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C-FLOWS ON A LIE GROUP FOR EULER EQUATIONS

YOSHIHEI HASEGAWA

§ 0. Introduction

The purpose of this paper is to determine left-invariant vector fields on
a Lie group G with a left-invariant Riemannian metric which induces C~
flows on G.

In his paper [1], V.I. ArnoPd has obtained a differential equation (Euler
equation) analogous to that of motion of a rigid body about a fixed point
under no forces. Let {gt; t^R] be a geodesic on a Lie group G with a
left-invariant Riemannian metric and let ® be its Lie algebra. Then

(1) Xt = %

satisfies the following differential equation (Euler equation),

(2) Xt

where B is a bilinear map of ©X© into © depending on the Riemannian
metric.

In particular, ArnoPd has paid attention to the geodesic expressed as
a one-parameter subgroup of G, which is analogous to a closed (periodic)
geodesic, to study the stability of the stationary points X {B{X, X) = 0) of
the equation (2) in @ rather than the stability of the corresponding geodesies
of one-parameter subgroups.

In connection with ergodic theory, we are interesed in the exact form
of the Euler equation with a particular choice of the Lie group. Namely,
we consider the Euler equation on the projective special linear group PSL
(2.R) of 2-nd order over R with the natural left-invariant Riemannian met-
ric, and determine its instable stationary points. Then we shall see that
each instable stationary point induces a C-flow on PSL {2.R) in our sense
(Cor. 3.1.).

Being inspired by the remarkable property above, we shall determine
left-invariant vector fields, each of which induces a C-flow on a Lie group.
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Our main results read as follows. We employ the usual notations such

as Ad and ad to denote the adjoint representation of a Lie group and the

adjoint representation of its Lie algebra.

THEOREM 2. Let G be an n-dimensional oriented, connected real Lie group

with the unit element e% and let % be its Lie algebra. Assume that © contains an

element X satisfying the following conditions:

1) ad{X) is diagonal on the complexiβcation &c of ©.

2) The multiplicity of the eigenvalue 0 is exactly equal to 1.

3) The rest of the eigenvalues of ad {X) is divided into two parts, call them

Λ> * ' m *h\ £*i' ' *J"ι»' m such a wcΰ> that

Reλi>0, i - 1, • ,fc,

Reμt<0, i = 1, • , /,

where fe;> 1, 1^.1 and k + / + 1 = n.

4) Tr ad(X) = 0.

Then the one-parameter group of the diffeomorphisms ExptX of G is a C-flow with

respect to any left-invariant Riemannian metric ds2 on G.

If we specify the Lie group to be semi-simple, we shall have the fol-

lowing

THEOREM 4. The semi-simple real Lie algebra ® is isomorphic to $1(2. Λ), if

<$ contains an element satisfying the conditions 1), 2), 3), 4) of Theorem 2.

Observing the above-mentioned situation, we are led to pay specific

attention to PSL (2. R) and to transform C-flows on PSL (2. R) formed as

above to the unitary tangent bundle TyL of the Lobachevsky-plane L. There

Λve shall see an interesting result :almost all C-flows thus transformed can not

be geodesic flows on the upper half-plane respect to any Riemannian metric

(Theorem 5).

Finally, the author hopes that our approach to the stability of a

stationary point of the equation (2) will be useful in the investigation of the

stability of a stationary current for Euler equation appearing in the hydro-

dynamics on a Riemannian manifold (see Arnol'd [1]).

The author wishes to express his deepest gratitude to the members of

the seminar on probability at Nagoya University.
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§ 1. Notations and Definitions

We shall list some notations and give definitions used in the later sec-

tions.

Let G be a real connected Lie group and let ® be its Lie algebra over

real numbers R with the bracket [ , ]. Assume that G has a left-invariant

Riemannian metric ds2 i.e. the pull-back L%ds2 of ds2 by any left-translation

Lg{g^G) is equal to ds2. Then an inner product < , > is naturally induced

in © from ds2. By means of this inner product, we define a bilinear

map B:

B: @x®9(IJ)—>B{X,Y)<=®

of the product space ©x@ into © as follows:

(1) <B(X,Y),Z> = <LY,Z],X> for X,Y

Now let us consider the following differentisl equation for CJ-curve

®; t(=R}:

(2) -jj- X(t) \M = B(X(s), X(s))

This equation is called the Euler equation on G (or on ©) associated with the

left-invariant Riemannian metric ds2.

Next let us consider the following differential equation in the w-

dimensional vector space Rn:

(3)
ί = s

= f(X(s)),

Then we can think of the equation (3) as the expression of the infinitesimal

transformation on Rn. A point X0(=Rn is said to be stationary if f(X0) = 0 .

