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Abstract

Suppose KG is a prime nonsingular group algebra with uniform right ideals. We show that G
has no nontrivial locally finite normal subgroups. If G is soluble or residually finite, or if K has
zero characteristic and G is linear, then the maximal right quotient ring of KG is simple Artinian.

0. Introduction

It was shown in Hannah and O'Meara (to appear) that if a prime
nonsingular group algebra KG has no uniform right ideals, where G is a
group whose conjugacy classes are countable, then the maximal right quotient
ring of KG is simple and directly infinite. Suppose now that KG is prime
nonsingular and does have uniform right ideals, and let Q be its maximal right
quotient ring. In this case a well-known result of Johnson (1961) says that Q is
the ring of all linear transformations of a vector space over some division ring.
Hence either Q is simple Artinian (which happens exactly when KG has
finite uniform dimension), or Q is directly infinite and not simple (the socle
being a nonzero proper ideal). We shall show however that if G is, for
example, soluble or residually finite, or if K has zero characteristic and G is
linear, then Q must be simple Artinian. In particular it follows that a prime
nonsingular group algebra (with or without uniform right ideals) always has a
simple maximal right quotient ring when the group is of one of these types
and has only countable conjugacy classes.

In section 1 we show that because Q is a full-linear ring G cannot have
nontrivial locally finite normal subgroups. This condition has also arisen in the
work of Handelman and Lawrence (1975), and they conjectured that it is
equivalent to having the group algebra strongly prime. If this were so then it
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340 John Hannah [2]

would follow that Q is always simple Artinian. We show that when G is
soluble, Handelman and Lawrence's conjecture is true. In section 2 we
suppose we have a normal subgroup H of G whose group algebra has a
simple Artinian maximal right quotient ring. Then if G/H is residually finite
or locally finite it is shown that Q too is simple Artinian. Finally in section 3
we use these results to give the above-mentioned result for linear groups.

NOTE. For rings we retain the terminology of Hannah and O'Meara (to
appear) while for groups we follow the usage of Robinson (1972). In what
follows K denotes a field, G a group, Q(KG) the maximal right quotient ring
of the group algebra KG and Z(KG) the (right) singular ideal of KG. For the
properties of the singular ideal and quotient rings see Faith (1967) and|
Johnson (1961). If X is a subset of a ring R we denote the left (right)
annihilator of X in R by 1{X) (respectively, r(X)).

1. Normal subgroups

In this section we look at a prime nonsingular group algebra KG with \
uniform right ideals and see what effect these hypotheses have on the normal ;
subgroups of G. Our main result (theorem 5) is that such subgroups cannot be i
locally finite. Corollary 6 shows that the group algebra of a subnormal !
subgroup of G is also prime nonsingular with uniform right ideals. Firstly we I
need the following technical results. ]

1
LEMMA 1. Let H be a subgroup of G such that, for any finite subset X of G,

H is ascendant in (H, X). Then
(a) any large (that is, essential) right ideal of KH generates a large right

ideal of KG and so Z(KH)CZ(KG);
(b) any dense right ideal of KH generates a dense right ideal of KG and

so there is a natural embedding of Q(KH) into Q(KG) from which we get the
identification

Q(KH) = {q£ 0(KG): {a G KH: qa E KH} is a dense right ideal of KH}.

PROOF. When H is subnormal in G the result about large right ideals is
proved by Burgess (1969), while the result about dense right ideals is proved
by Formanek (1974). This can be extended to ascendant subgroups by
transfinite induction and then the result follows easily.

Throughout this paper we shall identify Q(KH) with this subring of
Q(KG) whenever H satisfies the hypothesis of the lemma.

LEMMA 2. Suppose H =s G and let {xt: i £ /} be a transversal for H in G.
Then
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[3] Uniform right ideals 341

(a) for any g£G the function a -* gag1 is an automorphism of
Q(KH),

(b) the subring of Q(KG) generated by Q(KH) and KG is
x, which is a free Q{KH)-module with normalizing basis

PROOF. Using lemma 1 and the fact that H =3 G gives (a) and then (b)
follows easily.

Because of lemma 2(b) we shall often denote by Q(KH) • G the subring
of Q(KG) generated by Q(KH) and KG. Our first main result illustrates the
advantages of being able to move up to the maximal right quotient rings of
KH and KG when H is normal in G.

THEOREM 3. Suppose H =3 G. If KG is nonsingular and has a uniform
right ideal then so does KH.

