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THE APPLICATION OF THE PRINCIPAL IDEAL THEOREM

TO p-GROUPS

KATSUYA MIYAKE

Introduction

Let p be a fixed prime integer, and G a finite p-group. For a subgroup

H of G, we denote the centralizer of H in G by CG(H). The commutator

subgroup of G is denoted by [G, G]. One of the main results of this

paper is

THEOREM 1. Let A be a normal abelian subgroup of G. Suppose that

(1) GIC0(A) is regular, and that (2) <g> A is regular for each geG. Then

the exponent of G divides the index [G: Af] [G, G]].

Because a p-group of class less than p is regular, we have the follow-

ing theorem as a corollary: Let

Kλ{G) = Gz3K2(G)i3 o J Γ n ( G ) D

and

Z0(G) = 1 aZ^G) c • c Z,.S(G) c

be the lower and the upper central series of G, respectively.

THEOREM 2. Lei A be a maximal one among normal abelian subgroups

of G which are contained in ZP_1(G) f] CG(KP(G)). Then the exponent of G

divides [G:Af] [G, G]].

If A is as in the theorem, then the center Z(G) = Z^G) of G is a sub-

group of A. Therefore, the index of the theorem certainly divides [G: Z(G)

Π [G, G]]. Hence Theorem 2 is a generalization of the result of Alperin and

Tzee-Nan Kuo [1], Furthermore, it is best possible since the exponent of

G coincides with the index [G: Af] [G, G]] if G is the irregular p-group

of Blackburn exhibited by Huppert [3, Ch. Ill, 10.15] with A = [G, G]. In

this case, [G: A] - p2 and [G: Z(G)] = pp. (See Ch. II, § 3 for the detail.)
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74 KATSUYA MIYAKE

To prove Theorem 1, we first calculate the transfer VG_A: G -> A of

G to A in Chapter I to see

VβΛx) = sfiw for v x e G

under the conditions (1) and (2) (Theorem 4). We need a uniqueness basis

of cosets of GI(x}'CG(A) for each xeG. But the proof of the existence

of such a basis will be shown later in Chapter III, just following the way

of P. Hall [2], mainly because it has its own meaning independent of the

rest of this paper.

Once we have the above formula, then we get, on one hand,

V G-AΓ\IG,G1\X) — X I O Γ Ύ χ t U

because

VG^AΠIG>G] = w-iin[<?,<?] ° VG-A

as is well known, and because A is abelian. On the other hand, we have

The Principal Ideal Theorem, therefore, implies Theorem 1 now at once

because it states that the transfer VG_ίGtG1 of G to its commutator sub-

group [G, G] is trivial. (See Zassenhaus [7, Ch. V, § 4] for a simple proof.

Also see Huppert [3, Ch. IV, 2.12 Bemerkung], the last sentence of which

is Ί n der Gruppentheorie hat der Satz bisher keine Verwendung gefunden'.)

In Chapter II, we give the applications of Terada's Principal Ideal

Theorem and of the results of the author in [5]. If G is regular, then

the method of [5] can directly be applicable to obtain the following: Let

G be a regular p-group, and A a normal abelian subgroup. Let μ1 >

μ2> '- be the type-invariants of G/A. If GjA is cyclic, then put μ2 = 0.

Put μ = μί and let v be an integer such that v > μ2.

THEOREM 3. The notation and the assumptions being as above, the

following (i) — (iii) hold:

( i ) β,+,(G)=>

( i i) ΰμ+AG)<z

(iii) [Ωμ+XG): [G, Al-ΩXAj] = [G: A]• [σ,(A) Π Z(G):

If G/A is cyclic, then [G, A] = [G, G]. Under the conditions of the

theorem, we have Ωμ+XG) 3 [G, G] in general. We close Chapter II posing
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PRINCIPAL IDIAL THZOREM 75

problems, one of which is whether the index [G: A] divides [Ωμ+V(G): [G, G]]

in general or not.

I. The transfers of /j-groups under the regularity conditions

1. Let p be a fixed prime integer, and G a finite p-group. Let A be

a normal abelian subgroup of G and VG_A be the transfer homomorphism

of G to A, The centralizer of A in G is denoted by CG(A), i.e.

CG(A) = {geG\ga = ag for vα e A} .