A stationary point Xo is said to be stable if Xo satisfies the following con-

ditions: Let X(t) be the solution of

d X(t)
dt

X{0) = X.

= f(X(s))

Then, for any ε > 0, there exists δ > 0 such that

\\X(t)-X0\\<ε for any t>:0 and any X^Rn with \\X-XQ\\<δ9
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where

ll(»i ,sΛ)ll = max { lαj ; i = 1, f n}.

If a stationary point is not stable, it is said to be instable.

Remark. The uniqueness of the solution of the equation (2) is guaranteed

in our case. It should be noted that we are always given the solutoin

X(t) for which (2) holds for all s.

§2. Euler equation on the projective special linear group PSL
(2.R) of second order

In this section we construct Euler equation on the Lie group PSL (2. R)

with some natural left-invariant Riemannian metric, and determine the

stability of its stationary points.

Let us list some notations.

The Lobachevsky-plane is denoted by {L,ds\) i.e.

L={(x,y)\x<=R, y>0}, ds\ = dx*+ dy2

A tangent vector υ at a point (#,#)eL is expressex as follows:

υ = - hysinθ (-JL-)
\ OX S(x,y

+

where h;>0 and —π

The vector v0 always means

We denote by g an isometry on L induced from the element g^PSL{2.R)

under the natural identification of PSL (2. R) with the isometries on L.

Under this identification, we define a diffeomorphism Φ of the unitary

tangent bundle TλL (see [2] for definition) of L onto PSL(2.R) as follows:

where g* denotes the differential of the isometry g on L. By means of the

following unique decomposition of elements of PSL{2.R), we parametrize

PSL(2.R)
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/I x\ hlv 0\ / costf sin#\

\0 1/ \0 -hJ \-sin0 cos0/
\ / \ I \ I

where

>0, --~^θ<-?~.

With these notions the following propositions can easily be proved.

PROPOSITION 2.1. Making use of the parameters {x,y,θ) in TXL and the

parameters {x,y9θ) in PSL{2.R), the diffeomorphism Φ of TTL onto PSL{2.R) is

expressed as follows:

Φ\TX

PROPOSITION 2.2. The Riemannian metric ds\ on TλL induced from ds\ on

TXL in the usual manner is expressed in the form

° 1 2
—7Γ dy2 + — dxdθ + dd2.

PROPOSITION 2.3. The Riemannian metric ds\ on TXL induces by Φ"1 the

following Riemannian metric ds2 on PSL (2. R)

ds2 = {φ-ψds2

2 ^~dx2Λ-\dy2-{--^~ dxdθ + Adθ2.
y y y

PROPOSITION 2.4. The above Riemannian metric ds2 on PSL{2.R) is left-

invariant:

L^ds2 = ds2 for g^PSL(2.R).

(Proof) Let g, h be elements of PSL (2. R) with the unit element^.

Then by the definition of Φ,

Q*h*v0 = (flr h)*v0 = Φ~\g h) = Φ'xLgΛe

= φ-'LgΦΦ^Lhe = φ-iLgΦhM,

that is,

φ-*Lg =
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This implies

ΦZHQ* = (gJ*Φϊι for g<ΞPSL (2. R).

Therefore, denoting by . || || the norn given by ds* and by || ||' the norm

given by ds\, the following equalities hold for any tangent vector υ of

PSL{2.R) and any element g<=PSL{2.R):

\\(Lg)*v\\ = \\Φlι{Lg)*v\Y = \\{g^Φlιv\Y = \\Φiιυ\Y = \\υ\\,

which complete the proof. Q.E.D.

The Lie algebra of PSL{2.R), as is well known, coincides with $1(2.7?).

We now introduce the following left-invariant vector fields Xl9 X2f X3 given

by

(£) . = 2

Then we can easily prove the following

PROPOSITION 2.5. The commutation-relations for X19 X2, X3 are expressed in

thr form

[X$,Xi\ = Xi

By the definition of the inner product and with the choice of these X<s we are given

the following formula

where ξu ξ29 f8, ^ l t ^2, ?̂3 αr^ α// real numbers.

By virtue of the propositions above, we obtain

THEOREM 1. The Euler equation (2) on $1(2.7?) associated with the

invariant Riemannian metric dsz is expressed as follows:

+
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X{t) = Ut)Xχ +

The stationary points X of this Euler equation are expressed in the form

or

X=~ ξtXt (ξtf

Further, the stationary points X = £3X3 are stable, while the stationary points

X=- 2ξ3X1 + ξ2X2 + ξsX3 (ζl + SI ψ0) are instable.