PROOF. For clarity's sake we introduce the temporary notation R =
Q(KH), S = Q(KH)G and Q = Q(KG). Since KG is nonsingular Q is
regular. As Q is a right quotient ring of KG, a uniform right ideal of KG
generates a uniform right ideal of Q. But uniform right ideals of Q are just
minimal right ideals because Q is regular. Hence we can find 0 / a £ S such
that aQ is a minimal right ideal of Q. Write a = a,xt + • • • + anxn where each
0 / a, £ R and xu • • •, xn are elements of some transversal for H in G. We
may suppose that x, = 1 and that n is minimal for all these properties. Hence
we have /(a,) = l(a2) = • • • = l(an) in R else we could reduce n. It is enough
to show that a,i? is minimal so suppose it is not minimal.

By lemma l(a), KH is nonsingular and so R is regular. Hence for some
)3£R we have a, (3/0 and /(a,)C/(a, 0) in R. Choose y G R such that
yai/3 = 0 and yai / 0. Then

a/3 = a,/3 + a2/32x2 + • • • + an(3nx,,

where each /3, = x,/3x i ' 6 R by lemma 2(a). Since Q,j3^0we have a/3 / 0 by
lemma 2(b) and so a(3Q = aQ is minimal. By the minimality of n we get
/(a,/3) = l(a2f32) = • • • = l(an/in) in R. As ya,/3 = 0 we thus have ya/3 = 0 and
so ya = 0 because a/30 = aQ. But y £ R and ya = yai + ya2x2 + • • • + yanxn

and so, by lemma 2(b), yai = 0 which is a contradiction. This completes the
proof.

To apply this result to prime group algebras we need the following
lemma.

LEMMA 4. Suppose G is locally finite with no finite nontrivial characteristic
subgroups. If KG is nonsingular then it has no uniform right ideals.
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PROOF. By proposition 9 of Snider (to appear) KG is semisimple. As in
lemma 2.1 of Fisher and Snider (1974) every nonzero right ideal contains a
nonzero idempotent. Hence we just have to show that soc KG =0 . But if
soc KG/ 0 then by theorem 5 of Hartley and Richardson (submitted) G is a
Cernikov group and so has a finite nontrivial characteristic subgroup, which is
a contradiction.

THEOREM 5. If KG is prime nonsingular with uniform right ideals then G
has no nontrivial locally finite normal subgroups.

PROOF. If H is a nontrivial locally finite normal subgroup of G it has no
finite nontrivial characteristic subgroups because G is prime (that is, has no
finite normal nontrivial subgroups). By lemma 4, KH has no uniform right
ideals. This contradicts theorem 3.

COROLLARY 6. Suppose H is a subgroup of G such that, for any finite
subset X of G, H is ascendant in (H, X) (for instance, H could be subnormal in
G). If KG is prime nonsingular with uniform right ideals then so is KH.

PROOF. Suppose first that H =s G. Then KH is nonsingular by lemma
l(a), and has uniform right ideals by theorem 3. Since A*H =a G, H is prime
by theorem 5. By induction the corollary holds if H is subnormal in G. Using
transfinite induction we extend it further to the case where H is ascendant in
G since the normal closure of an ascendant locally finite subgroup is again
locally finite. The rest of the result follows easily.

We recall that a ring R is said to be (right) strongly prime if for any
nonzero a G R there is a finite subset S(a) of R such that r({as: s G S(a)}) =
0, or (equivalently) if every nonzero (two-sided) ideal of R contains a finite
subset whose right annihilator is zero. Any strongly prime ring with uniform
right ideals has a simple Artinian maximal right quotient ring (see Handelman
and Lawrence (1975) Corollary 1, page 218).

Handelman and Lawrence show that if the group algebra KG is strongly
prime then G has no nontrivial locally finite normal subgroups, and they
conjecture that the converse is also true. This is clearly so if G is locally
nilpotent since then the torsion elements of G form a locally finite normal
subgroup of G and since the group algebra of a torsion-free nilpotent group is
a domain. Another case is given by the following result.

PROPOSITION 7. Suppose G is soluble. The following statements are
equivalent:

(a) KG is strongly prime;
(b) G has no nontrivial locally finite normal subgroups;
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[5] Uniform right ideals 343

(c) the Zalesskii subgroup of G (see page 81 of Passman (1974)) is
torsion-free.

PROOF, a) implies b): is proved by Handelman and Lawrence (1975).
b) implies c): follows because the Zalesskii subgroup of G is an

FC-group normal in G.
c) implies a): if I / 0 is an ideal of KG and H is the ZalesskiT subgroup of

G then / contains a nonzero element of KH (see ZalesskiT (1973)). By
hypothesis KH is a domain and so / contains a non-zerodivisor. Hence KG is
strongly prime.

An immediate corollary to this and theorem 5 is:

COROLLARY 8. Suppose G is soluble or locally nilpotent. If KG is prime
nonsingular with uniform right ideals then Q(KG) is simple Artinian.