Then this contains A because A is abelian. Since A is a normal subgroup

of G, so is CG(A). We show

THEOREM 4. Suppose that (1) GjCG{A) is regular, and that (2) <g> A

is regular for each geG. Then we have

Vβ^A(x) = xίG:A1 for VjceG.

2. We need a few lemmas.

LEMMA 1. Let x be an element of G. Put H = (x} CG(A), f = [H: A]

and t = [G: H], Let {gu , gt} be a set of representatives of G/H. Then

we have

Proof For g, h and hf in G, we have

Agh = ΛgΛ' <=> Λ = Λ' mod

because A is a normal subgroup of G. Therefore each orbit of H in A\G

has exactly / cosets. Furthermore, for g and gf in G, we have Ag' = A^/ι

with heH if and only if gr = g/^ with h'eH because i ϊ contains A.

Hence the £•/ elements gi-hj9 £ = 1, , ί, 7 = 1, •,/, form a set of

representatives of A\G (= G/A) whenever {hu , Λ/} represents the cosets

of HI A. Put d = [<x> A: A] and e = [H: (x}- A]. Then f = de. Note

that c£ is the minimal positive integer such that xd belongs to A. Then

we can choose {hu , hf} of form

with /ij e i/ because A is a normal subgroup of G. Using the set of repre-

sentatives {gi'h'j'X* 11 < i < t, l<j<e, 0 < k < d - 1} of A\G, we have
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76 KATSUYA MIYAKE

vβ-Λ*) = iί Π A Λ X- Λ -' A-1.

(See Zassenhaus [7, Ch. p. 168], or Huppert [3, Ch. IV, 1.7].) But it is obvi-

ous that H = <x> CG(A) lies in CG«x> Π A). Since xrf e <x> Π A, we have

hf

rx
d'h'fι = xd for = 1, . -,e. Hence we get VG^A(x) = Πi-i& ^ ' gΓ1

because de = f, Q.E.D.

LEMMA 2. For g and a in G, we have

(g.a)n = gn.(g-wag*-1 g-(n~2)agn~2 -g-'ag-a) .

One can easily see this by induction on n.

LEMMA 3. Let g be an element of G, and a of A. Suppose that (g, a}

is regular, and that gm commutes with a for a power m of p. Then we

have

m - l

Π g'-a-g'* = or .
t = 0

Proof. By the assumption, (g, a) is regular. Therefore [g, a]m = 1

by P. Hall [2, Th. 4.22] or by Huppert [3, Ch. Ill, 10.6 b)] since gm com-

mutes with α. As is well known, the commutator subgroup of (g, α) is

generated by [g, a] = g~xa~ϊga and its conjugates in (g, a}. Therefore

the exponent of the commutator group divides m. Then we have {g~ι-dyϊl

— g~m>am since (g, α) is regular. The lemma now follows from the

preceding one at once.

3. Proof of Theorem 4. Now suppose that G and A satisfy the con-

ditions (1) and (2) of Theorem 4. Let x be an element of G, and put

H = (x) - CG{A) as above. We need the results of Chapter III, which will

be shown independently from Chapters I and II. Since G/CG(A) is regular,

we can find, by Theorem 8 of Chapter III, a sequence of elements, &,•••, gτ>

of G which satisfy the following condition: For each i(l < i < r), let μt

be the minimal positive integer such that gξ* belongs to H. Then t =

μr μ2 - μτ = [G: H], and the set of t elements,

g?1 -gT2'"gTτ; 0 < m, < μu 0 < m2 < μ29 , 0 < mτ < μx ,

is a complete set of representatives of GjH.

Put / = [H: A], Then by Lemma 1, we have

Va-.Λ(x) = "R1 ' * Ί ϊ "R1 g™τ' -g22gΐx xf gϊmχg;m* £Γm r

TO,Γ = 0 7712 = 0 TΠl — O
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Each gζ* belongs to H = {x} CG(A), and commutes with every element

of <x> Π A. Since xf belongs to (x) Π A, each (gi9 xf} is regular by the

condition (2) of Theorem 4. Therefore, we can apply Lemma 3 succes-

sively, and finally obtain

VG_A(X) = Λ/ /V/V AT = χf t ^

Since f t = [H:A]-[G:H] = [G: A], we have

VaΛx) = xίG:A1

for an arbitrary element x of G. Q.E.D.