{Proof) Let X,X' be elements of $\(2.R):

X' = ξίXt + ξiX, +

Then by Proposition 2.5,

{X,X'-\ = 2(f2f[ - ξ^ί + 2ξ&

+ {ξΛΊ - €i«)*«

Hence we have by Proposition 2.5,

<[X,X'],X} = 4(f» + 2f3) f,€ί

Set

then we have

<B(X.X),Xf> = 2(7, + 9,)ef +

By the definition of the map 5 we have

Hence

7l = 412(1! + 2*,)

It = - €i(fi + 2€ι)

V, = - 2|2(f: + 2£3).

Consequently, we obtain the following expression:
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where

Now let us introduce a new variable ξ* by

Then the Euler equation turns out to be

W

= 4ξ2(t)ζ(t)

This implies

ζ{t) =

Hence

0) sin2f(0)ί

I2(O) c

= w,ί2 = v,? = 0);

is the set of all the stationary points of the equation (*), and further it is

easily seen that the stationary point (ξ1 = 0, ξ2 = 0, ζ = w) is stable for the

equation (*), while the stationary point (ζ1 = u, ξ2 = v,ζ = 0) (u2 + v2 ψ 0) is

inatsble for the equation (*).

The following linear map of 3-dimensional vector space R3 into itself is

regular,

(Q.E.D.)Summing up the above results, we obtain the conclusions.
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§3. The left-invariant vector fields which induce C-flows on a

connected real Lie group

Let G be a connected real Lie group with a left-invariant Riemannian

metric. We give a sufficient condition for a left-invariant vector field on G

to induce a C-flow on it in our sense (Theorem 2). We prove that if, in

particular, the Lie group ® is semi-simple, then its Lie algebra © is iso-

morphic to 31 (2. R) (Theorem 4).

We begin with the definitions of C-flows in our sense.

DEFINITION. Let {φt; t^R} be a one-parameter group of C2-diffeomor-

phisms of n-dimensional oriented, connected C°°-manifold M with a Rieman-

nian metric ds2.

If the following conditions are satisfied, <pt is called a C-flow:

1) The infinitesimal transformation X of φt vanishes nowhere, and the

divergence of X vanishes everywhere.

2) The tangent vector space TMX at cceM splits into a direct sum:

TMX = AX®BX®CX,

where Ax and Bx are vector subspaces with dim A^ = fc^l,

and where Cx is the 1-dimentional subspace spanned by Xx.

3) For any

and for any

\, t

where || || denotes the norm given by ds2 and where a, b, λ are positive

constants.

We denote by Ad and ad the adjoint representation of a Lie group

and the adjoint representation of its Lie algebra respectively.

THEOREM 2. Let G be a n-dimensional oriented connected real Lie group with

the unti element e, and let @ be its Lie algebra. Assume that ® contains an element

X satisfying the following conditions :

The term C-flow" is usually used only in the case where the manifold is compact.
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1) ad{X) is diagonal on the complexification ®c of %.

2) The multiplicity of the eigenvalue 0 is exactly equal to 1.

3) The rest of the eigenvalues of ad(X) is divided into two parts, gall them

λu * m>h\ Pu * >J"z> in such a way that

> 0 , i = 1, ,&,

where k^.1, 1^.1 and k + / + 1 = n.

4) Trad(X) = Q.

Then the one-parameter group of the diffeomorphisms Expt X of G is a C-flow with

respect to any left-invariant Riemannian metric ds2 on G.

(Proof) 1°. By the assumption 3) we can express {̂ } in the form

Since ad(X) is

that is,

Similarly there

ad(X) (Xi •

Therefore we 1

exp

which implies

λi = α, + •-

diagonal on ®c,

ad(X)Zi = -λi.

exp ( - tad(X))Zi =

: exist X({φ 0), Yt(

f ,/- 1 Γt) = - (β<

aave

( - ί ad{X)) (Xt + /

Ti
there

Zoi-

- e>«2

>o>

+ •-

Z = : :

, « «

i, ••

>o, /

exist Zi(^

= 2ί?

"i *' =

i n @

1ft)

+ 1,

= 2p +

5 such

(Xi + i

3i > 0

fa0) in

1, •

that

@ such that

) * = 1, ,

V-i^),

exp ( - t ad(X))Xi = ^'(cosftf-X, - sinftίF,)

exp ( - t ad{X))Yz = ^^(cosftίF, + sinft/Z,).

On the other hand, since ft^O,^ and F^ are TMineraly independent.

Hence the collection {Xί9 Yi9 Zt] spans a ^-dimensional subspace A of @.

