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1. Introduction

Let F map [0, 1] into a Banach space B and let R(F) denote the set of all
limits of Riemann sums of F. The set R(F) need not be convex in general (Naka-
mura and Amemiya (1966)) but is always convex when B is finite dimensional as
first shown by Hartman (1947). A proof of Hartman's result, based on a descrip-
tion of R(F) when the range of F is finite, was given in Ellis (1959). In this note
this description is refined, the extreme points of R(F) are determined and the
following complete characterization of R(F) is obtained (where Nn = {1,2, •••, n}).

THEOREM 1.1. Let F: [0, 1] -> {a;, i e Nn} and let Et = {t: F(t) = a,},

ieNn. Then R(F) coincides with the points £ " a j ^for which the coefficients a-,
satisfy, for each N' <= Nn,

(1.1) mfu EY £ S a, £ m t U £,)

In the theorem A0 and A denote the interior and closure of a set A respectively
and m denotes Lebesgue measure. Note that (1.1) implies that

O^a^ l,ieNn; £ a, = 1.
I

2. The closure of R'(F)

In Ellis (1959) it was shown that R(F) is the closure of a set denoted by R'(F).
In this section we show that R'(F) is closed.

We first describe the notation. By 3) we denote a partition 0 = t0 < tx <
• • •< /„ = 1; S a set of intermediary values ^{,tt g & < ti+u i = 0,1,-••,« — 1;

| | 1 - f;), the norm of @ and
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<=o

will be called a Riemann sum for F on S. Note that F may be non-measurable.
If Range F is contained in the Banach space B, PeB will be called a limit of
Riemann sums if for some sequence {2>n, <?„}, 13>n | -* 0 and || P — Z ( ^ n , <?„) | -» 0
as n ~* oo.

Our results are based on the following elementary result.

LEMMA 2.1. Let U be an arbitrary open subset of [0, 1] and, for 3) any
partition of [0, 1], let A(2>) denote the union of those intervals of S that fall
inside U. Then as \ 3) | -> 0, m[A(S>y] -* m(U).

In Ellis (1959) Lemma 2.1 was used in showing that if N' <= Nn and AN.(S>)
denotes the union of those intervals of Si on each of which Range F={uh i e N'}
then lim|S|^om[^4^.(S)] exists. We now denote this limit by KN.. It is easy to
verify that

(2.1) KN.= lim m\_An(S)] = m\(U Et)° - U ( U £,)°].

From (2.1), Kt = K[i} = m(£°). By induction, for any N':

(2.2) Z KN. = m(\J EX;
JV »<=JV' \ieN' I

(2.2)' I KN.= 1.

For each JV' <= Nn let cN-t, ieN', be any set of non-negative real numbers
satisfying T,ieN-cN.i = 1. As in Ellis (1959) let R'(F) be the set of points PeB
of the form

(2.3) = Z ( Z

= Z E
N'<=Nn ieN'

In Ellis (1959) it was shown that R(F) = R'(F).

PROPOSITION 2.1. R'(F) is closed and thus every P e R(F) is of the form (2.3).

PROOF. Let R0(F) denote the set of points P satisfying (2.3) for which each
Cjy.j is 0 or 1, a finite set of points. By Day (1962) (Lemma 2, p. 79) the convex hull
of R0(F) is compact and therefore closed. Since R0(F) ^ R'(F) and R\F) is convex,
the convex hull of R0(F) is contained in R'(F). On the other hand it is easy to
verify that each PeJR'(F) can be expressed as a convex combination of points in
R0(F) and thus is contained in and so coincides with the convex hull of R0(F).
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3. The extreme points of R (F) and Theorem 1.1

We denote by R*(F) the set of points in B for which (1.1) holds for every
N' <=• Nn. It is easy to verify that R*(F) is convex.

PROPOSITION 3.1. R*(F)=> R(F).

PROOF. From (2.3), if P e R(F),

n

P = I,ai!xi:ai= £ cN,tKN., ieNn.