We have actually shown, under the condition (1), that VG^A(x) is

equal to xίG:Λ:[ as far as (g, xf) is regular for each g e G, where / =

[(x}-CG(A): A], Therefore we have the following three corollaries be-

cause a p-group of class less than p is regular:

COROLLARY 1. Suppose that the condition (1) of the theorem is satisfied

by G and A. If xf belongs to ZP_1(G), then we have

where f = [(x}-CG(A): A] and ZV_1(G) is the member of the upper central

series ZQ(G) = l c Z,(G) c Z2(G) c of G.

COROLLARY 2. Let G be a finite p-group, and A a normal abelian sub-

group of G. Suppose that G/CG(A) is regular and that A lies in ZP_X{G).

Then, for every x e G, we have

COROLLARY 3. Let G be a finite p-group, and A a normal abelian

subgroup of G. If A is contained in ZV_X{G) Π CG(KP(G)), then, for every

x e G, we have

Here KV(G) is the member of the lower central series KX(G) = G D K2(G) Z)

KZ{G) 3 . . . of G.

COROLLARY 4. Let G be a finite p-group, and H a proper normal sub-

group of G. If the exponent of GI[H, H] is equal to p, then the transfer

VG_H is trivial, that is, VG_H(G) = [H, H].
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Proof. Replacing G and H by G/[H, H] and H/[H, H], we may assume

that H is abelian, and that the exponent of G is equal to p. Then G is

regular. Therefore, we have

for each xe G because H is a proper subgroup of G. Q.E.D.

COROLLARY 5. Let G and A be as in Theorem 4, satisfying the con-

ditions (1) and (2). Then the exponent of the commutator subgroup [G, G]

of G divides the index [G: A].

Proof. For every xe[G, G], we have

because VG_A is a homomorphism of G to the abelian group A. The

corollary is, therefore, clear.y

EXAMPLE. Let G be the group defined by

G = <*, α>

x* = α^2 - 1 , [α, #] = α* .

We have [G, G] = Z(G) = <α*> The exponent of [G, G] is /?. If p > 3,

then G is regular. Therefore, we can apply Corollary 5 to G and A = <α>,

and see that the exponent of [G, G] actually coincides with [G:A] in this

case. If p = 2, we cannot apply the corollary to G and A as it is. But,

since [G, G] = Z(G), we can also conclude that the exponent of [G, G]

divides [G: A] if we use Corollary 1.

II. The exponents of finite / -groups

1. The Principal Ideal Theorem. Let us state the most general

form of the Principal Ideal Theorem (of group theoretic version).

Let G be a finite group, and p be an endomorphism of G. We define

two subgroups of G by p as follows:

THEOREM. Ker {VG_βίpl) ~D G*[p] .

For the proof, see Terada [6, § 3] and Miyake [4, § 4]. If p is the

identity of G (or any inner automorphism), then we have G[p] = [G, G]
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and G*[p] = G. Therefore, the theorem is just the original Principal Ideal

Theorem in this case.

2. We prove the following theorem, from which Theorem 1 of Intro-

duction is induced as a special case:

THEOREM 5. Let G be a finite p-group, p be an endomorphίsm of G,

and, G[p] and G*[p] be as above. Let A be a normal abelian subgroup of

G which satisfies that (1) G/CG(A) is regular and that (2) {g} A is regular

for each g e G. (For example, a subgroup A of ZV_X(G) Π CG(KP(G)) satisfies

(1) and (2).) Then the exponent of G*[ρ] divides the index [G: Af] G[ρ]].

Proof. Put d = [G: A] and e = [A: A Π G[p]]. It is sufficient to show

that xde = 1 for VχeG*[p]. By Theorem 4, we have xd = VG^A(x). Since

A is abelian, we also have V^ΠGDOO**) = ( s d p : i l n σ M = xde. Therefore,

xde = VΛ_AC]Gίp,(VG^A(x)) = Va_AnoiPl(x), by Zassenhaus [7, Ch. V, Th. 3] or

by Huppert [3, Ch. IV, 1.6]. But VG_AnGίPl(x) = Vβίp^ΛnβίPl(Vσ^βίPl(x)).

Therefore, we have xde = 1 if xe G*[p] by the theorem of Section 1 above.

Q.E.D.

COROLLARY 1. Let G, p, G[p] and G*[p] be as in the theorem. Then

the exponent of G*[p] divides [G: Z(G) ΓΊ G[p]].

For the proof, apply the theorem to A = Z(G).