Now for any combination of real numbers
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we define Fe® by

φ φ k

Then we have

exp (- * ad(X))Y = Σ e'^Piicosfat + Θ^Xi + sin (ft t
i l

Σ
2+

where pu θι (i = 1, - ,p) are determined by the following formulas,

»< = Pi cosθi, Vi = pi costfί, Pi ^ 0, 0 :< ^ < 2π.

For a moment, we introduce an inner product in A so that {Xi9 Yi9 Zt}

forms a complete orthonormal system in A,m and denote by || ||' the norm

given by this inner product. Further we define l{t) by

/W2= llexp(-ί ad(X))Y\r.

Then it holds that

Σ ^ z ? .
2+l

Hence we have

where

y = min {7?^^; i = 1, ,fc}.

It is easily seen that there exist positive numbers al9 bx for which the fol-

lowing inequalities hold:

| |exp(-f

| |exρ(- ί β r f ^ y i l ^ M 'MÎ II, t^O, for any

where || || denotes the original norm.

Denoting by B the /-dimensional subspace of & corresponding to the eigen-
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values μu , μl9 we can, in a similar manner, find numbers a2, b2 such

that

||exp(-f

Hexp (-t ad(X))Y\\^a2e~f"\\Y\\, t^O, for any Y<=B,

where

— μ = max{ite/^; f = 1, •,/}.

Consequently there exist positive numbers α, b such that the following two

pairs of inequalities hold simultaneously:

||exp (- t ad(X))Y\\ ^ aeλt\\Y\\, t ^ 0,

||exp(-f ad{X))Y\\<bext\\Y\\, t^O, for any Y&A,

and

Hexp (-f βrf(X))Π| ^ be-»\\Y\\, t ^ 0,

| |exp(-/ ad(X))Y\\^ae-»\\Y\\9 t^09 for any F G 5 ,

where

λ = min{v,/ί}.

2°. We are given by ds2 the inner product < , >Λ and norm || |U (or simply

< , >, H H) in the tangent vector space TGh at h^G. Let Y be an element

of Ay and let h be an element of G. Then, by the left-invariance of ds2,

we obtain the following formulas:

\\(ΈxptX)*Yh\\ = \\(LlιURcχptχ)jrh\\ = \\(R*χptχ)+Ye\\

= | | exp(- ί

Hence we have

||(Exp tX)+Yh\\ ^ ae"\\Y\\ = ββ"||F f t | |, / ̂  0

= 6̂ *11̂ *11. ^ ^ 0 for any

For any element h&G, we can also prove the following formulas:

\\(ΈxptX)φYh\\>:ae-"\\Yh\\, t^0 for any YeB.
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3° For a vector field Z on G we define a one-form ωz on G as follows:

*>,(•) = <•,£>.

Let {T7l5 ,WΛ} be the orthonormal basis in ®, Then

Ω = ωWll\ Ao)Wn

is a volume element on G.

Now let g, h be elements of G, and let v be an element of TGh Then

we have

= <Lgl(Wi)g.h9 v> - <(17<)Λ,t;> - (ωWι)h(v),

that is,

L*ωWi = ό)w..

Hence, for any element F e © it holds that

((Exp tX)*ωw) (Y) = ( t t ^ ^ i f ί x p ^ ^ ) (Y)

= <T7<f i4rfe3rP(.tχ)y> = <Wi9 exp ( - ί α

Hence we have

= lim ( E x P
t

= <Wi9 lim- ~™

(Y)

where Lx is the Lie derivative with respect to X. Namely, we have proved

Let [C}k; i,j,k = 1, -,n} be the structure-constants of G with respect to

the basis {Wl9 -,Wn}. Then

B(Wi9X)= ^

where
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By the expression of Ω we see that

— LXΩ = ωB(WltX)/\ AωWn + - + ωWχ/\ AωB(Wn9X)

= ( Σ CCJC^Ω = (Tr ad(X))Ω.
t,y=i

Hence by the assumption 4) we obtain

divX=0.

Thus the proof is completed. (G.E.D.)

THEOREM 3. The left-invariant vector field X on PSL(2.R) which induces a

C'flow for left-invariant Riemannian metric on PSL (2. R) is expressed in the form

X = ξ.X, + ξ2X2 + ζsXs, ξ\ - Π - ξA > 0,

where Xί9 X2, Xz are left-invariant vector fields defined in § 2.

(Proof) Let X be an element of the Lie algebra of PSL (2. R)

Then

Hence the characteristic equation is expressed in the form

det (ad(X) - IB)' = - ^3 - 4($.€i - "I! + ^3)̂  = 0,

where ^ is the unit matrix. Hence, for X to satisty the conditions 1), 2),

3) of Theorem 2,

is necessary and sufficient.