Thus, for any JV' c Nn,

£ a-, = £ ( £ c^iKf,..)
ieJV' ieJV' \ N"<zNn;i eN" 1

^ E £ cn..,Kn,. = £ Xw. = m ( U
W'ciV' ieJV" N"=N' \ U i » '

using (2.2).
On the other hand

£ a, = 1 - E flj ^ 1 - m ( U £() = m ( U EX
ieiV' i^\ ' \i*N' 1 \ieN' 1

For {p;,ieNn} any permutation of Nn let P = X?=1ap.ap., where for each

Then

i api=m( U £„)

and P is a limit of Riemann sums for which xpi is used as intermediary value in
S only when necessary (i.e. on intervals falling inside £P|), aP2 only where necessary
after the intermediary values ocPl have been assigned, etc. Likewise P is a limit of
Riemann sums for waich aPn is used as intermediary value whenever possible,
ap^_, whenever possible after the values aPn have been assigned, etc. Let E(F). be
the set of all such P for all permutations of JVn.

PROPOSITION 3.2. / / Range F = {cch ieNn} and the points {aj are linearly
independent then every point of E(F) is an extreme point of R*(F).

PROOF. We assume for convenience that P = E"i a^, with

* • r k \ 0 n

£ a, = ml U£ ; , k= 1,2, -,n. Let P} = E a/a,, j = 1,2,
I \ I / I
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be in R*(F) and suppose that P = (Px + P2)/2. The linear independence implies
that a, = (a,1 + af)/2, i = 1 , 2 , - , I I . Since PjeK*(F), J = 1,2; a/ ^ m(£,°)
= ai5 j = 1,2 so that ax = a* = af. Similarly at = a}, af; i = 2,3,---,n. Thus
Px = P2 = P and P is an extreme point of R*(F).

Note that when the set {aj is not linearly independent, E(F) may contain
points that are not extreme points. For example if B = R, R(F) is a point or line
segment and contains one or two distinct extreme points. However, E(F) may
contain n! distinct points.

PROPOSITION 3.3. For P e R*(F) assume that there exist i, j e JVn with strict
inequality holding in (1.1) for JV' = {i,j} and for every JV' <= Nn that contains
one but not both of i,j. Then P is not an extreme point of R*(F).

PROOF. Let P = E" ar<xr, assume the hypotheses satisfied for i, j and let
d > 0 be less than the minimum difference in the inequalities in (1.1) for all N'
in the hypotheses. Define

Pk= S a j a r > k = 1,2;
i

with

a* = ar, r # i,j; k = 1,2;

al = at + d, aj = as - d;

af = a{ — d, aj 2= a,- + d.

Then, if i J e N ' <= Nn or (i,/) f| JV' = 0, 2 V ar* = S^.a,. it = 1,2 and
(1.1) is satisfied for JV'. For the remaining JV' c JVn (1.1) is a consequence of the
choice of d. Thus PuP2eR*(F). From the definition, P = (Pt + P2)/2. Assume
that P t = P. Then P t - P = d(a( - a,) = 0, implying that a; = a;, a contra-
diction.

PROPOSITION 3.4. £(P) contains the extreme points of R*(F).

PROOF. The proof is trivial for n = 2. Assume that n > 2, that P
= E i arar e K*(F) and that, for every JV' <= JVn,

m( U £r)°< S a,.
\r EJV' / r EN'

By complementation

E a r < m ( ( J £ , ) •

The hypotheses of Proposition 3.3 are satisfied for any pair i, j and thus P is not
an extreme point.
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Excluding this case there is a maximal N' ^ JVn with

(3.1) E a, = m I U Er)°; E a, = m f (J £i )•
riK' \reiV' / r$N' \r$N' I

For convenience of notation we assume that N' = Nk, 1 ̂  k < n. We first show
that if n - k ^ 3 then P is not an extreme point of R*(F).

We note that with each point in R*(F) and each N' c JVn we can associate
numbers iCN. by (2.1) (in terms of the sets Er). These numbers will satisfy (2.2)
and (2.2)' and, by complementation,

(3.2) rn(UEr) = S{XW.: N* f) N' * 0}.