If p is the identity of G, then G*[p] = G. Therefore, we have the

corollary to Theorem 1 of Alperin and Tzee-Nan Kuo [1] in this case.

COROLLARY 2. Let G, p, G[p] and G*[p] be as in the theorem. Suppose

that G[p] is abelian (hence G is metabelίaή), and that <g> G[p] is regular

for every geG. Put pa{p) = [G: G[p]] and

Ωa(p)(G) = <geG\g»a(p) = 1).

Then Ωa{p)(G) contains G*[ρ], and the index [Ωa(p)(G): [G, G]] is a multiple

of [G: G[p]].

Proof. Put A = G[ρ\. Since G\A is abelian, and so, regular, we can

apply Theorem 5. Then we have G*[p] c Ωa(p)(G) by the definitions. It is,

therefore, sufficient to show [G*[p\: [G, G]] = [G: G[p]]. Put M = G/[G, G].

Then p induces an endomorphism of M, which we also denote by p for

simplicity. Define ψ: M -+ M by ψ(x) = p(x)-x~1 for xeM. Then this is

a homomorphism because M is abelian. Therefore, we have
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\M\ = [G: [G, G]] = |Ker

But |Ker (ψ)| = [G*[p]: [G, G]] and |Im (ψ)| = [G^]: [G, G]]. Hence we have

[G*[p]: [G, G]] = [G: [G, C?]].[GW: [G, G]]"1

- [G:G[p]] . Q.E.D.

3. EXAMPLE. Blackburn's irregular p-group (cf. Huppert [3, Ch. Ill,

10.15]).

Let G be the p-group defined by

G = (x,alfa2, -,ap^)
γP ΠV Λ P 2

 ΠV . . . ΠV 1

β< flj = « r α < (hi = 1, , P - 1) ,

[α,, x] = α i + J (i = 1, ,p - 2) ,

K-i, x] = αrp .

This is an irregular p-group of class p. We have |G| = pp + \

[G, G] = Zp.^G) = <αf, α,, •• .,α p . t >

and

Z(G) = ^ ( G ) = <αf> .

Therefore Z^G) Π CG(KP(G)) = Zp_λ(G) = [G, G].

Take A = [G, G]. Then the exponent of G is equal to

p* = [G:A] = [G:AΓ)[G,G]].

Therefore, this example shows that Theorems 1, 2 and 5 are best possible.

Note that

if p > 3.

Let p be the automorphism of G determined by

p(x) = x-ax , and (̂α )̂ = at (i = 1, ,p — 1) .

Then

GW = G*[p] = <α,, α2, .••,α p . 1>.

In this case, therefore, the exponent of G*[|θ] coincides with the index

[G: A Π G[rf] - p 2 if we take A = [G, G].
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4. The application of Hubert's Theorem 94 and its generalization
The group theoretic proof of Hubert's Theorem 94 and its generaliza-

tion shown in [5] are also applicable by means of Theorem 4 of Chapter I.

LEMMA 4. Let G be a finite group, A be a normal abelίan subgroup

of G and Φ: G -» A be a homomorphism. Let ψ and ψ be endomorphisms

of A such that ψ o ψ = ψ ° ψ. Suppose that the following (i) and (ii) are

satisfied:

(i)

(ii)
Then [Φ-'(1): φ-\l) ^A)] = [G: A]-[φ(A) Π ψ-'(l): Φ(G)].

Proof. Put q = [φ-'(l): ^-'(l) ψ(A)]/[G: A] [Ψ(A) f] ψ-'(l): Φ(G)]. We
show <? = 1. Multiplying both of the numerator and the denominator of
q by \Φ(G)\ = [Giφ-'φ], we have

a =
[G:A] | ί.(A)nψ-I(l)| |̂ (A) Π

[A:ψ(A)]

\ψ(A) Π

Since we have ^o ψ = ψ o ^ the last quotient is equal to 1 by Herbrand's
lemma. For the detail, see the latter half of the proof of Lemma 5 of
[5, § 3].

THEOREM 6. Let G be a finite p-group, and A a normal abelian sub-

group of G, which satisfy the conditions (1) and (2) of Theorem 4. Let a

and β be the integers such thatpa is the exponent of G/A andpa+β = [G: A].

Then the following (i) — (iii) hold:

( i ) Ωa+β(G)ii[G9A\ Ωβ(A);

(ii) ϋa+β(G)aϋβ(A)f)Z(G);

(iii) [Ωa+β(G): [G, A] Ω£A)] = [G: A] [ϋβ(A) f] Z(G): ϋa+β(G)].

