a)—§o—.

On the other hand, by Proposition 4.1. the infinitesimal transformation of

¢, is expressed in the form

iy = L ogoix = — ysing 92— 9 4 Gnp-9_
;1 X = 5 ;1 X, Ysinf o + ycosf oy + sin@ 56"

Therefore we have
D16 X, + 6:X, + &X3) = Torp03' X.
We exponentiate both sides to obtain
Exp t07' (6, X, + &:X, + £:X5) = Exp tT+00;' X
=T, -Exppt@0;' X - Tx!
=T+ ¢p+ Ty

which proves the case ii). (Q.E.D.)
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