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VECTOR BUNDLES ON AN ELLIPTIC CURVE

TADAO ODA

Introduction

Let k¥ be an algebraically closed field of characteristic p =0, and let
X be an abelian variety over k.

The goal of this paper is to answer the following questions, when
dim (X) =1 and p #+0, posed by R. Hartshorne:

(1) Is E® indecomposable, when E is an indecomposable vector bundle on.
X?

(2) Is the Frobenius map F*: H(X, E) -~ HY(X, E®) injective?
We also partly answer the following question posed by D. Mumford:

(3) Classify, or at least say anything about, vector bundles on X when
dim (X) > 1.

Let us now summarize our results.

When the Hasse invariant of X is not zero, the answers to (1) and (2)
are both affirmative.

When the Hasse invariant of X is zero and E is an indecomposable
vector bundle on X of rank » and of degree d, then E® is indecompos-
able, if either (r,d) =1 or (r,d)+ 1 with 7/(r,d) divisible by p. Otherwise
E® decomposes into a direct sum of min {(r,d), p} indecomposable compo-
nents.

Also when the Hasse invariant of X is zero and E is an indecompos-
able vector bundle on X, the Frobenius map in (2) is not injective (and in
fact the zero map), if and only if »<<p, d =0 and E has a non-zero section
(i.e. in Atiyah’s notation E = E,, with »<p). It is surprising that F*
seldom fails to be injective. ,

When dim (X) =1, Atiyah [1] classified all the indecomposable vector
bundles on X. He also gave the multiplicative structure in case p =0.
His construction of indecomposable vector bundles is essentially by succes-
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sive extensions of line bundles. To answer (1) and (2), however, it is very
hard to keep track of these extensions after we pull them back by the
Frobenius map.

We give here an entirely different way, inspired by Schwarzenberger’s
results [18] and [19], of constructing indecomposable vector bundles, which
is very easy to handle and which gives us a clearer picture, we hope, es-
pecially in characteristic p 0. This construction, by taking the direct image
of line bundles by isogenies, can also be generalized to higher dimension,
and thus partially answers the question (3).

When % is the field of complex numbers, Morikawa [10] characterized
those indecomposable vector bundles, which we thus get on an abelian
variety, or more generally a complex torus, in terms of their factor of auto-
morphy. We shall re-interpret his result at the end of Section 1, after we
give our construction.

There are lots of other simple vector bundles on an abelian variety of
higher dimension. (cf. Our forthcoming paper, Vector bundles on abelian
surfaces, in Inv. Math.)

We also remark here that R. Hartshorne [7] proved the following: A
vector bundle E on an elliptic curve X is ample, if and only if every
quotient bundle of E has positive degree.

He uses Atiyah’s multiplicative structure when p» =0, and our answer
to (2) when p #0.

In Section 1 we state the results valid in arbitrary dimension. In
Section 2 we apply these results to elliptic curves and solve the problems
(1) and (2).

Notation and convention

Throughout this paper we denote by k£ an algebraically closed field of
characteristic p =0.

We use the words vector bundle and locally free sheaf interchangeably.
For vector bundles £ and E’ on a scheme X, we denote by &nd &,X(E) and

G ﬁ_‘,(E, E’) the sheaves of -endomorphisms and Zx-homomorphisms,
while End 2 E) and Hom ﬂx(E’ E’) mean the sets of global 7-endomorph-
isms and Zx-homomorphisms. E=_Fm o (E, Tx) is the dual vector bundle.

For an abelian variety X, we denote by X° the dual abelian variety.
For an isogeny ¢ :YV = X, ¢° is its dual isogeny X*—>Y"*.
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"~ When X is an elliptic curve over k with p %0, we denote by Hasse
(X) the Hasse invariant of X, that is, Hasse (X) 0, if there are p k-valued
points of order p on X, while Hasse (X) =0, if there is none besides 0.

Section 1 Vector bundles on an abelian variety

Let ¢ : Y — X be an isogeny of g-dimensional abelian varieties over %
with scheme-theoretic kernel (¢) = G. Let E be a vector bundle on Y. Since
¢ 1s finite and flat, it is obvious that ¢.E is a vector bundle on X. We
should like to compute End o P+E). First of all it canonically contains
End,, (E).

We have the cartesian diagram

YXG—#——>Y
Pil © l?’
Y —— X

where g :YXG —Y is the restriction of the group law Y XY —Y, and p, is
he projection. Since ¢ is an isogeny, hence affine, we have ¢*¢p, F=p, p*E.
Thus by the adjointness of ¢* and ¢,, we get End ﬁx(go*E)=Hom ﬁy(ga*go*E, E)

= Hom ﬁy(p,*,u*E, Ey=H"Y,[ppr*EQR ﬁyé]v). Since the canonical line bundle
Q% is isomorphic to %, this latter is, by Serre duality, dual to H(Y, p,s*E
®ﬁyl§). By the projection formula, pl*,u*E@ﬁyﬁv‘ = pl*(#*E®ﬂym?1*E)-
Moreover p, is finite, hence the cohomology group above is isomorphic to
H'YXG, r*EQ 5 p:*E).

Let L be a line bundle on Y. As in Mumford [13], we denote by
AL):Y —Y" the homomorphism sending a point y in Y to T,*L® , L7,
where T, :Y =Y is the translation.

Moreover, suppose C is a vector bundle on Y, such that on p*C=p*C
on YXG. Let us apply our previous calculation to E=L®C. Then

y*E@p,*E = (*LRp*L X ﬁyxa'pl*gnd ﬂy(C). By the definition of 1=A4(L):
Y —Y*, we know that

#L®,, prL7 = (1X20 )@

where j:G—Y is the injection and ¢” is the normalized Poincaré line
bundle on Y xY?, that is, the universal family of line bundles algebraically
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equivalent to zero parametrized by Y”?, and so normalized that &£|Y x{0}
= 7 and Z|{0} xY* = 7.
Thus End ax(go*E) is dual to

HUY XG,(1%2 0 )M @® ,, p:*&nd 5, (C)),

which is isomorphic, since G is affine, to
HYG, R°pos(1X20 2 ® 5, e0*E0d 15 (C))).

By the base change theorem (EGA III §7, Mumford [14]), this is isomor-
phic to

HYG, (20 j)* Rl @R 5 :0:*&1d 5 (C)]).
We now state a slight generalization of an important result of Mumford.

DEeriniTION. A vector bundle U on a scheme Y is called unipotent, if U
has a filtration such that the successive quotients are all isomorphic to 7.

It is straightforward to see that U is unipotent, if any only if the
transition functions can simultaneously be chosen to be upper triangular
matrices with 1 along the diagonal.

Lemma 1.1 Let U be a unipotent vector bundle on a g-dimensional
abelian variety over k, and let ¢ be the normalized Poincaré line bundle
on YxY*. Then RipZ*[gQ’®&,y”tpl*U] is the zero sheaf on Y*, when i+ g.
On the other hand, R.,.[® &)m,pl*U] has support at the origin 0 of Y?,
and the stalk there is a rank (U)-dimensional vector space over k. Moreover,
the stalk modulo the maximal ideal of %, is isomorphic to H(Y,U).

Proof. Mumford has shown this when U = ¢ in [14]. Since U has a
filtration with successive quotients all isomorphic to %, we easily get the
first two statements. As for the last, we use the base change theorem.

We now return to our previous situation and suppose further that

&nd ,; (C) is unipotent. Examples of vector bundles C with this condition

and the previous p*C = p,*C on Y xG are the following:

(i) C is a direct sum of vector bundles of the form L'®E,, with L’ al-
gebraically equivalent to zero. (cf. Atiyah [1] and our Section 2).

(ii) k is the field of complex numbers, and C is a vector bundle with a
holomorphic (integrable) connection. (cf. Matsushima [9] and Morimoto

[11]).
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Under this further condition, we know by Lemma 1.1 that

Rpo [ @p*&End 5 (C)]

has support at the origin of Y*, and the stalk there is of dimension rank
(Fnd ﬁy(C)) = [rank (C)]? over k. Moreover, modulo the maximal ideal of

Oy this Is isomorphic to HY, &nd ﬁy(C)), which is dual to HYY, ¥nd P
(C)) = End ﬁy(C). On the other hand, we have seen that End ﬁy(go*(L@)c,;yC))
canonically contains End ﬂy(L® ﬁyC) = End ﬁr(C), and that it is dual to

HYG, (20 ) R'pol@® 01" nd ; (C))).