Here Ωr(G) = (geG\g^r = 1>, ϋr(G) = (gpr\geG) etc.
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Proof. Let π:G^ G be the mapping defined by π(g) — gp for geG-

Put Φ = π

a+β and 9 = πβ<\A. By the assumption, we have Φ = V^^, which

is a homomorphism of G to the abelian group A. Therefore Ωa+β(G) =

Ker(Φ) = Φ"1(1), and

It is obvious that Ωa+β(G) contains the commutators in [G, A], and Ωβ(A).

Hence we have (i). Since π"(G) lies in A, by the choice of a, we have

We also have

= VG_,A(G)aZ{G)

because A is a normal abelian subgroup of G (cf. [5, § 3, Corollary to

Proposition 3]). Thus we get (ii), too. Let μl9 μ29 •• ,/v be the type-

invariants of the regular p-group G/CG(A), which are arranged in the order,

μι > μ<L > ' > μω (cf. P. Hall [2]). Put pr = exp (CG(A)/A)9 the exponent

of CG(A)IA. Then we have

μi < oc < μλ + ϊ

since pμi = exp (GjCG{A)). Therefore

a + μ2+ + μω < ϊ + μ1 + μ2 + ' ' ' + μω < a + β

because we have

pr+μt+'-'+μ* < [G: A] = p α + δ .

Thus we get

μ2+ -+ μω< β .

Take a canonical basis gί9 , gω of the regular group G/CG(A) so that

Pμt = [<gt>'Ca(A):CG(A)]

for i = 1, 2, ,ω. If / > 2, then g f belongs to CG(A), and <^>-Ais

regular by the condition (2). Therefore we have

*'([&, A]) = ••• =*>([&, A]) = {1}

by P. Hall [2, Theorem 4.22] or by Huppert [3, Ch. Ill, 10.6 b)]. For g

and h in G, and for α e A,

[g Λ, α] = [g, a] [[g, α], A] [h, a]
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because A is abelian and normal in G. Therefore

Since [gu A] lies in Ωβ(A) if ί > 2, we have

(*) [G,A].Ωβ(A) = [guA].

Furthermore

[gt,apβ] = [g»a\pβ

for each a e A if £ > 2. Hence we get

Now, let ψ be the endomorphism of A defined by

Ψ(α) == [gi, a] for a e A .

Then ψ(A) = [gl9 A] and ψ-'CO = C^(^). Therefore, especially,

(**) σβ(A) n ψ-'ft) - σ,(A) n

It is obvious that φoψ = ψ o ^ where 9?.= πβ\A. By (*) and (**) with (i)

and (ii), which have been proved, we can apply Lemma 4 to Φ = πa+β

9

ψ and ψ, and obtain (iii) at once. The proof is completed.

5. The proof of Theorem 3. When G is regular, we can use

Lemma 4 directly (without using transfers) to get a better result, Theorem

3. Let gl9g29 be the canonical basis of G/A such that pH = [(gt) A: A].

The commutator subgroup [G, G] of G is generated by [gu a] with a e Ay

ίδu gj\ (i < j)> a n d t h e i r conjugates. Since gf and gf (j > 2) belong to

the abelian group A, they commute with each other and with each ae A.

Therefore, the orders of [gi9 a] and [gi9gj] divide pμ+\ Hence the ex-

ponent of [G, G] is less than or equal to pμ+\ Then, by the definition

of regularity, we have

πμ+v{g-h) = π«+v(g)-πt<+v(h)

for g and h in G. This shows that πμ+v is a homomorphism. Since pμ = pμί

is the exponent of G/A, the image of πμ+v lies in A. Put Φ = ττ^+v: G -> A,

φ = ^ | 4 and ψ(α) = [^, α] for a e A. Then a similar argument to the one

in the proof of the preceding section will complete the proof of Theorem 3.

The rest of the proof is, therefore, omitted.
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6. The comments and the problems. As one of the simplest cases

of Theorem 6, we have

THEOREM 7. Let G be a finite metabelian regular p-group, and A be

a normal abelian subgroup of G such that GjA is cyclic. Put pμ = [G: A],

Then we have

[Ωμ(G): [G, G]] = [G: A]. [A n Z(G): ϋμ(G)] .