It is noted that, since PSL(2.R) is a simple Lie group, the condition

4) holds for any left-invariant vector field on PSL{2.R). Thus the theorem

is proved. (Q.E.D.)

COROLLARY 3.1. Each instable stationary point described in Theorem 1 induces

a C-flow on PSL (2. R) for any left-invariant Riemannian metric.

https://doi.org/10.1017/S0027763000013866 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013866


81

THEOREM 4. The semi-semple real Lie algebra © which contains an element

satisfying the conditions 1), 2), 3), 4) of Theorem 2 is isofnorphic to 31(2.2?).

[Proof) The condition 1) implies that

rank © = 1.

Hence the complexification ©c of ® is a simple Lie algebra with rank 1.

Appealing to Cartan's classification of simple Lie algebras over complex

numbers C, we see that ©c is isomorphic to 3ί(2.C). Hence © is a 3-

dimensional simple Lie algebra, and therefore © is isomorphic to $ί (2. R) or

So (3.2?). On the other hand, the fact that the group is non-compact shows

that @ can not be isomorphic to 3o(3.2?). Therefore, from Theorem 3, ©

must be isomorphic to $1(2.2?). (Q.E.D.)

§4. Further discussions on the C-flows on the unitary tangent
bundle TXL of the Lobachevsky-plane L.

In this section we discuss what movement is given on TXL by the C-

flow described in Theorem 3.

Let us denote by {φt; t^R} the geodesic flow on the Lobachevsky-plane

L. Then we have

PROPOSITION 4.1. Let Φ be the diffeomorphism of TXL onto PSL(2.R)

described in § 2. Then we have

X29

where X2 is the element of the Lie algebra %l (2. R) given in § 2.

{Proof) Recall the definition of υ0, and define [gt<^PSL(2.R); t<=R] as

follows:

Then, we have for t,

Hence there exists X^$ί{2.R) such that

gt = exp tX.
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For any element g^PSL{2.R)9 the relations

φ . Ψ t . φ - i ( g ) « Φ{φtg^υt) = Φ{ΰ*9t*v0) = g gt- R9t(9)

prove that

Φ ψt Φ~ι = Exp ί X

On the other hand, the following formulas are easily obtained:

%(<Ptv0) = ϋ9y(φtvo) * <**> o(φtvo) « o,

where {%9y,θ) is the local coordinate in T-JL. Hence by Proposition 2.1,

or equivalently,

Consequently we obtain

φ.<pt.φ-* = Exp -L X2. (Q.E.D.)

Let us denote by Tα(0 ̂  a < 2π) the diffeomorphism of TXL onto itself

given by

Ta; T.L^ix.y.θ)—>(x9y9θ + a)

and denote by H the upper half-plane. Then we obtain

THEOREM 5.

i) Assume that

Then Exp tΦlι{ξ1X1 + ξ2X2 + W Q is a C-flow on TXL9 but it cannot be a geodesic

flow with respect to any Riemannian metric on H.

ii) Assume that

Then we have

Exp tΦz1 (ϊiXi + ξ2X2 + ξsX3) = Ta ψ9t T. β ,
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where

ξλ = psina, 2ξ2 — pcosa, p > 0, 0 ^ a < 2π.

(Proof) Let us now express Xlf X2, Xz in terms of the local coordinates

{x,yfϋ) in TXL\

(*) <

x = ycos2θ 4oX

%> = - 2ysi

4όy

2ycos2θ-^-- + sin2^

By Proposition 2.1, Φ H

equations on TjL;

i-Xi + 2̂̂ 2 + fβ-Xs) induces the following differential

which imply

θ = 2(f! sin2 - | - + f 2 sin^ +

= - (% + m

ίβ),

y

These prove the case i).

We now assume

Then follows

2?3 + f i = 0.

Let us introduce new parameters p, a as follows:

2?2 = i°cosα, ^ 1 = jθsino:, jO > 0, 0 ^ α <

Then, by the formulas (*) we have
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^(fi-Xi + ί2^2 + fs-Xi) — ~ PV sin (0 — α) —=— + ot/cos (0 — a)
ox

On the other hand, by Proposition 4.1. the infinitesimal transformation of

<pt is expressed in the form

Therefore we have

ΦϊiϊiXi + ξΆ + ί3X3) = Ta.pΦϊιX.

We exponentiate both sides to obtain

Exp tΦl1 (SiXi + ξ2X2 + ξ*X3) = Exp tTa*oΦzιX

which proves the case ii). (Q.E.D.)
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