Thus counting the dimension we finally get the following:

THEOREM 1.2 Let ¢ :Y =X be an isogeny of g-dimensional abelian
varieties over k, and let L be a line bundle on Y such that the restriction
of A(L):Y —Y*® to the (scheme-theoretic) kernel of ¢ is an isomorphism.
Then

(1) End &}(go*L) =k. Especially ¢,L is an indecomposable vector bundle on
X.
(if) Suppose ¢ is separable. If Cisa vector bundle onY such that &nd ; (C)

is unipotent and that T,*C=C for all k-valued points @ of ker(¢), then
End ﬂx(go*(L® ﬁyC)) is canonically isomorphic to End 2,(C)-

Remark. (i) From what we have seen above, it is easy to see that the
second statement of the theorem is false in general when C# %, and
¢ is inseparable.

(ii) Even when the restriction 205 of AL) to G =ker(p) is not an iso-
morphism, we can identify the algebra End ﬁx(go*(L® ﬁyc)) in the follow-
ing way:

As in Mumford [13], let H(L) be the kernel of A(L) and let K = K(L)
= GNH(L) be the kernel of 10j. We denote by D(K) the Cartier dual
group scheme of K, and by A(D(K)) the affine k-algebra of D(K), that is,
D(K) = Spec (A(D(K))). A

By our previous calculation, we see that End &’x(¢*<E)) is isomorphic, as
a k-vector space, to A(D(K))®, End ﬁy(C), where E = LR ﬁyC.

We now identify its algebra structure.
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We denote by ¢’ : YXK—Y the restriction of the group law. By as-
sumption, we have ¢'E = p,*E on Y XK. Then there is an obstruction O (E)
in the group cohomology H:.(K,Aut o, (E) where K acts canonically on
the automorphism functor Aut ﬁy(E). This is the obstruction to the existence
of an isomorphism between #’'E and p,*E onY xK which satisfies the cocycle
condition, i.e. the obstructilon to the descent of E by Y —»Y/K. (cf. FGA
exposé 190). Then we can show that the algebra structure on A(D(K))®x
End ﬂy(C) is the ordinary one twisted by multiplying the 2-cocycle 0(E).

To see this, let us for simplicity assume that ¢ is a separable isogeny,
i.e. G = ker(¢) is reduced. Then

End,; (¢4E) = Hom , (puu*E, E) = @ Hom,, (T,*E, E)
= @ End, (C)®, Hom, (T."L, L).

K is the subgroup of G of elements a such that T,*_®L™'= %, that is,
those for which Hom 2, T.*L, L) above is not zero. (cf. Mumford [14]. See

also Lemma 1.1.). Let us fix isomorphisms w(a): T,*E—E for a in K.
Then

Endﬁx(ﬂp*E) = ae®K Endﬁy(E) - w(a)

which is isomorphic, as a k-vector space, to A(D(K))®, End ﬁy(E). Note that

A(D(K)) is now isomorphic to the group algebra of K over k. The algebra
structure is defined as follows:

w(a) - w(b) = p(a, b)w(a + b)

where p(a, d) = w(a) o Ty*(w(b)) o w(a + b)™! is in Aut 2, (E) and is a 2-cocycle,
which determines O(E) in H},.(K, Aut 2, (E)).

As one application of this, we see that End ﬁx(go*ﬁy) is canonically
isomorphic, as a k-algebra, to A(D(G)). We will later identify ¢.#% more
explicitly. (cf. Remark after (1.7))

We leave the application of Theorem 1.2 to elliptic curves to Section
2. We later show that when g=1, we get all the stable vector bundles as
in Theorem 1.2 (i). We believe there are lots of other simple vector bundles
when gs#1. Possibly we need direct image of line bundles by a finite
ramified coverings. But then we no longer have abelian varieties above.
cf. Lang and Serre [8], and Schwarzenberger [18] and [19]. We can also
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apply our method in Theorem 1.2 (i) to unramified coverings of a non-
singular curve. Then we get an algebraic family of simple vector bundles.
cf. Our remark after Propositions 1.3 and 2.3 and [15], [20].

ProrosiTioN 1.3 Let ¢ : Y — X be an isogeny of g-dimensional abelian
varieties over k, and let L be a line bundle on ¥ such that A(L) induces
an isomorphism on G = ker (¢). Suppose M is another line bundle on Y
algebraically equivalent to L, i.e. A(L) = A(M). Then o¢.,L=¢,M, if and
only if there exists a closed point @« in G such that L= T,*M, where
T, :Y =Y is the translation by a. Otherwise Hom ﬁx(tp*L, ©.M)=0.

Proof. In the same way as in the proof of Theorem 1.2, we see that
Hom ,; (p.L, ¢.M) is dual, as a k-vector space, to

HYG, (20 ) R'pol@® p _o0r (L), M),

But since L and M are algebraically equivalent, there exists a point & in Y*
such that g7®@,yxy,p,*(L®ﬁyM“l) = (1xTy)*¢7. Thus the cohomology group
is equal to HYG,(Tyo 4o j)*R'p:u(¢?)). This is 1-dimensional if 7,0 A(G) con-
tains 0 of Y’, and otherwise it is zero, by Lemma 1.1, The rest of the
proof is easy. Q.E.D.

This Proposition shows that when we vary the line bundle L in its
universal algebraic family and make ¢,L, isomorphic vector bundles on X
occur as often as the number of closed points in G.

THEOREM 1.4, Let ¢ :Y— X be an isogeny of g-dimensional abelian
varieties over k, with ker(¢) =G. Let L and L’ be line bundles on ¥ and
Y’ respectively. Denote by ¢ the normalized Poincaré line bundle on
YxY?’. We also denote 2 = A(L): Y =Y’ 2’ =AL":Y'=>Y, G = iG), and
7:Y' > X' =Y'/G’'. Assume 2’02 induces the identity map on G. Then
the vector bundle (galee)*(pl*L®ﬁyxy,p2*L’) on XxY*' descends via lyXr:

XXY*' > Xx X',

Remark. This Theorem 1.4 says that there exists an algebraic family
of vector bundles on X parametrized by an abelian variety X’, in which

isomorphic ones appear only once.

Proof. For simplicity we denote Z =Y xY’, M= p*L® 2, @R p*L,
and E’ = (¢x1),M. First of all AM):Z=YXY'>Z'=Y*xY is the map
sending a point (y,v) in Z to (v+ A(y), ¥y +A'(v)). Hence A(M) sends a

https://doi.org/10.1017/S0027763000014367 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014367

48 TADAO ODA

point(a,0) in Gx{0} = ker(pXx1) to (2(a),a), and thus is an isomorphism on
G x {0}.. Thus applying Theorem 1.2 to M and ¢ X1, we see that Endﬂxxy,(E)=k.

Consider the cartesian diagram

1Xx
YXX ¢——n— VXY =Z
gaxll 1X7 l¢x1
Xx X'« XxY®

We first show that (¢ X1)*E’ = (px1)¥(¢x1),M is isomorphic on Z to (1xz)*
(1X7) M.

Let us simply write G and G’ the subgroup schemes G x {0} and {0} xG’
of Z. Let us also write p,p,: ZxG3Z and p/,p]: ZXG' 3 Z, the actions
and the projections. Since the diagram

[1
Z———7XG
?’Xll lpx
XxY'¢——-—7
o X1

is cartesxan we get (pxX1)¥@x1)M = p,p*M = (1 X (2, 1)) p,*M®ﬁz + B,
where P is the normalized Poincaré line bundle on ZxZf and (1,7):
G—)Z‘ ‘(Y‘XY sending a to (2(a),a) is equal to the restriction of A(M) to
Gx{0}=G. Similarly we get (1xa)*1 ><rr).,=.,M=pf*[(1><(j’,z’))*(pl*M®ﬁzxzc%)],
where (5/,2) : G’ = Z* is the restriction of A(M) to G'.