Proof. In this case, we have [G, A] = [G, G]. If v = 0, then ΩV(A) =

{1}, and ϋv(A) = A. Therefore, (iii) of Theorem 3 is just this formula of

the theorem. Q.E.D.

We can not dispense with the condition that G is regular. In fact:

Let G be the group of Example of Section 3, and take A — (al9 α2, , αp_i>.

Then [G: A] = p and μ = 1. Since Ω,(G) coincides with [G, G] = <αf, α2,

* •> βp-i)> the index p = [G: A] cannot divide [Ω^G): [G, G]].

As far as G is regular, the group Ωμ+V(G) of Theorem 3 is the kernel

of the homomorphism Φ(= πμ+ή of G to the abelian group A. Therefore,

it contains [G, G], Then we may ask

PROBLEM 1. Let the notation and the assumptions be as in Theorem 3.

Determine the minimal v ( > μ2) such that the index [G: A] divides [Ωμ+V(G):

[G, G]] in the case where A contains [G, G]. (Therefore G is metabelian.)

If A = G[p] for some p e End (G), then we see that the minimal v is

at most a(p) — μ by Corollary 2 of Theorem 5.

PROBLEM 2. Let G be a metabelian p-group, and A be an abelian

subgroup of G which contains [G, G]. Does the index [G:A] divides

[Keτ(VG_A):[G,G]]?

When G is regular, this problem is a part of the preceding one by

Theorem 4.

Let G be the irregular p-group of Example of Section 3, and A =

'(flu a2> "9 a

P-i} We have Ker ( V ^ ) = A in this case. (Cf. Huppert [3,

Ch. Ill, 10.15].) Therefore the answer is Ύes\

If A = G[p] for some p e End (G), then the answer is also Ύes' by

Terada's Principal Ideal Theorem. In the case of A = [G, G], the answer

Ύes' is equivalent to the original Principal Ideal Theorem.

III. The relative uniqueness bases of regular /?-groups

1. The relative uniqueness basis. Let G be a finite regular p-group

for a fixed prime integer p. Let H be a given subgroup of G. We call
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an ordered set of elements of G,

g\9 gi9 ' ' * 9 gτ 9

a uniqueness basis of (the left cosets) GjH if every coset of G/H can be

represented by one and only one element of G of the form

with

0 < mt < μt (i = 1, , r)

where μt is the minimal positive integer such that g^ belongs to H.

P. Hall [2] showed the existence of a uniqueness basis for H — {1}, or,

we may say, for a normal subgroup H because a quotient group of a

regular p-group is also regular.

But if H is not normal in G, it is far from obviousness, at least at

a first glance, that there exists a uniqueness basis of G/H. This part of

the paper is devoted to show it, essencially by following the way of

P. Hall [2], Hence we show that such a basis is obtained if we construct

a canonical basis of G/H, which will be defined in Section 3 below.

2. The L-series. Let ω = ω(G) be the invariant of G determined

by the relation pω = [G: OΊ(G)]. An L-series A of G is a decending series

of normal subgroups Lt of G,

Λ: Lo = G ID L! Z) Z) Lω = Όx{β)

such that [Li-iiLi] = p for i = 1, 2, , ω.

We denote the exponent of G by ε = pμ, and let λ = λ(Λ) be the

maximal index such that the exponent of Lλ_x is equal to ε. Put

LEMMA 5 (P. Hall [2]). K ίs a cyclic group of order p, and lies in the

center of G.

For the proof, see P. Hall [2, the proof of (e), pp 92-93].

LEMMA 6. Let i be an index of the L-series A other than λ, and e be

a positive integer. If there is an element g of Li_ί — Lt such that ge belongs

to K'H, then there exists an element x in Li_ι— Lt such that xe belongs

to H.
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Proof. Take an element zeLλ_t — Lλ. Then K = ζzε/p} because the

exponent of Lλ is less than or equal to ε/p by the choice of λ. Suppose

that geeKH for some geL^^ — Lt. We may assume that e = pv for

some non-negative integer v and v < μ. Take an integer m and an ele-

ment h of H so that ge = zmε/p h. Put n = p ^ - 1 - ε/p>+1 and x = g.z~mn.

