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1. Introduction

The work described in this paper grew out of an attempt to generalize
some results obtained in an earlier paper (4] on the water entry problem of a
thin wedge or cone into an incompressible fluid. The object of the generali-
zation was to include the effect of gravity terms. In most papers on hydro-
dynamic impact it is considered permissible to neglect this effect since gravity
terms might be expected to play a minor role in the initial stages of the
motion. However, it seems desirable to investigate the effect of including
gravity terms in order both to examine the later stages of the motion and to
estimate to what extent their neglect is justified in the early stages. It will
be seen that it is possible to develop a fairly complete solution for the
normal entry of a thin symmetric body, both for two-dimensional and axially
symmetric cases, on the basis of a linearized theory. The restriction to a
linearized theory means that the whole field of analysis associated with the
theory of surface waves of small amplitude becomes available. Most of the
problems considered in this paper are initial value problems in which the
whole fluid is at rest at £ = 0.

An excellent survey of different types of intial value problem is given in
[7]. Pioneer contributions were the subjects of classic memoirs by Cauchy
and Poisson. In their work the agency applied at £ = 0 to disturb the equilib-
rium is applied along the free surface ¥ = 0. The main object of this paper
is to discuss the effect of a general wavemaking agency U (y, t) acting along
the plane x = 0 (or, suitably interpreted, along the axis » = 0 in the case
of axial symmetry). The difficulty in treating initial value problems in the
theory of surface waves is in some respect due to the fact that ¢ is not an
active variable of the governing partial differential equation for the velocity
potential ¢ (this being simply Laplace’s equation) but appears in the bound-
ary condition to be satisfied on the free surface and possibly elsewhere.
These difficulties are largely surmounted by the use of integral transforms.
It is reasonable to assume that motions starting from rest and caused by
some localised disturbance will possess Fourier transforms in # (or Hankel

340

https://doi.org/10.1017/51446788700028366 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028366

[2] Initial value problems in water wave theory 341

transforms in r forjaxially symmetric flow) since the displacement at any
fixed time will tend to zero for sufficiently large  (or 7). In § 2 we develop
this theory as it applies to the wavemaker U(y, ) and obtain in particular
equation (8). This equation is essentially equivalent to that obtained by
Kennard [3] but it is derived here in a different manner and in a somewhat
more general form suitable for applications other than those considered in
[3]. In § 3 the results are applied to the two-dimensional water entry problem
and the work of the earlier paper [4] is obtained as a special case by letting
g — 0. § 4 treats the case of axial symmetry which is almost identical with
the two-dimensional theory except that a Hankel transform now replaces
a Fourier cosine transform and the usual care has to be taken in interpreting
boundary conditions on the axis of symmetry. Apait from obtaining formulae
for the water entry problem analogous to those of § 3 we consider an example
of a water exit problem in which a slim conical projectile rises vertically
with constant speed from deep water. In § 5 we consider the case of a harmon-
ic oscillation of the wavemaker. By regarding the motion as starting from
rest at £ = 0 we obtain results which in special cases reduce to those obtained
by Stoker [6] and Miles [5]. Finally in § 6 certain results are obtained for the
case of water of finite depth A. As & — 0 motions are obtained which are
identical with those which would have been obtained by using initially the
linearized equation of shallow water theory, that is to say, the ordinary
wave equation.

2. The two-dimensional wavemaker

In this section a relationship will be established between the behaviour
of the free surface and the horizontal velocity of a vertical wavemaking
agency. The mean free surface is taken as y = 0 and the y-axis points verti-
cally downwards. The wateris assumed to be of infinite depth and the velocity
onz = 01is given as U(y, ¢). We consider only the motion of the water to the
right of the wavemaker (x > 0). Then if ¢ is the velocity potential, the
boundary conditions are:

> 0
1 — gL =0 = 0),
) . v="0
0
@ ¥ v @ =0),
x
while ¢ satisfies
’¢ 4
3 PLI% o
(3) o T o
in the region « > 0, y > 0. If the equation of the free surface is y = 7(z, ?),

then

https://doi.org/10.1017/51446788700028366 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028366

342 A. G. Mackie 3]
1 /0

(@ net) = (o) -
4 ot v=0

Let the Fourier cosine transform of ¢ be defined by
(4 y.1) = [ $(, y, 1) cos iwda,

Other barred quantities are defined similarly. Then from (2) and (3)

d2¢

— ¢ =Uly, ).

3 ¢ (¥, ¢)
This equation can be solved in terms of the value of ¢ at y = 0 when the
condition of boundedness at ¥ = oo is used. The solution is

(5) Sy, 1) = @, 0,0)e ™+ [ U(x, )G (o, y, A)da,

where Gy, ¥y, A) is the Green’s function which satisfies

and which vanishes at ¥ = 0 and y = 0. Explicitly it is given by

(6) G(y, 90, 4) = —e™" sinh Jy2 ¥ < %),
G(Y, Yo, A) = —e~ sinh Ay,/A (y > o).