By assumption, 2 and 2’ are inverse to each other on G and G’. Thus

the diagram

D1 1x(2,7) ,
2o IXG———>IXZ
1><,1l [Du'
P l C1x(4,27)
Z¢————— 7ZXG’ — S 7ZX 27

commutes. Thus we get (¢ x1)¥¢X1)M = (1 Xz)/*(1 Xx),M.
As the first step of the descent, we next show that by ¢/, p{ : (XXY*)xG’
I (XXY?), p™*E’ is isomorphic to p’* . But from the cartesian diagram

ZE ZxG'
v
X1 t eX1X1
‘LL,
Xxy'& (XXY*)XG'
. o
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we have p*E’ = p'*(p X1) M = (¢ X1 X 1)p"*M

= (PXIXILAX (T VWO MR o T

= (P XIX1)(1X2VAXQ2, N PIMRD 1, 1 B)

= (pX1xX1),A XAV *p*M = A1 x1X2)*(ex1X1)*M from what we “have seen
above. But since the diagram

'z <—~—y—~——— ZXG
goxli " lgDXle
XXV é——— (XXYH)XG
is cartesian, this latter is equal to
(AIXIX2 VP e X 1)eM = p{*¢ X1),M = p{*E’, and we are done.

Thus to show that E’ descends via 1yxz, we have to check the existence
of an isomorphism with cocycle conditions, in other words, the vanishing
of the obstruction 0(E’) in HZ,(G’ Aut Syt BN (cf. Remark after Theorem
1.2) But we know that (¢ x1)*0(E") = 0((¢ x1)*E’) in H}.(G’, Autﬁz((gaxl)*E’)
vanishes, since we have shown that (¢ x1)*E’ descends via lyXz:Z—>Y xX'.
Thus it is enough to show that (¢ x1)*: H{.(G/, Autﬁ,‘mt(E’))%Hér(G',,
Aut (9 X1)*E") is injective. From what we have seen before, it is easy
to show that End @’xxﬁ(El):G“’ thu§ Aut ﬁxxyg(E’)=Gm, with G’ acting
trivially on these. It is also not hard to see that Endﬁz((goxl)*E’) = A(G"),
and thus Antﬁz((goxl)*E’) = A(G’)" with G’ acting trivially on these. Here,
for a k-algebra A, we define the ring functor A and the group functor A4*
as follows: for a k-prescheme S, A(S) is the ring A®,HY(S, s), and A*S)
is the multiplicative group of invertible elements in it. In our case A=A(G’)
is a commutative finite k-algebra. Since A,., is a direct sum of k as a k-
algebra, the surjection A— A, followed by a projection to one of the
factors gives a splitting of the injection G, = k*— A*. Thus we are done.

The choice of E on Xx X’ such that (1yXz)*E = E’ is not unique. By
descent theory, they correspond to the elements of

H.(G, Aut&’,x,"(E,» = Hom, (G, G,) = ker [X"*(k) » Y (k)]

by Cartier’s duality theorem. (cf. e.g. Oda [16], Section 1)
It is easy to see that this corresponds to the fact that £ and E® Foew P2 L0

give the same vector bundle on XxY* by the pull back by (1xxz), where
L, is a line bundle on X’ such that =*L, = Z%t. Q.E.D.
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THEOREM 1.5 Let ¢ :Y — X be an isogeny of abelian varieties over £,
and let ¢f: X*—>Y* be its dual. If .7 and ¢ are the normalized Poincaré
line bundles on XxX°® and Y XY’ respectively, then (¢ X 1y)” and
[(1x X 9" 711 are isomorphic simple vector bundles on XxY*.

Proof. Consider the cartesian diagram

1x¢*

Y XY ' «— YxX*
goxll lgaxl

XxY‘(———T— Xx Xt
1xe

We know that (1x¢")* &= (px1)* 5 on Y X X* and they are the normalized
line bundles corresponding to the divisorial correspondences ¢ : Y - X and
9" : X*>Y’. Let us denote these isomorphic line bundles by M. Thus
AM) : Y XX > (Y x X" = XxY* coincides with ¢x¢b. Also let us denote
G =ker(¢) and G’ =ker(¢®). Thus HM) =ker AM)= GxG'. We also
know (cf. Oda [16], Lemma 1.4) that G and G’ are Cartier dual to each
other, the non-degenerate pairing <, > : GXG'—G, being induced by the
alternating biadditive pairing e* on H(M).

y D
G><G’—i

ix zl "
H(M)XH(M) ———> G,

—> G,
|

For simplicity we denote Z=YxX’. For a k-prescheme S, we denote by
Zs the base extension ZxS. My is the pull back of M on Zs;. Then for
any S-valued points ¢ and b of G and & and & of G’, we have an iso-
morphism

ola+a’): Ms— T§.0 Ms

satisfying (T%.a0(b + b)) o pla+a’) =g, b>pla+ b+ a +b'). The 2-cocycle
{a,b"> gives the obstruction 0(M) in H}.(H(M),G,) and eMa+a', b+ ¥) =
{a,b'> <b,a’>'. (See the remark after Theorem 1.2) Moreover, p satisfies
the cocycle condition on G and G’ separately. & and ¢ are the corres-
ponding descent of M to YxY® and XxX°’ respectively. Therefore our
theorem is reduced to the following more general situation:
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Let M be a line bundle on an abelian variety Z. Suppose H(M) =
ker A(M) contains a product G X G’ of finite group schemes with a non-
degenerate pairing <, > :GXxG'—>G,. Suppose further that for any k-
prescheme S and any S-valued points ¢ and b of G and &' and » of G,
there is an isomorphism

plat+a’): Mg— T¥.. Mg

satisying (Ti.a0(b+ b)) opla+a’)=<a,bdola+b+a +¥). Let us denote
¢:Z->Y =2/G, ¢ :Z—~Y' = Z|G and X=Z/GXG' with the projections
¢:Y—> X and ¢’ :Y'—+ X. Then since p satisfies the cocycle condition on
G and G’ separately, M descends to line bundles L and L’ on Y and Y’
respectively. Then

LemMa 1.6 ¢iL’ and [¢.L"]" are isomorphic vector bundles on X.

Proof. 1t is easy to see that the diagram

Yoo 7

sOl lsb’

X(———,———Y'
¢

is cartesian. Let us consider the pull back of ¢.L and ¢i{L’ by ¢ o d=¢’cy’.
From the diagram

Y < Z ZxG
@ l l ¢’ l P
X« VER: Z
ol 4
we see that ¢*o*(p,L)=¢*¢*(¢.L)=A(G)QM. Similarly, we get ¢"*¢p'*(¢’,L’)

= A(G")&®: M.

Let @ and @’ be S-valued points of G and G’ respectively. They define
the translations T, : Gs— G5 and Ty, : G’s > G’s, hence algebra automorph-
isms (@) = T%: A(G)s—~ A(G)s and <'(a’) = T% : A(G')s > A(G")s. Moreover,
the non-degenerate pairing <, > : GXG’ — G, defines an isomorphism G=D(G’).
Thus the automorphism D(7y,): D(G’)s—> D(G’)s defines a coalgebra auto-
morphism o(a’) = D(<'(a’)) : A(G)s > A(G)s. Since G'(S) = D(G)S) = Homgs..,,
(G,Gy), it is easy to see that ¢(a’) is equal to the multiplication in A(G)s of
the character defined by &’. We define the coalgebra automorphism ¢'(a)=
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D(r(a)) : A(G")g > A(G")s in a similar manner. From what we have seen
above, we can easily show that

z(a) o a(a’) = a, a’>o(a’) o (a)

'(a’') o ¢’'(a) = {a,a’dd'(a) o T'(a’).

In view of the diagram above, the descent data on A(G)®,M corres-
ponding to the pull back of ¢,L by ¢o¢ is easily seen to be given by

(@) e o(a")®pla + ') : (A(G)RM)s > Tira (AG)XM)s

for S-valued points ¢ and o’ of G and G’ respectively. Taking into account
the skew-symmetry of the Cartier duality for isogenies, we can similarly
show that the descent data on A(G’)®.M corresponding to the pull back of
o' L' by ¢’ o¢’ is defined by

/(@) o 6'(—a)®Ka,adola + ') : (A(G)QeM)s = Tira (AG")QeM)s.