2. Subgroups of finite index

If KG is prime nonsingular with uniform right ideals and H =3 G then, by
corollary 6. Q(KH) is at least a full-linear ring. Suppose Q(KH) is simple
Artinian. By studying subgroups of finite index we show (corollary 12) that
O(KG) too is simple when G/H is residually finite. If on the other hand G/H
is locally finite we construct a dimension function on Q{KH)- G and again
show that Q(KG) is simple (theorem 15). We begin with another technical
result.

LF.MMA 9. Suppose H « G. (a) If [G:H]<* then Q(KH)G = Q(KG)
and if in addition KH is nonsingular then Q(KG) is right self-injective.

(b) If [G:H]<* and KG is nonsingular then Q(KH) • G is regular.
(c) / / A is a right Q(KH)-submodule of Q(KG) and g G G then

Ag = {ag: a & A] is a right Q(KH)-submodule with its lattice of submodules
isomorphic to that of A.

PROOF, (a) That Q(KH)G = Q(KG) follows as in (3.2) of Burgess
(1969). If KH is nonsingular then Q(KH) is right self-injective and hence so is
Q(KH)G = Q(KG) (see (2.8) of Burgess (1969)).

(b) now follows from (a).
(c) Define a second Q(KH)-action on A by setting a*a = agag' for

all a G A and a G Q(KH). By lemma 2(a), (A, *) has the same submodules as
(A. •). Since (Ag, •) is isomorphic to (A, *) the result now follows.

The next lemma is just a variant of lemma 4 of Hartley and Richardson
(to appear).

LEMMA 10. Suppose KG is semiprime and H «3 G such that [G: H] < *=.
Then
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soc Q(KG) = soc Q(KH) • Q(KG)

and

soc Q{KH) = Q{KH) n soc Q(KG).

PROOF. Suppose first that a G soc Q(KH) so that, by lemma 9(a) and

9(c), aQ(KG) is a finite direct sum of irreducible Q(KH)-modules. Hence

aQ(KG) satisfies the minimum condition for Q/(/CH)-submodules, and so for

O(KG)-submodules. Since Q(KG) is semiprime every minimal right ideal is

a direct summand of Q(KG). Hence aQ(KG) is a finite direct sum of

irreducible Q(KG)-modules. Thus soc Q{KH)Q soc Q(KG).

Now suppose that a = a,g, + • • • + angn G soc Q(KG) where each a, G

Q(KH) and gi,""",gn is a transversal for H in G. To show that each

a, G soc Q(KH) it is enough to suppose that L is a large right ideal of Q{KH)

and show that each a, G L. But then L D KH is a large right ideal of KH and

so, by lemma l(a), (L n KH)- KG is a large right ideal of KG. Hence

(L n KH)Q(KG), and so L • O(KG) too, is a large right ideal of Q(KG).

Hence a G L • Q(KG) = Lg, + • • • + Lgn where this sum is direct. Equating

the components of a in this direct sum with the components from the

expression a,g,+ • • • + angn then gives each a< G L. Hence socQ(KG)C

soc Q(KH)Q(KG).

Finally Q(KH)r\soc Q(KG)Csoc Q(KH) follows from the previous

paragraph with g, = 1 and a2 = • • • = an = 0. This completes the proof.

THEOREM 11. Suppose H =3 G such that G/H is residually finite. If KG is

nonsingular with uniform right ideals then

KHnsocO(KG)^Q.

PROOF. (Notice that we do not assume that KG is prime.) By hypothesis

soc Q(KG) ^ 0 so we choose 0/ a G KG D soc Q(KG) and write a =

<*igi + • • • + angn where each 0 / a, E. KH and Hg,, • • •, Hgn are distinct

cosets of H. Since G/H is residually finite there is a normal subgroup N of G

of finite index in G such that Ngly • • -, Ngn are distinct and N contains H. By

lemma 10, a G soc Q(KG) = (O(KN) n soc Q(KG)) • Q (KG). If we equate

the components for a given by this with the components of the expression

<*igi + • • • + angn (possible because Ngu- • •, Ngn are distinct) we find that

each a.GsocQ(KG). Hence, as each a, G KH, we have KH D

soc Q(KG) 7^0.

COROLLARY 12. / / KG is nonsingular with uniform right ideals and

H^G such that G /H is residually finite and Q(KH) is simple, then Q(KG) is

semisimple Artinian.
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PROOF. By theorem 11, Q(KH)C\ soc Q(KG) is a nonzero ideal of
Q{KH) and so equals O(KH). Hence 1 G soc O(KG) and the result follows.