Since (2Γmπ)e belongs to the center of G, the commutators of (g, z~mn)

have the orders at most e by P. Hall [2, Th. 4.22]. Therefore, we have

X — g 'Z

since G is regular. Then by the choice of n, we have xe = heH. If

v = μ — 1, then we may assume that g is of order ε = pμ because ge =

1 e H otherwise. In this case, then, we have ί < λ, and Lt D Lλ_x. There-

fore, x = g-z~mn certainly belongs to Lt_x — Lt. If v < μ — 1, then 2"mTC

belongs to OΊ(G). Since OΊ(G) lies in Z ,̂ we have xeLi_1 — Lt in this

case, too. The proof is completed.

3. The relative canonical basis. For each ί (1 < i < ω), define a

positive integer et = e<(Λ, i ϊ) by

e, - min {eI e > 1, 3g e L,_! - L, (ge e iϊ)}

and put

Ci = Ci(Λ,H) = {geLi_1-Li\ge>eH}.

Determine the positive integer τ = τ(G, Jϊ) by the relation,

Then there exists exactly τ indices iu i2, , ix such that

1 < h < ί2 < * < h < a>

and

Liv_xH^Liv'H (v = 1, , r ) .

The sequence of τ elements of G,

will be called a canonical basis of G/iϊ belonging to the L-series A if

each of the τ sets Civ (v = 1, , τ) contains just one of the r elements gs.

THEOREM 8. Every canonical basis of GjH is a uniqueness basis of G/H.
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Proof. Induction on the order \G\. If \G\ — p, then the theorem is

clear. Suppose that \G\ > p . Let gu , gτ be a canonical basis belonging

to an L-series A, and we use the notation introduced above. Put G = GjK

and H = HK/K. If ε = p* > p, then Kdϋλ{G). If ε = p, then Λ "= ω

- 1, L ^ - if and Lω = ^ ( G ) = {1}. Put L, = LJK for i = 0, 1, ,

ω — 1. Omitting the last term if e = p, we have an L-series A of G,

Put ft = ft. JSΓe G for j = 1, - ., r.

Case I: Suppose that HZD K. Then g1? -9gτ is a canonical basis of

G/H belonging to A. Since \G\ is less than |G| , it is a uniqueness basis

of GjH by the induction hypothesis. Therefore, the natural correspondence

between G/H and G/H establishes that gί9 , gt is a uniqueness basis of

G/H, in this case.

Case II: Suppose that H^ύK. Then i £ n £ Γ = { l } . First, we show

that the index λ appears in the series, ίl9 i2, , iτ. In fact, assume, on

the contrary, that Lλ_ι H = LλH. Take zeLλ_1—Lλ. Then there are

xeLλ and heH such that z = x-h. Since the order of x"1 is less than

e = p^, we have ΛΓS/P = 1. Therefore hε/p = (x" 1 ^) 8 ^ = χ-«*.&* = zε/p Φ 1.

But Λε/P belongs to i ί Π # , which contradicts that if Π H is equal to {1}.

Now, let k be the index such that gk belongs to Cλ .= L^j — L;. Let ^

and βj be the minimal positive integers such that g]j e H and gp/ e iϊ,

respectively, for j = 1, , r. Then μk = ε and ρfc = e/p. If / is other than

k, then we have μό — ̂  by Lemma 6. Suppose that Lί_ίH= LfH. Then

we have L^^KH = LfK H. If e > p, then i£ lies in OΊ(G), and so, in

Li. Therefore, we have Lt_rH = LrH. If ε = p, then K = Lω^. There-

fore, we also have Li_ιH —L^Ή. for i < ω — 1. Hence L ^ - i / — Lt'H

is equivalent t o L 4 . 1 Jϊ = L r i ί unless ε = p and i = ω. Thus we conclude

that gu , gτ, omitting the term gk if ε = p, is a canonical basis of G/H

which belongs to the L-series A of G. Since \G\ < |G|, the sequence is

a uniqueness basis of G/iί by the induction hypothesis. Then we can see

that gl9 , gτ form a uniqueness basis of G/H, in the straight forward

way, knowing that gε

k

/p is in the center of G. And then the proof is

completed.

We close this chapter pointing out

THEOREM 9. Every canonical basis of G/H is also a uniqueness basis

of H\G.
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Proof. Let gu , gτ be a canonical basis belonging to an L-series A.

Then g'1, -'-ygϊ1 is also a canonical basis by the definition, and so, a

uniqueness basis of G/ίf. Assigning its inverse to each element of G, we

have the natural correspondence between G/H and H\G, which establishes

the theorem at once.
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