I
d'(—a)eor'(a')Qpla + a’)

The descent data on D(A(G))®,M corresponding to the pull back of [¢, L]
by ¢o¢ is defined by D(z(a)eoe(—a’))"'®Rpla + a')=D(z(—a)) o D(a(a’))Qp(a + a').
Since D(A(G)) = A(D(G)) is isomorphic via the pairing <, > to A(G’), and
since D(z(—a)) and D(s(a’)) correspond to ¢'(—a) and <’(¢’) respectively, it is
casy to see that the isomorphism above D(A(G))= A(G’) induces an iso-
morphism from D(AG)®.M to A(G")Q.M which commutes with the descent
data corresponding to [¢.L"]" and ¢4L’. Thus by the fundamental theorem
of descent theory (FGA, exposé 190) we see that ¢iL’ and [¢.L7']" are
1somorphic on X. Q.E.D.

Remark. If we apply the duality theorem for the finite morphism
¢ :Y = X (cf. Hartshorne [6], Chap. III. §6), we see that

[0uL7)" = 9uL® , ¢175).*

Consider a finite k-scheme s :S - Spec(k) and its base change p, : Xx S
— X. Since the functor s—s! commutes with the flat base change, we see
that

™ (Added in proof) We have ¢!¢7 x = (7y for an isogeny ¢ : Y - X of abelian varieties,
thanks to the compatipility of the upper shriek functor under composition. Thus [¢sL™']" =
@4L. Theorem 1.5 and the proof of the results below can- thus be much simpler.
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"y = pz*S!ﬂSpec )

Now s!Z ey = Ts» hence p!7x = Tx.s, if and only if S is Goren-
stein, i.e. the affine ring A(S) = H'(S, %) is a Gorenstein ring®. This can
be seen as follows. s!&’spEC @® is the 7s-module associated to the dual space
D(A(S)) = Hom,(A(S), k) on which the A(S)-module structure is given by
(au)(x) = ulaz) for a and = in A(S) and « in D(A(S)) (cf. Hartshorne [6]).
Hence s!ﬁ’Spec w =Ts if and only if D(A(S)) = A(S) as A(S)-modules, hence
if and only if A(S) is a Gorenstein ring (cf. H. Bass, On the ubiquity of
Gorenstein rings, Math. Zeitschr., 82 (1963), 8-28). A(S) is Gorenstein if
and only if each localization of A(S) is Gorenstein. Hence, for example,
s!ﬂ’spec w = s, if each stalk of 7 is a complete intersection

k[t tay o o oy 8 1/(21%, 5%, « o« E,5),
Thus if
(i) S is a finite subscheme of a non-singular curve or a surface over k
or if
(ii) S is a finite group scheme over % (cf. Cartier’s structure theorem of
local group schemes [4]),

then s!&’spec w = s hence 9,!7x = Txxs.

CororrLAaRY 1.7 Let ¢ : Y — X be an isogeny of abelian varieties over
k. Then 0. = p (| Xxker (¢*) where & is the normalized Poincaré
line bundle on XxX*® and ¢’ : X*—>Y* is the dual of ¢. Especially if ¢° is
separable, then ¢, = ®L where L runs over all the line bundles on X
such that ¢*L = 7.

Remark. We have seen in the remark before Proposition 1.3 that
End ﬁx(w*ﬁy)zA(D(ker (¢))). Now we have a sharper result. We also
remark that this result generalizes Atiyah’s result in [1] p. 451.

Proof. We have seen in Theorem 1.5 that (px1), = [(1X9").. 11"
Thus 9.0y = @ 1Y x{0}) = [(¢ X 1), Z N X X {0} = [(1X¢")e #1171 X x {0} =
[(1xe"e PN XX{0}]" = [P1sl F | Xxker (]
since the diagram

@ The relevance of Goernstein ring here was pointed out to us by Masaki Kashiwabara.
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Xx Xt ——— Xxker(¢%)
lxso‘l lpl
XXY' ¢———uw - Xx {0}

is cartesian. Now apply the duality theorem for the finite morphism p,.
Since ker (¢°) is a group scheme and hence Gorenstein, we see that

v = P1:l[ P Xxker (¢°)]7) = p1( P | XX ker (¢7)).

If ¢’ is separable, ker(¢’) is reduced, and we easily get the result. Q.E.D.
Let ¢ :Y =X be an isogeny of g-dimensional abelian varieties over &
with G = Ker(¢), and let L and M be line bundles on Y. We are now
going to identify the 7y-module S#0.» ﬁx(go*L, 0. M).
By the adjointness of ¢, and ¢* and the fact that ¢*¢.L = p,p*L for
2,0 :YXG3Y, we have

FE0m pp (PxLy 93 M) = 01 0 15 (9*PxLy M)
= Qa0 3 (DRl LRy D1*M ], T7) = Pul D1 ¥ L&) D*MT]
Since G is Gorenstein, this is isomorphic to @.pule*L&p*M™]" = @D,
(#*L7'Q@p*M) = ¢up1(IX AL™NWZ ® 5, 1P (M 5 L7)] = Pral LXA(LT))H(p X 1)y
[@® 5, P*M& L] by the commutative diagram

1XA(L™?)

Y < YxG >Y xY*
¢l l¢x1 l¢x1
X¢—— XXG > XxY*

/2! 1XA(L™)

Suppose moreover that L and M are algebraically equivalent. Then
there is a k-valued point b in Y*® such that

@ p, MR 5 L7 = (Iy X T)*'
where T, :Y*—Y* is the translation by ». Hence
FE0m 15 (PxLy pxM) = Pru(1X ALK X1)(1X T,)* @
= Pu(IXAL™))*AX Tp)Xp X 1)xZ
= D1 X Ty 0 AL™)) (¢ X1)Z
Thus by Theorem 1.5, we get
FE 0w 1 (PiLy p5xM) = P1u(1X Ty 0 AL TAX ") F ']
= Pul(1X Ty o AL I X" ™1,
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Suppose, moreover, that A(L) = —A(L™) induces an isomorphism on G as in
Theorem 1.2. Then the sheaf is isomorphic to

Pil(1X @) P XX G

where G, is the image of G by T,oA(L™):Y Y’ and G, = (¢°)"YG,) is the
total inverse image by ¢°: X’ =Y’ of the subscheme G,.

14

Xx Xt XxG, > X

t t
x| ety |
XXVl e XXGy—— > X

Since G, is a translation of a finite subgroup scheme of Y? it is Gorenstein.
Applying the duality theorem for p,: XxG,— X, the sheaf above is iso-
morphic to [pu(1X0"). (P XXG)]" = [ P | XXG,)]". The second p,
is now the projection p, : XxG,— X. Since G, is again a translation of a
finite subgroup scheme and hence Gorenstein, this sheaf is isomorphic to

p1>:<[ﬁ_1|XXGb]v = pl*[..gleXGNb]-

Thus we get the following:

ProposiTioN 1.8. Let ¢ : Y — X be an isogeny of abelian varieties over
k with ker (p) = G. Let L and M be algebraically equivalent line bundles
on Y, with M= L& éﬁy[@le{b}]. If A(L) induces an isomorphism on G.
then 270. ., (9sL, 0 M) =01 F |XxG,) where <7 is the normalized Poincaré
line bundle on Xx X’ and G, = (¢°)™(T; o A(L™)(G)) is the total inverse image
in X* by ¢° of the subscheme T,0 A(L™')(G) of Y".

CoroLLARY 1.9 Let ¢ : Y — X be an isogeny of abelian varieties over
k with ker(¢) =G. Let L be a line bundle on Y such that A(L) induces
an isomorphism on G. Then

gndﬁx(go*L) = pm(ﬁlxx G~)

where G is the total inverse image by ¢’ : X* =Y’ of the subgroup scheme
A(L)G) of Y*. Especially if both ¢ and ¢’ are separable,

&nd , (piL) = ®L
where L’ runs over all the line bundles L’ on X such that

o*L' = TiL® , L™
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for some point a in ker (¢).

Remark. We shall show later that it is a generalization valid in all
characteristic and dimension of Atiyah’s key Lemma 22, p. 439 in [1].