LetiV* c Nn\Nk. Then

S a r + E ar > nt ( U Er)° = E JCW.
retC refft \re\kuiV« / N'cNkuN*

since ^ holds by (1.1) and equality would contradict the maximality of Nk. Thus

£ ar > E{/CN,: N' cz (Nk U JV*); JV'DiV* # 0 }
rs)V«

( 3 3 ) ^ E «„. = ml U £r)°.

Now let AT" <= Nk, 0 # N * c JVn\iVfc, N
# = JV" U N*' Then

(3.4) m( U £r)° = E = E KN.+ Il{KN,:N'czN#;N'UN*¥=0}

< E flj + £ a{,
i e W" i e N •

using (3.3). It follows that if j , j e Nn \Nk and JV# = {j,;} or contains one but
not both of j , j , then

m( U £r) < E ar.

With AT# = JV" U N*, TV* # 0 as before;

Nn\N# = (JVfc\iV") U[(iVn\iV,)\JV*],

(3.4) holds for Nn\N* and

E a r = l - E a r < l - m ( U ) B , . ) 0 = m ( (J
r e » reNn\N# \rsNn\N#/ \reN#

Proposition 3.3 then implies that P is not an extreme point.
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Thus if P is an extreme point of R*(F), k is either n — 1 or n — 2. Assume
that k = n - 2. Then

_! (J £„) = £{**•: N' c= Nn,N' f) (n - l,n) # 0 }

:(fi-l,n) c JV'}+ 2{Kw.:ii6iV',fi-l#N'}

+ Z{KN,:n-leN';n$N'},

denning A, An and An-X.
From (3.2) A + At = m{E^, i = n - l,n. Thus if A = 0, a,,,! + «„

= »!(.£„_!) + m(£H) and (1.1) implies that a{ = m(£j), i = n — \,n. This contra-
dicts the assumption that k = n — 2. Thus we may assume that yl # 0.

Assuming that ,4 ^ 0 let P = 2" = ia',ar, i = 1,2; where a). = ar, i = 1,2;
r < n - 1; a^ = A + Ana^t = ^ n _ x ; a^ = ^n, a ^ x = A + A^% T h e n

P J G R * ( F ) , i = 1,2 and there exists ?., 0 < A < l with an = An + kA;
aB_! = An-X + (1 - A)^. It follows that P = 1P1 + (I - X)P2, showing that P is
not an extreme point.

We have shown that the assumption that P is an extreme point of R*(F)
implies that for some n^ n, ani = m(£ni), £,.*„, aP = m( U r*ni Er)°. Similar
considerations applied to E r # n , ar show that if P is an extreme point of R*(F)
there exists n2 ¥=• nx with ani + an2 = m(Ent (J £nj) and, continuing this process,
that Pe£(F) .

COROLLARY. The set of extreme points of R*(F) is contained in E(F) and
coincides with £(F) when the set {ah i e Ntt} is linearly independent.

PROPOSITION 3.5. R*(F) is compact.

PROOF. The part B of R" defined by the points (aua2,---,an), at ̂  0;
£ " at = 1 is compact. The subset B* of B for which the additional inequalities
in (1.1) are satisfied is compact as a closed subset of B.

If the function <£ mapping B x n " (a j cz R" x B" into B is defined by the
formula

n

(aua2,---an,ctlyx2,---ctn)-> 2 a^,
i = l

(Bourbaki (1953), Proposition 1, p. 80) then <$> is continuous and R*(F) is com-
pact as the image of the compact subset B* x n"{<Xi}.

PROOF OF THEOREM 1.1. Since R*(F) is a compact, convex subset of the
locally convex space B it is the closed convex hull of its extreme points by the
Krein-Mil'man Theorem (Day (1962), Theorem 1, p. 78) and thus of E(F) since
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E(F) contains the set of extreme points of R*(F). Since R0(F) => E(F) and R(F) is the

closed convex hull of R0(F), R*(F) <= R(F) and thus R(F) and R*(F) coincide.
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