From (6) we see that, when y =0, G(«, y, 4) = 0 and d/dy{G(«, y, 1)} =
—e~22, (We have to note the change in the position of y from second to first
variable in G between equations (5) and (6).) Hence from (5)

d oo
(7 (—(E) = —A¢(4,0,¢) —f U (e, t)e~**da.

dy v=0 0
Now the transform of equation (1) is obtained simply be replacing ¢ by §.
If we denote ¢(4, 0, t) by y(4, ¢), then from (5) and (7)
(8) j+igy = —gU(, 1),
where the dots denote differentiation with respect to ¢ and

N —Aa
U@, t) = fo Ulx, t)e-*2da,

which is the Laplace transform of U(y, ¢) with respect to y.

Equation (8) is the fundamental result of this paper in that all applica-
tions considered come from solving this equation or an allied one for various
functions U(4, £). When we solve for y(4, ) we can find 7 since 7 = g1y
from (4) and # can then be found by the inversion formula. In particular, if
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the liquid is at rest in equilibrium at # = 0 when the wavemaker begins to
act we have y == § = 0 when ¢ = 0 and then

y(ht) = —g(ig)~} f(: O (4, ) sin { ()% (t—7)} dv

from which we find

(9) (A, 8) = — fo‘U(A, 7) cos { (Ag)? (t—7)} d.

3. Application to the water entry problem

If a thin symmetric body is suddenly plunged with constant speed U
along the y-axis into a liquid at rest then we can determine the function
Uly, t) as defined in the previous section. Suppose at the instant of entry
(¢ = 0) the equation of the half of the body in # > 0 is x = f(y) where {(y)
1s small in some sense and is defined for y < 0. After time ¢ the equation of the
moving surface in the liquid is

F(o,y,t) =ax—fy—Ut) = 0.

Since the total derivative of F with respect to ¢ vanishes we get

0
% = —-Uf'(y—Ut) (x =0,0<y< Ut),
ox

the first equation following from the neglect of all second order quantities
in f and ¢ and the second equation from symmetry. These equations define
Uy, t) and so

(10) 0@ t) = —U [ F (y—Ut)edy.
For the special case of a thin wedge of angle 2¢, f(y) = —ey and (10) gives

eU

O, = : (1—e20),
From (9) we get
7, t) = — fgft (1—e2U7) cos { (Ag)} (t—)} dx.
A Jo

On evaluating this integral and using the inversion theorem we arrive finally
at the equation of the surface in the form
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cos Az
AU?+g)

(11) (w2 = 2;U2Jw1( {cos(Ag)t—U (g)¥ sin (Ag)kt—e-AU*} da.

As g — 0, (11) becomes

2¢ £ cos Az
Vb)) = — - (1— —e—AUt ,
7(z, t) - J; o (1—AUt—e—AU% dA
and after some manipulation this can be reduced to
' & Ut U2s?
12 ,8) = — {2Uf—2x tan™! — — 1 s
(12) n(x, t) n{ @ tan™ — Utlog( + - )}

which is the result obtained in [4] when gravity terms were neglected ini-
tially. It is possible to proceed from (9) and treat the more general case.
If g = 0in (9), then for the case of the thin body of arbitrary shape

i=—[10@)dr = U [!ar fo”’f'(y—Ur) e~Mdy.
Using the inversion formula and integrating with respect to 4 first, we obtain

2U (* . (U7 f(y—Ur)ydy

n=——] dr]
7 Jo 0 y*+-x

or

_ 2 (Uyfy—Ut)dy

(13) o Ml

since }(0) = 0 if the body is sharp. (13) gives the equation for the displace-
ment of the free surface due to the penetration of a thin sharp body of
arbitrary shape when gravity terms are neglected. It is easy to recover
(12) when f(y) = —ey.

It does not seem easy to obtain from (11) an expression giving the next
term after (12) in the displacement for small g or . Not altogether surpris-
ingly a formal series in powers of g does not lead to a valid expansion as
the second term indicates that the water level rises further on account of
the presence of gravity terms! It is possible to expand the integral in (11)
asymptotically using the method of stationary phase but this is an asymp-
totic expansion valid for large values of g¢2/x whereas we wish to examine
what happens at a fixed # when ¢ is small. Such an approach is not therefore
fruitful,

4. Extension to axially symmetric flows

In axially symmetric flow the velocity potential satisfies the equation

#4103 P
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where 7 is the distance from the axis of symmetry. If this equation is multi-
plied by 7] (A7) and then integrated from 0 to co, we obtain

i TS
P —2¢="V(y?)

where ¢ is now the Hankel transform of order zero of ¢ defined by

Fyt) =[] $r. y, 1) dr
and
0
V. =limy 2.