ProposrTioN 1.10 In the notation of Theorem 1.4, let E be a univer-
sal vector bundle on Xx X’ such that (1yXxz)*E = (¢ x1y:)sM. Then

Rgpzs*%oﬂzﬁx”,”,(p12*E, Pu*E) 2 4eTx1y

where P P15t XX X' X X' > XXX’ and Pyt XXX'XX' - X'xX’ are the
projections and 4 : X’ — X’x X’ is the diagonal map.

Proof. Considering the stalk at each point of X’xX’, we conclude, by
Proposition 1.3, that the sheaf on the left hand side has support on the
diagonal 4(X’) and that at a point on the diagonal its stalk modulo the
maximal ideal is one dimensional. @ Moreover, the canonical injection
Cyr = DoxEnd ﬁ,ﬂx(E) dualizes to give a surjection Rp,.gnd Lo\ E) > Txre
Thus from what we have seen above and the flat base change theorem we
get a canonical surjection

Rapza*%OMyxxx,xx, (P12*E, p15* E) = 44T %1

To show that this is an isomorphism, it is enough to show that its pull
back by the faithfully flat morphism zXxz :Y*XY*— X’x X’ is an isomorph-
ism. By the flat base change theorem and the fact that (Lxa)*E = (¢ X1),M,
we get

(z Xfr)*Rgng*%om&.X”,”, (P12*E, p1s*E)
= qu’zs*%Om&}”,xy,((Sa X1X1)P12* M, (¢ X1X1)yp15*M)

where p,, and p,; on the right hand side are now the projections for
Y XY*xY",

Thus we are in the situation before Proposition 1.8, and see that this
latter is isomorphic to

RPoss( @ X1 X 1)uD1aaul (150125 M) ™' Q0 15* M ]
= D1aaRDoganl (¥ 01" MV 'R p 15" M]

where p#: (Y XY'XY*)XG Y xY*xY*® is induced by the action of G on Y,
and various projections are for ¥ XY*xV*xG.
Since M = p*LR® £ ®,p*L’, it is not hard to see that (p*p,,*M)"'Qp,;"M
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=[A X X1)¥(P12* @ RP15* (1 X )* & T 1RPas [0 * L' ' Q@p* L' @p1s*(1 X j)*¢? '] where
v 1 Y'XY*—>Y* sends a point (u,v) to v—u, and ?7/’ is the normalized

Poincaré line bundle on Y*xY. Thus we get

(e X7)*R"Dosy %Omﬁxxx,”, (P1*E, pi3*E)

= P2l (D" L T @D L' @p1s*(1 Xj)*/&;_l)®Rg79234*(1 Xy X1)*(p12*@ @D1s* (LX2)*Z 7))
But by the flat base change it is not hard to show that

RPosus( 1 X X 1) 012" @ QP15 (1 X )*Z 7] = (P — D1 — 20 03)*Rpon s

where p, — p; — 20 9, 1 Y'XY*xG —Y" is the obvious map. By Lemma 1.1
Rp,.¢ has support at 0 with one dimensional stalk there. Thus this latter
is isomorphic to i, Tyxg Where i : Y XG =Y XY’ x G sends (u, a) to (u, u+2i(a), a).
Hence

(:'rXfI')*Rgpgzg*%Omﬂxx (pn*E, p!a*E)

= 20’ [0 L' @D* L' @01* (1 X 7)* @ Qi 4T r'xe]
= (P12 © Nsl¥'¢ = (@X2)*4:Tx1+

Moreover, keeping track of the isomorphisms, we see that this final iso-
morphism is the (zxz)* of the original canonical surjection. Thus we are
done. Q.E.D.

Remark. When Y =X, ¢ =1y, L = ¢ and L' = P4, we have X' = X*
and E =, and this result is a slight modification of Lemma 1.1 for

1 =9.

JOROLLARY 1.11 In the notation of Proposition 1.10, suppose S is a
Gorenstein finite subscheme of X’. Let E|XxS be the restriction of E on
XxX to XxS. Then

End , (p[E| XX S]) = A(S)
where p, : XxS— X is the projection.

Proof. For simplicity, we denote E' = E|XxS. Via scalar multiplica-
tion, A(S) is canonically contained in End &,X(p,*E'). Thus it is enough to
show that the dimension of these, as k-vector spaces, coincide.

By adjointness of p,, and p,*, and the cartesian diagram
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Y
X><S><S—————~ls——~—> XxS
lpnz P, lpl
XxS > X

Endﬁ’x(pl*E,> = Homﬂxxs(plz*pla*E'y E’') = H(XXS, [plz*(pls*E'®p12*Ev’)]v)

= HX, pralpr1o*(01s*E'@p12*E')]" ).

Since S is Gorenstein, we can apply the duality theorem for the finite
morphism p, and see that this is equal to

HYX, (D131 D1s" E' 1" EN)]Y) = HAX, [P14(p1s* E'Rp*ENTY),

which is dual, by Serre duality, to

HY(X, p1u(pss*E'@p*E")) = H(XXSXS, Hom . (DE', D" E"))
= HYSXS, R"pusFE0m 1, (D*E's pis*E")).
By the base change theorem, the sheaf inside is equal to
(i X i) Rpuse SC0m 1y, (01" Es Dis*E).

where i:S— X’ is the injection. By Proposition 1.10 this is equal to
(i XY doTxr = 4.7s. Thus End ﬁx(pl*E’) is dual, as a k-vector space, to

HYSXS, 4,T%5) = A(S).
CororrLaRY 1.12 Let X be an abelian variety over %k and let & be

the normalized Poincaré line bundle on XxX!. If S is a Gorenstein flnite
subscheme of X* then

End , (p,[.2 | Xx S]) = A(S)

where | XxS is the restriction of & to XXS.

Proof. As we remarked before Corollary 1.11, & is a special case of
E in Corollary 1.11.

Remark. When £ is the field of complex numbers, Morikawa [10]
characterized those simple vector bundles on a complex torus X which we
get as in Theorem 1.2 (i) as follows:

Let X be the universal covering space of X, that is, a g-dimensional
vector space over k. Let I' be the fundamental group, which can be
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identified as the subgroup of periods of X. Then a vector bundle E of
rank » on X corresponds to a cohomology class of a l-cocycle (a factor of
automorphy or a matric multiplier) k(e,z) in H}.(I, GL{S7)), where 5%
is the ring of all holomorphic functions on X, and h(e,z) in GL/(97) for
a in I' and 2z in X satisfies

e + B,2) = h(B, 2z + a)« h(a,2).

Then E is of the form in Theorem 1.2 (i), if and only if the corresponding
1-cocycle is cohomologous to one of the form

h(a, z) = exp (B(a, z)) - C(a)

where B(q,?2) is a bilinear form, k-linear in 2z, C(a) is a constant matrix in
GL.k), and the linear envelope of C(a) with « running over I' is the full
matrix ring M/(k). (See also Gunning [5])

We can re-interpret this result as follows:
There exists an isogeny ¢ :Y = X and a line bundle L on Y such that A(L)
induces an isomorphism on ker(¢) and that E=¢,L, if and only if the
canonical inclusion &y = %nd ﬁx(E) induces an isomorphism

H(X, 7x) ~ H(X, &nd , (E))

for j =0 and 1 (resp. all j).
The necessity follows immediately from (cf. Corollary 1.9)

&nd  (9:L) = L'

where L’ runs over all the line bundles on X such that ¢*L'=T*L® &,AL‘l
with a in ker(¢), and the calculation of the cohomology groups of a line
bundle on an abelian variety in Mumford [14]. (See also Lemma 1.1).
The sufficiency follows from Morikawa’s characterization and the following:
First of all Ai(a,z)"'dh(a,z) determines a fundamental class in H(X, 2k ®
“nd &’x(E» (cf. Atiyah [2]), which, by assumption, is isomorphic to H(X, 2%),
since Q% is trivial. Hence we may assume h(e, 2) is of the form exp (B(a, 2)) -
C(a). Moreover, since EndﬂX(E) = H'(X, gndﬂx(E)) = HY(X, o) =k, the
linear envelope of C(«) is the full matrix ring.

We also remark that HY(X, ¥ nd &’X(E)) measures the infinitesimal defor-
mation of E on X, that is, it is isomorphic to the tangent space at E of
the moduli of vector bundles on X. Our characterization above says that
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the vector bundle of the form ¢.L as above, moves essentially in a g-

dimensional family.

