J. Austral. Math. Soc. (Series A) 36 (1984), 354-356

A CHARACTERISTIC PROPERTY OF PSL₂(7)

SHI WUJIE

(Received 21 December 1982)

Communicated by D. E. Taylor

Abstract

In this note we characterize $PSL_2(7)$ by conditions on the order of the group and the orders of its elements.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 06.

In [7] we have characterized PSL(5) by conditions only on the order of the group and the orders of its elements. That is, the characteristic property of $PSL_2(5)$ is:

(1) the order of the group contains at least three different prime factors;

(2) the order of every non-identity element in the group is a prime.

S. Adnan has characterized $PSL_2(7)$ using the simplicity of the group and properties of its maximal subgroups (see [1] and [2]). In this note we continue the discussion of [7], and using the conclusions of [3] and [5] we present a characterization of $PSL_2(7)$ by conditions only on the order of the group and the orders of its elements.

THEOREM. Let G be a finite group satisfying the following conditions:

(1) |G| contains at least three different prime factors, that is, $|\pi(G)| \ge 3$;

(2) the order of every non-identity element in G is either a power of 2 or a prime different from 5. Then G is isomorphic to $PSL_2(7)$.

PROOF. By condition (2) we see that G is a group in which every element has prime power order. From [3] Theorem 1 if G is solvable, then $|\pi(G)| \le 2$. Thus by condition (1) we conclude that G is non-solvable. Furthermore, by a theorem of P.

^{© 1984} Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

Hall ([3] Theorem 4) G has the normal series

$$G \ge N > P \ge 1$$
,

where P is the largest solvable normal subgroup of G and is a p-group and N/P is the unique minimal normal subgroup of G/P and is a simple group of composite order. Since every element of N/P has prime power order, [5] Theorem 16 implies that N/P is isomorphic to one of the following groups: $PSL_2(q)$, q = 5, 7, 8, 9, 17, $PSL_3(4)$, Sz(8) or Sz(32). Because $PSL_2(q)$, q = 5, 9, $PSL_3(4)$, Sz(8) and Sz(32)all contain elements of order 5 and $PSL_2(q)$, q = 8, 17 all contain elements of order 9, N/P must be isomorphic to $PSL_2(7)$. Indeed $PSL_2(7)$ contains only elements of order 2^2 and elements of prime order not equal to 5.

Suppose at first that P is not a 2-group. As G does not contain any elements of order 2p ($p \neq 2$) a Sylow 2-subgroup S_2 of N acts fixed-point-freely on P. From [4] Theorem 7.24 we conclude that S_2 is a cyclic group or a generalized quaternion group. But $PSL_2(7)$ and hence N has Sylow 2-subgroups which are dihedral groups of order 8. This contradiction shows that P is a 2-group. Let S_7 be a Sylow 7-subgroup of N. Then $C_N(S_7) = S_7$ and hence $N_N(S_7)$ is a group of order 21. Now $P.N_N(S_7)$ is a solvable group in which every element has prime power order. It follows from [3] Theorem 1 that P = 1. Thus $N \triangleleft G$ and as $C_G(N) = 1$ we conclude that G is a subgroup of Aut(N). By [6] we see that $|Aut(N)| = 2 \cdot |PSL_2(7)| = 2^4 \cdot 3 \cdot 7$. Hence G can only be N or Aut(N). If $|G| = 2^4 \cdot 3 \cdot 7$, then $|N_G(S_7)| = 2 \cdot 3 \cdot 7$ and hence G contains an element of order 6 contrary to condition (2). It follows that $G \cong PSL_2(7)$.

Acknowledgements

This note is a part of our work which characterizes some simple groups by conditions only on the order of the group and the orders of its elements. I am most grateful to Professor Chen Zongmu for his instruction and help.

References

- [1] S. Adnan, 'A characterization of PSL(2,7)', J. London Math. Soc. (2) 12 (1976), 215-225.
- [2] S. Adnan, 'A further characterization of a projective special linear group', J. Austral. Math. Soc. Ser. A 24 (1977), 112-116.
- [3] G. Higman, 'Finite groups in which every element has prime power order', J. London Math. Soc. 32 (1957), 335-342.

Shi Wujie

- [4] H. Kurweil, Endliche Gruppen (Springer-Verlag, Berlin-Heidelberg-New York, 1977).
- [5] M. Suzuki, 'On a class of doubly transitive groups', Ann. of Math. 75 (1962), 105-145.
- [6] R. Steinberg, 'Automorphisms of finite linear groups', Canad. J. Math. 12 (1960), 606-615.
- [7] Shi Wujie and Yang Wenze, 'A new characterization of A_5 and the finite group in which every element has prime order', to appear.

Southwest Teachers College Chongqing, China

356