(It should not cause confusion if, throughout this section, the bar is used
to denote a Hankel transform of order zero instead of a Fourier cosine
transform as in previous sections.)

If y(A,¢) = ¢(2,0,¢) as before, the bar now denoting the Hankel
transform, the analysis is identical with that of § 2 and in particular y (4, ¢)
satisfies the equation

(14) j+igy = —gV (3, 1).

n(4, t) is given by g~'4 and then #(r, t) may be found from the Hankel
inversion formula

(15) 0l 8) = [ Ao(¥) (A £) di.

The essential difference between V(y,¢) and the function Uf(y, ¢) of
the two-dimensional theory is well understood in terms of slender body
theory. V(y, t) is clearly related to the local density of a source distribution
along the axis of symmetry. If the source distribution is supposedly caused
by a thin body of fixed shape whose equation at any given time ¢isr = F(y, £)
moving with speed V along the y-axis in the direction of increasing y, then
(16) Viy,t)= —VF QI—:

%

We might mention briefly the formula for #(r, #) when a thin body
whose shape at £ = 0is 7 = f(y) (y < 0) is plunged with speed V into liquid
at rest. From work similar to that in the previous section and with the aid
of (16) we find

0,8) =V [ cos () (¢—n)}dx [ Hy—Vo)f y—Ve)eMdy.

If we neglect gravity terms we can set g = 0 and in the inversion formula
perform the integration with respect to A first to get
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VJ' f"’ fly—Vo)f (y—Vr)ydy
2_{_,2)

by means of an elementary integral for Bessel functions. This further reduces
to

Y P ly—Vi)ydy

o ()R

if the body is sharp which implies f(0) = 0. For the special case of a conical
projectile f(y) = —ey and

n(r,t) = —3%

Vit
n(r, t) = &2 {r—}—Vt sinh—1 P (r*+ V2t2)i—V2t2/2r} )

which is the result obtained by a somewhat different approach in [4].

As a further application of the general theory we now consider the
problem of a missile launched vertically upwards from deep water with
constant speed V. The shape of the missile will be taken as that of a cone of
semi-angle ¢ and length L. It will also be assumed to have an infinite tail of
circular cross-section of the same area as the base so as to simulate to some
extent the presence of a wake. If the tip is assumed to reach the surface at
{ = 0, then at time ¢ < 0

F(y,t) =0 0<y< —Ve),
=e(y+Vt) (—Vi<y< —Vi+L),
=L (y > —Vit+L).

Hence
P8 =V [ yrvhetvay

from (16), with V replaced by —V because the missile is moving upwards.
For this problem equation (14) becomes

82V GAVt
gy = g — (eM—142Le=").

We must now solve this problem with the conditionsy =9 =0 at{ = —o0
instead of £ = 0 as previously. The solution is
g2 Vg
A, t “AL_ 14 jLe-ML)eAVt

from which # is easily obtained and then from (15)

® AVt ] (17) (e-AE— 1+ ALe~AE)dA
— 22172 .
et = eV f )
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When the missile first breaks the surface, the surface elevation H is
obtained by setting » = ¢# = 0 in the above integral and changing the sign
since 7 is negative for a positive height. With the change of variable § = AL

this gives
®1—(140)e
— 2L
¢ f 0+F7—1 ’

where F7 is the Froude number V2/gL based on the missile’s length and
velocity. This gives one simple formula in which the effect of varying the
Froude number can be assessed. It would be possible to extend the analysis
in order to describe the motion both while the missile is emerging and sub-
sequently after the conical part has cleared the surface. For this it would be
necessary to repeat the above work, suitably redefining F(y, ¢), or to treat
the whole problem as one composite one, using Heaviside functions.

Before leaving motions possessing axial symmetry we point out the
connexion between this work and that of Finkelstein [1] on time-dependent
Green’s functions. Finkelstein obtained the velocity potential for a source
switched on at ¢ = 0 at some interior point of the fluid which may be taken
on 7 = 0 without loss of generality. It would have been possible to have
used this directly for the problems of this section and to have used a two-
dimensional equivalent for the problems of other sections. However, it was
found more convenient for our purposes to proceed as in § 2 and derive
equation (8) or (14). To obtain Finkelstein’s result from (14) we set
V(y,t) = 6(y—y,) and solve (14), which becomes

?+lg‘y = __ge—hyo,

with the conditions y = j = 0 at £ = 0 (the instant chosen for the “switch-
on”’ of the source). The solution is

e—MIo

y)

y(A,t) = — (1—cos (Ag)%¢)

whence

n(r, t) =gt f:o Me—2nsin (Ag)}t J,(Ar)dA

We can go somewhat further than this. We have up to now concentrated on
obtaining the equation of the surface only. It is, however, a simple matter
to write down the complete solution for ¢. Indeed it is given by inverting