Section 2 Vector bundles on an elliptic curve.

In this section, we let X be an abelian variety of dimension 1 over k
of characteristic p, i.e. an elliptic curve with a base point.

Atiyah [1] classifled all the vector bundles on X. Among other things,
he proved the following (Theorems 7 & 10):

(i) Let & x(r,d) be the set of isomorphism classes of indecomposable vector
bundles of rank » and of degree d. If we fix one E in &x(r,d), then
every other vector bundles is of the form E®L with L in Pic®(X)=g4(1,0).
Moreover, EQL,=EQL, if and only if L,®" = L,®" where 7' = 7/(7, d).

(ii) In &x(r,0) there is a unique element E,, such that H'(X, E,,) 0 (in
fact it is one dimensional). We fix this notation hereafter.

(iii) (Riemann-Roch) Let A%E) be the dimension of H¥X,E). Then for
E in Ex(r,d), we have

hYE)=d and h'(E) =0 when d is positive,
h(E) =0 and A'E) = |d| when d is negative.
h(E)=hY(E)=0 when d=0and E+E,,
RYE) = h*(E) = 1 when E = E,.,
(iv) Suppose p =0. For E in &x(r,d) with (r,d)=1, End (E) (In
fact such E is “stable” hence simple regardless of p. «cf. Raynaud [17]
when p =0. In general due to Takemoto.)
(v) Suppose p=0. For E in & x(r,d) with (r,d)=1, EQE,isin & x(rh,dh).
For these results, the key is his Lemma 7 to the effect that for E in
& x(r,d) with (r,d) =1 and plr, gnd&,l(E) = @L, where L runs over all the
line bundles on X with L& =7.
(vi) When » =0, E,, is isomorphic to the (r—1)st symmetric power
S™Y(Es,0)-
(vil) When £k is the field of complex numbers, a vector buncle has a
holomorphic integrable connection if and only if it is a direct sum of those
in g 4(r,0) for various r. Matsushima [9] and Morimoto [11] generalized
this result to complex tori.
We now apply our results in section 1.
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ProrosiTioN 2.1 Let ¢ : Y — X be an isogeny of degree » and let L
be a line bundle of degree d on Y with (r,d) =1. Then ¢,L is in &x(r,d).
For E in &x(r,d), we have Endﬁx(E) = k.

Progf. Since Y is also an elliptic curve, we have Y* =Y and A(L) = dy.
Hence A(L) induces as isomorphism on ker(¢) of order r if and only if
(r,d)=1. Apply Theorem 1.2(i). ¢,L has rank r and degree d by Rie-
mann-Roch theorem for the finite morphism ¢.

ProrosiTioN 2.2 Let E be an element of £4(r,d) with (r,d)=1.
Then

&nd ,, (E) = pi P71 XX, X)

where &7 is the normalized Poincaré line bundle on Xx X’ = Xx X and ,X
is the (scheme-theoretic) kernel of 7y : X— X.

Proof. Since elements in & x(r,d) differ only by tensor products by
line bundles of degree 0, it is enough to show that for an isogeny ¢ : Y — X
of degree » and for a line bundle L on Y of degree d, &nd PACARRE of
the form in Proposition 2.2.

By Corollary 1.9 we get

g”d(ﬁx(ﬂo*L) = Px*(ﬁlXXG)

where G = (¢")A(L) (ker (9))). Identifying, as before, X’ and Y’ with X and
Y respectively (via 4 of a line bundle of degree 1), we can easily show that
ML)y =dy, oo¢’®=ry and ¢' o =ry. Since (r,d)=1, we have A(L) (ker (¢))=
ker (¢). Thus G = (¢°)* (ker (¢)) = ker (¢ o ¢*) = ker () = ,X.

ProrosiTion 2.3 Given » and d with (r,d) = 1. There exists a (simple)
vector bundle £ = E(r,d) on XxX, such that among the vector bundles
ElXx{a} for @ moving over the fk-valued points of X, each element in
& x(r,d) appears once and only once. Moreover,

Rlpza*%0m§xxx”(pu*Ey P*E) = 4y Tx

where s, Dogy D15 ¢ XX XXX — XXX are the projections and 4:X—>XxX is
the diagonal map.

Remark. This is a sharpening of Atiyah’s classification of & x(r,d). He
has shown that it is set-theoretically isomorphic to X. We now have an
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algebraic family parametrized by X. This family is “universal” in the sense
that for any scheme S over k, the set of S-equivalence classes (cf. FGA,
190-24) of vector bundles on XxS with each fiber in &(r,d) is isomorphic
to the set of morphisms S— X’ = X, via the pull back of E(r,d).
We shall see later that this algebraic family is indispensable to handling
the problem (1), when the Hasse invariant of X is zero.

We also remark that when » =1, we can take E(r,d) = p*L® PR
where & is the Poincare line bundle on XxX and L is a line bundle of
degree d on X.

Proof. Let ¢ :Y — X be an isogeny of degree ». Let L and L’ be line
bundles on Y of degree d and 4’ respectively such that d-d’=1 (mod. 7).
Such d’ exists since (r,d)=1. Since 2 = A(L)=dy and 2’ = A(L') = d’y, the
conditions of Theorem 1.4 are satisfied. Thus we have z: Y =Y'— X' =
Y’/2(G). But a(G)=G. It is easy to show that X’ =X and = =¢. Thus
we are done by Theorem 1.4 and Proposition 1.10.

ProrosiTion 2.4. Let S be a finite subscheme of X. Then for the
vector bundle E = E(r,d) on XxX with (r,d) =1 defined in Proposition 2.3,
we have

End , (p.lEI XX S]) = A(S).
Especially when S is an artinian local subscheme of X, the vector bundle

2lEIXXS] is in & x(rh,dh) with h = dim,A(S).

Proof. Any finite subscheme of X is Gorenstein, since X is of dimension
1. Thus the Proposition follows from Corollary 1.11.

CororLLARY 2.5 Let E be an element of & x(rh,dh) with (r,d) = 1.
Then
End , (E) = K111,

Remark. We shall show in Proposition 2.13 that when there is a separable
isogeny of degree 7, we do not need Proposition 2.4 to prove Corollary 2.5.

CoRrROLLARY 2.6 Let S be the (k—1)-st order neighborhood of the
origin 0 of X, i.e. S = Spec(x,ol»%.). Then p(F|XxS)=E,, where
& is the normalized Poincaré line bundle on XxX. Moreover, End 2 (Eno)

= K[£1/(¢").
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Proof. We know by Proposition 2.4 and the Remark before that, that
this bundle is in & x(k,0). It is enough to show that this has a non-zero
global section. But since S is Gorenstein, H(X, p.(Z7XxS)) is dual, as a
k-vector space, to

HY (X, [9:( 1 XX9)]7) = H(X, 91 (F X XS))
= HY(XXS, 7 XXS) = H'S, R'poul F 7| 9)).

By the base change theorem, this is equal to HYS, (R'p:..F")|S) =k, since
R'p,, P71 is also concentrated at 0 and has 1-dimensional stalk there. (This
result is contained in Mumford’s result mentioned in Lemma 1.1).

Remark. We have shown in Proposition 2.1 that elements in £4(7,d)
with (r,d) =1 can be obtained by the direct image of a line bundle by an
isogeny ¢ :Y - X. Corollary 2.6 and in fact Theorem 1.5 says that we get
other bundles when we allow Y to be a non-reduced covering of X.

CoroLLARY 2.7 Let E be an element of & 4(r,d) with (r,d) =1. Sup-
pose 7 = qr’, with (#,p)=1 and ¢ a power of p. Then

“nd ﬂX(E)S—_@[L@Eq,O] if Hasse (X) =0, where L runs over all the line
bundles on X with L® =¢7,. (There are »?q of those). If Hasse(X) =0,
“nd ﬁ’.y(E) = @[LRE,: ), where L runs over all the line bundles on X with
Lo = 7y,

Remark. 'This generalizes Atiyah’s key Lemma 7 in [1].

Proof. As we have seen in Proposition 2.2, the left hand side is iso-
morphic to 9 #|Xx,X). But the subgroup scheme ,X is isomorphic to
the product ,Xx, X, and , X is reduced. If Hasse(X)=0, ,X is local. If
Hasse (X) 0, ,X is isomorphic to the procudt pg,xZ/(gq), where g, is the
kernel of ¢:G,—>G, and is local. Corollary follows immediately from
Corollary 2.6.

Let R=(7%,, be the local ring of X at the origin 0, and let .= IR

be its maximal ideal with a generator ¢{. We denote by R the completion

X0

of R with respect to .. R is isomorphic to the formal power series ring
ktl). The group law g : XxX—> X induces a map p*: R—~R® R, which
gives a one-parameter formal group X, the local part of the p-divisible
group X(p). (For the detail see e.g. Oda [16].) When p = 0, X is isomorphic
to the additive group G,. When p+#0 and Hasse(X)#0. X is isomorphic
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to G, =G, while X is isomorphic to the group G,;, when p+0 and
“i—lasse’(X) =0.

PROPOSITION 2.8 E}.o® ?lE'”-" decomposes into the direct' sum of E,q,0
(i=1,2-+-+,5), where R/»"®:R/»" decomposes, as an R-module via the
group law g* into: the direct sum of cyclicc modules of length &(i) (i =1,
2’ . .’s).

Remark, . When p =0, Atiyah ([1] Theorem 8) found k(). For n’'=h,

k(i) =(h" —h)+ (2i = 1), (i =1,2,--,h).

We can show that when 2’ =p°=h, h(i)=1p° (i =1,2,+ -+, h).

Proof. Let S =Spec(R/»") and S’ = Spec(R/-»") be the (k—1)-st and
the (B’ —1)-st order' neighborhood of 0 in X. We have shown in Corollary
2.6 that E, o = pu( F|XXxS) and' Eyro = piu( F1XXS’). Then

Eh.O@ﬁth;.o =P Pr* F ®XXX”P13*.7 | XxS%S)

But p,*? ®ﬁx“xxp13*,f =‘(1>< #)*” . The rest follows immediately from
this.

COROLLARY 2.9 %nd 2 Eno) is a unipotent vector bundle on X.

We denote by F: X— X®=X the Frobenius morphism and by V : X%
— X the ““Verschiebung” morphism. We know (for example Oda [16] Sec-
tion 2) that F* =V, and that

(a) When Hasse (X)# 0, V is separable and coincides with the quotient
- map of X by the unique reduced subgroup of order p.
(b) When Hasse (X) =0, V coincides with F.

After Hartshorne, we denote F*E by E‘ for a vector bundle E on X.

ProrosiTioNn 2.10

When Hasse (X) 0, EP) = E,.o.

When Hasse (X) =0, we have

vEOx" for 1Sh<p

EDy = ® Eeorphro (i =1,2, -+ +,p), for p<h,

where [ ] is the Gauss symbol.
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Proof. Let S = Spec(R/.»") be the (h —1)-st order neighborhood of 0
in X. Then E, ,= (. |XxS). Thus EP, = p(Fx1*#|XxS). But as
we have seen in the proof of Theorem 1.5, (F X1)* P =(1x F)* F=(1xV)* Z.
When Hasse(X)#0, V : X— X is separable, hence locally isomorphic at 0.
Therefore EP = E, ,' When Hasse (X) =0,V coincides with F. Thus E{®,
decomposes into the direct sum of E,,,, while R/..", as an R-module via
the p-th power map F*:R— R and the: projection R-» R/.»", decomposes
into the direct sum of cyclic modules of length #(i). It suffices to compute
the decomposition of k[t]/(t*) as a k[t”]-module, whichis easy.

CoroLrARY 2.11 If ¢:Y—> X is an isogeny such that ¢°: XY is
separable, then ¢*E, , is isomorphic to E, . of V. ‘

Proof. 'The proof is similar to that of Proposition 2.10, in view of the
fact that ¢® is locally isomorphic.

Prorosition 2.12 Let G be a finite subgroup ‘scheme of X and let

#6, Py : X XG — X be the action and the pr?jectiop. Then
|
16 By o = p*EL)

on X xXG.

Remark. When k is the field of complex numbers, this means that £, ,

has a holomorphic integrable connection.

Proof. E, .= p{F|XXS), for the (h — 1)-st order neighborh‘oo.d S\ oif\
0. But (px1*F= p,*F ®ﬁxxxxxp23*ﬁ on XxXxX. The ristriction Aof_
P* P to X XxGXS is trivial, since GxS is finite. Hence we are done. \

PrOPOSITION 2.13 Let ¢ : ¥ — X be a separable isogeny of degree r.” Fot
a line bundle L of degree d on Y with (r,d) =1, ¢*(L®ﬁth_o) is in %%
(rhydh), and End, (¢i(L® , Eno) = End , (Ey,0) = KZ(e"). I moreover of
is separable, ¢, L& ﬁth,o is In & x(rh,dh).

Proof. By Corollary 2.9 and Proposition 2.12, C = E,,, satisfies all the
conditions of Theorem 1.2 (ii). The rank and the degree are as in the
Proposition by the Riemann-Roch theorem for the finite morphism ¢. For
the last statement use Corollary 2.11 and the projection formula.
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Remark. Because of this Proposition and Proposition 2.1 when £ =1,
we can construct, more easily than Proposition 2.4, an element in & x(rk,dh)
with (r,d) =1, if either k=1, or h=1 and there is a separable isogeny of
degree . The reason is that = : Y*— X’ coincides with ¢ and hence locally
isomorphic. Thus we can take the local family near 0 of (¢x1),M instead
of that of its descent by (1x=z) and then project onto X. If Hasse(X)=0,
r can be arbitrary. If Hasse (X) =0, however, » should not be divisible by
p, when h+ 1. Proposition 2.4 is essential to construct and study E in
&€ x(rh,dh), when h=+1 and r is divisible by p. The last statement of
Proposition 2.3 is the restatement of Atiyah’s result (v) quoted at the
beginning of Section 2.

As we have remarked in (vi) at the beginning of Siection 2, Atyah
showed that for p =0, E,., is isomorphic to S*'(E;,). This fact can be
interpreted as follows:

Let # be a non-zero element in HY(X, 7%). u defines a principal G,-bundle
over X, Let J =], be the #x/ matrix

0 0 0
0 1
0
1
0 0

Then J* =0. With this / we have a representation G, +GL, by sending
x to exp(«xJ). Take the principal GL,-bundle exp(u/) over X, which is
obtained from the G,-bundle « via this representation. The vector bundle
associated to this is easily seen to be E,, This corresponds to the fact
that X = G,.

We now examine the case when p+0. Let W be the ordinary Witt
scheme over k& and W’ be its Cartier dual. (For the detail see Cartier [3}
and [4]. See also Oda [16].)

Let ¢, > be the dual pairing WxW’ — G,, defined by

<uy @) = exp (— 3 (u- z)™[p™)

where (u %)™ is the m-th phantom component of the product Witt vector
u-x. The matrix J = J, is nilpotent, and hence defines an element
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{]):(]90’0, """ )

of W'.

On the other hand, HY(X, W(Z7%)) coincides with the Dieudonné module ot
the Serre dual of X. (See Oda [16], Proposition 4.3). When Hasse (X)+0,
this is a free W(k)-module of rank 1 with a base #, such that Fx = » and
Vu = pu. When Hasse(X) =0, this is a free W(k)-module of rank 2, with
an element # and Fu =Vu forming a base.

In ecither case, take this « and get <u,{/}> = exp (~m§0u(’"’]"“/pm) in
HYX,GL,(%). It is not hard to show that this element determines the
principal GL,-bundle associated to E,,q.

We can prove Propositions 2.8, 2.10 and 2.12 using this construction of E,,,.

Let us now begin to answer our question (1).

ProrosiTion 2.14 Let E be an element in &£ x(p'h,dh) with (p,d) = 1.
Then E®9 is indecomposable and is of the form L®, Ey,0 with a line

bundle L on X of degree d.