(5) with U(x, t) = d(x—1y,) and the bar interpreted as a Hankel transform.
The equation for ¢ is

¢ y.t) =y t)e Gy, y, 4) (> 0).
For y < y,,
G (Yo, ¥, 4) = —e~"% sinh Ay/A.
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The inversion then gives

¢, 9, t) = —H{{y—vo)* -+ H{(y+9) 2 — f;” e-Av4yg)
X (1—cos (Ag)¥¢) Jo(Ar)dA.

This is equivalent to Finkelstein's result.

5. Harmonic oscillations

We return now to the problem of the two-dimensional wavemaker,
assuming it to be of the special form U (y)e’®* and that it starts to operate at
t = 0 when the water in & > 0 is at rest in equilibrium. As has been men-
tioned, this problem has been studied by Kennard [3] who recovered Have-
lock’s “steady state” solution [2] by considering the behaviour for large
values of ¢. It is introduced here to show how a special case is related to
some recent work by Stoker [6] and Miles [5].

If Uy, t) = U(y)e** then j+igy = —gU(A)e*t and if this is solved
subject to y(0) = $(0) = 0, then after some algebra

(17) 0.8) = UG (5 + o) = “’i;f;g“g)“.

ot

If we take U(4) = 1, corresponding to a delta function for U(y), that is to
an impulsive force at the origin, then the subsequent expression for 7 is
exactly that obtained by Stoker except for multiplication by a purely
imaginary constant. Stoker’s solution was obtained as the reult of the limit
of a disturbance applied at ¢ = 0 over an area of the free surface as this
area shrank to zero. Thus fundamentally it is due to a singularity at the
origin applied at £ = 0. Miles discovered an error in Stoker’s work arising
from the fact that Stoker had assumed ¢ = ¢ = 0 on y = 0 as initial condi-
tions. Miles pointed out that the correct condition was ¢ = % = 0 and that
these were not equivalent since (in our present notation)

and p was non-zero at { = 0. It might not seem likely at first that this would
be significant since p is zero everywhere except at # = 0. However, when the
complex Fourier transform of the above is taken, we find that the transform
of  is not zero because of the delta function singularity. Miles gave the
correct formulation and his answer is 1w times Stoker’s solution integrated
from 0 to ¢£. However, it should be noted that if Stoker’s initial conditions
had been a disturbance §(z) sin w?, the problem would have been correctly
formulated and this explains why the imaginary parts of Stoker’s and Miles’
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solutions are in fact identical. From the remarks which follow (17) they are
also equal to the real part of the solution obtained from (17), that is to say
from an impulse from the wavemaker of the form é(y) cos wé. An impulse
4(y) sin wt would yield the real part of Stoker’s solution — that part which
is incorrect when regarded as the limit of an impulsive pressure on the sur-
face. All these solutions have essentially the same character of an impulsive
disturbance concentrated at the origin. Naturally, therefore, they have the
same asymptotic behaviour for large ¢.

6. Case of finite depth

A theory analogous to that of § 2 can be developed for water of finite
constant depth 4. The Green’s function is now

sinh Ay cosh A(h—y,)

Gy, 45, 4) = T coch b (v < %),
__ sinh iy, cosh A(k—y)
=- 7 cosh 4% > o),

and if I'is the cosine (or Hankel) transform of ¢ at y = 0, then corresponding
to (8)
?) cosh A(h—y)dy

cosh ik

. nU
I+igtanh A I'= —g f
0

Let us consider the special case in two-dimensional motion when
U(y,t) = U, a constant, and I'(0) = I'(0) = 0. This corresponds to a wall
z = 0 bounding the liquid at rest being pushed suddenly into it with speed
U. This leads to the solution

2Uht

n(x, ) =— s f A~% cos Az(tanh Ah)} sin{(4g tanh ih)}{}dA.
0

This expression is somewhat clumsy but if we let #—>0 the result is striking.
The leading term is
2URE
n=— —J A1 cos Az sin{(gh)¥tA} di

and this gives
n = —Uhjc (x < ct),
=0 (x > Ct) H
where ¢ = gh. This is the result that would have been obtained from the

equation of linearized shallow water theory, the ordinary one-dimensional
wave equation. Disturbances subject to this equation travel at the finite
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speed ¢. In any exact solution of Laplace’s equation a pulse travels with
infinite speed and there is no sharply defined expanding wave. Nevertheless
we see how the wave equation solution emerges as the leading term in the
value of 5 derived from a solution of Laplace’s equation as the depth 2 — 0.
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