Proof. It is enough to show this for one E, since all the other elements
differ from E by tensor product of a line bundle of degree 0. Hence by
Proposition 2.4 it is enough to assume E = p[E(p’, d)| XxS]l, where E(p',d)
is the ‘“‘universal” vector bundle on X xX and S is the (& —1)-st order
neighborhood of a point of X. Recall the construction of E(p',d) in
Theorem 1.4 and Proposition 2.3. There, Y =X, ¢ = F'. It follows that
X=X and = =¢ = F'. We work with the diagram

1Xx
X¢—— XXS > XX X< XxX
¢l goxll lgoxl lqoxl
X¢——— XxS Xx X< XxX
P, 1Xo

We have E® = ¢*p, [E(p’, d)| XX S] = pru(¢ X1)LE(p", d)| XX 5]
= pullp X 1)*E(p", d)| XX S].

But we know that (¢x1)*E(p’,d) = (1x¢),M, where M= p*LR.F Qp.*L’
with L and L’ line bundles on X of degree d and d’ respectively.
Thus E® = p[(1X @) M| XX S] = piu(1 X 0)(M| XX ¢™(S))

= pu(M| X X0™(S)) = pu(P*LR.F | X X ¢7X(S))

= LR 1l P | X X 97H(S)).
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But since S is the (& —1)-st orde;r‘ neighborhood of a point on X, ¢74(S) =
(F(S) is the (p'h —1)-st order neighborhood of the same point. Thus we
are done.

Remark. We can prove this Proposition more easily, when Hasse (X)+0.
See the remark after Theorem 2.16.

CorOLLARY 2.15 Suppose (p'7’,d) =1 and (#/,p)=1. For an isogeny
¢:Y > X of degree »’ and an element E’ in &y (p'h, dh), ¢(E’) is in
Lx(p'r’'h,dh). Moreover, for a vector bundle E in & y(p'r'h, dh), E® is
indecomposable and 1s of the form E"'® &;Ei"h'" with E” in &7, d).

Proof. Since ¢ is of degree ' with (#',p) =1, it is separable and the
diagram

Fi
Y —mM—Y

o] le

X— X

is cartesian. (For the proof we use the fact that the inductive limit of all
the finite subgroup schemes of X° is the dual of the ‘“‘true fundamental
group” of x. cf. SGA 1960/1961, exposé XI.)

Hence (F* o (E") = ¢ (F"E’). By Proposition 2.14, (F')*(E’) is of the
form L& o, Evno with L a line bundle of degree d on Y. Thus by Pro-
position 2.13 (F')*¢(E’) = ¢(LQE,,0) is contained in & x(r'(p'h), d(p‘h)).
Thus ¢ E") itself should be contained in & x(#'p'h,dk). As for the second
statement of the Corollary, it is enough to prove for only one E, and we
have done so above, in view of the second statement of Proposition 2.13.

Tueorem 2.16 Let (r,d) =1, and let E be an element of & y(vk,dh).
When Hasse (X) =0, E® is indecomposable. When Hasse(X)=0, E® is
indecomposable, if and only if either Z =1, or A+ 1 and r is divisible by
p. Otherwise, E® decomposes into min {p, 2} components in the following
manner: If 1#=h<p, E® = E™ where E’ is an element in & 4(»,dp) with
(r,p)=1. If p<h, E? =@®E, (j=1,2,+++,p), where E, is an element of
& x(rh(j), dph(s)), with h(j)=[(h —j)/p]+1 and (7,p) = L

Proof. Write » = p'#' with (#,p) =1.
If i +0, we have seen in Corollary 2.15 that E»” = [E®?]#**) s indecompos-
able. Thus E® itself should be indecomposable. If i =0, we may, by
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Proposition 2.13. assume E to be of the form ¢ (L® , E),0) for an isogeny
¢ :Y — X of degree ' and a line bundle L of degree d on Y. The diagram

F
y— Y

sol F lso

X— X
is cartesian. (cf. Proof of Corollary 2.15). Hence

Fr*o(LQE,0) = ¢+F(LREy,0) = ¢ LOPQELY, ).

Suppose Hasse(X) 0. Then by Proposition 2.10, EP, = E,, Thus we
have E® = ¢ (L®?R ﬁyEn,o) and we can apply Proposition 2.13, since ¢ is
separable and deg(L®?) = dp is prime to deg(p).

Suppose Hasse(X) = 0. Then by Proposition 2.10, we know that
EP, =t when h<p, while for p<h, E¥ =®Eup,o (/=12 ---,D)
where k(j) =[(k — j)/p]1+ 1. Thus applying Proposition 2.13, we get the
required result.

Remark. 'The cases (a) Hasse(X)#0 and ¢+ 0, and (b) Hasse(X) =0,
i#0 and k2 =1 can be proved more easily without using Corollary 2.15.
In both cases E = ¢ (L®E,,) is also an element of & (p'r’'h,dh), where
¢ :Y—> X is an isogeny (in case (a), separable) of degree p'#’ and L is a
line bundle of degree d on Y. In case (a) we can again show that
E® = ¢ (L®*QE,,). Since ker () nker (A(L®")) = Z|(p) and D(Z/(p)) = 113,
End &,X(E“”) is the algebra A(z,)®. End 2 (En.0) twisted by O(L®PRE,,),
where 0(L®*QE,,,) is an element of HZ,(Z/(p), Aut ﬁy(Eh,o)). (See the remark
after Theorem 1.2.) It is not hard to show that this twisted algebra is
isomorphic to k[#]/(¢*"*). In case (b), E = ¢,(L) is an element of & ,(p'7’, d).
In this case the diagram we had above is no longer cartesian. We decom-
pose ¢ into a composite ¢oF', with ¢ separable of degree #’. Using
Corollary 2.6 and Corollary 2.13, we can show that E®Y, hence E®, is
indecomposable.

We now answer question (2).

TuroreM 2.17 Let E be an element of & 4(7,d). Then the Frobenius
map

F* : H\X, E)~ H'(X, E)
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is injective, unless Hasse (X) =0 and E = E,, with r<p. In the latter case
F* is the zero map.

Remark. HYX,E)=0, unless either d <0 or E=E,, (cf. (iii) at the
beginning of Section 2). We only have to consider these cases. E=FE, =%
is the crucial case, which distinguishes whether Hasse (X) is zero or not.
It is surprising that even when Hasse (X) =0, F* seldom fails to be injective.

Proof. By projection formula, we have F,F*E = EQ o Fx. F* in the

Theorem coincides with the map
st H(X, E) » H\(X, EQ) ,» Fxx)

induced by the injection j: &% = Fux.
We have seen in Corollary 1.7 that F.7r = p (P | X xker (F*)). Also F'=V.
Hence when Hasse(X) 0, F, %y = @L where L runs over all the line
bundles on X with L®? = «7,. Especially j splits, hence 1Q; : E - E®R o P x
also splits. Thus j,. is injective.
Suppose now that Hasse(X)=0. Then ker (F‘)=ker(F) is the (p—1)-st
order neighborhood of 0, hence F,x = E,,, by Corollary 2.6. E,, is uni-
potent, i.e. has a filtration

Ep.O = EpDEp_1D """ DE13E0 - 0

whose successive quotients E/E; are isomorphic to . The image of
j % ~> F. % coincides with the last member E, of the filtration.

We only have to consider the cases (a) d <0, and (b) E=E,,, since
otherwise HYX, E) = 0.

Case (a): EQ®F,7r inherits a filtration EQE, and the image of 1®j is
E®E,. From the exact sequence

0>EQRQRE; > EQE,;,; > E—0
we get an exact sequence
HYFE)—-> H(EQE,) > H(EQE.;) > H(E)—0,

But H'(E) =0, since d<0. Hence by induction on i, we can easily show
that H(EQRE,)» H(EQE,) is injective.

It only remains to treat the case (b) E=E,, HY{XE,, is one
dimensional and generated by the characteristic class # of the extension
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0=F, > E,0>Tx—0

it is enough to show that F*x 0 when »r=p, and F*x =0 when »<p.
F*u is the characteristic class of the pull back

0= EPy— ER) o = Ty =0

As we have seen in the proof of Proposition 2.10, this extension behaves
in exactly the same manner as the extension of k[¢?]-modules

0—(H)/(t™ ) > k[£]/(¢™) >k —0

which is easily seen to be non-trivial when »=p, and trivial when » < p.
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