If we look at locally finite factor groups instead of residually finite groups
then lemma 10 does not seem to help us. Instead we use a dimension function
on the lattice of finitely generated right ideals of Q(KH)- G. This is a
generalisation of the dimension function in Hannah and O'Meara (to appear),
as may be seen by putting H = 1 in what follows.

We suppose H« G such that G/H is locally finite and Q(KH) is
semisimple Artinian. Let R = Q(KH) and S = Q(KH)- G and denote by
L(S) the lattice of finitely generated right ideals of S. If X is an R-module let
dimX be the composition length ( = uniform dimension) of X. We define
d: JL(S)—» [0,1] as follows: if a,, •••,<*„ E S choose a subgroup N of G such
that [N: H] < x and a,, • • •, an E R • N = Q(KH) • N and write

d ( 2 a,s) = dim ( ^ a,R • N)/dimR • N.

PROPOSITION 13. If H =9 G such that G/H is locally finite and Q(KH) is
semisimple Artinian then d: L(S)—>[0,1] is a well-defined function such that
for any A, B GL(S)

(i) d(A) = 0 if and only if A = 0,
(ii) d(B) = 1 if and only if B = S,
(iii) if A HB =0 then d(A + B)= d(A)+d(B),
(iv) if A sJ3

PROOF. We note first that the expression for d(I.aiS) makes sense
because dim R • N is finite. That d(1 atS) is independent of the choice of N
follows as in (2.1) of Hannah and O'Meara (to appear) by using lemma 2(b)
and lemma 9(c). Independence of the choice of a,, • • •, an then follows easily.
Properties (i) to (iv) are consequences of the corresponding results for dim X.

LEMMA 14. Suppose KG is nonsingular and H «a G such that G/H is
locally finite and Q(KH) is Artinian. Then Q(KH)G is semisimple and
locally Artinian.

PROOF. Obviously Q(KH) • G is locally Artinian. Since KH is nonsingu-
lar, Q(KH)- N is right self-injective when N is a subgroup of G such that
[N://]<3c (by lemma 9(a)). Hence the Jacobson radical and the (right)
singular ideal of Q(KH)N coincide. (See Faith (1967) page 47.) Thus the
same is true for Q(KH)- G and so Q(KH)- G is semisimple.

THEOREM 15. Suppose KG is prime nonsingular with uniform right ideals.
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IfH^aG such that G/H is locally finite and Q{KH) is simple then Q{KG) =
Q(KH) • G and is simple Artinian.

PROOF. It is enough to show that S = Q(KH) • G is simple Artinian. By
lemma 14, and by lemma 2.1 of Fisher and Snider (1974), every nonzero right
ideal of S contains a nonzero idempotent. Since S has uniform right ideals we
deduce that socS^O. Let A /• 0 be a minimal right ideal of S. For any
nonzero right ideal B of S we have A =s B since S is prime. Hence
d(A)^ d{B) and so d(A) is the minimum nonzero value attained by d. By
proposition 13 it follows that a family of independent nonzero right ideals of S
cannot have more than l/d(A) members. Hence S has finite uniform
dimension. Being a prime Goldie ring with nonzero socle S must be simple
Artinian, as required.

REMARK. The equality Q(KG)= Q(KH)- G attained in theorem 15
seems unusual. If we put H = 1 we cannot have Q(KG) = Q{KH) • G as long
as KG is nonsingular and G is infinite because then KG is not self-injective.
Yet, by theorem 15, if KG is prime and has uniform right ideals then the
equality does hold. An example of such a situation is as follows.

Let A = (x, y: x 'y2x = y~2, y~'x2y = x~2) and let B be the subgroup of
A generated by x2, y2 and (xy)2 (see Passman (1974), page 96). Let G = U,A
where / is some infinite index set and let H = U,B. Since A is torsionfree
supersoluble KG is an Ore domain and so certainly prime nonsingular with
uniform right ideals. But H is an abelian normal subgroup of G with
G/H = WXZ2 an infinite locally finite group. By theorem 15, Q{KG) =
Q(KH)G which is the ring of fractions of KG with denominators the
nonzero elements of the commutative domain KH.

3. Applications

Using the above results we shall now construct further classes of groups
G such that Q(KG) is simple Artinian whenever KG is prime nonsingular
with uniform right ideals. Thus it is shown that FC-soluble groups and radical
groups have this property (propositions 18 and 19) while, if we restrict our
attention to the case when K has zero characteristic, then linear groups also
share this property (proposition 21).

We begin by looking at groups with a (seemingly) stronger property. Let
C be the class of all groups X such that, whenever KG is prime nonsingular
with uniform right ideals and H =3 G such that Q(KH) is simple and
G/H = X, then Q(KG) is simple too.

In particular if G G C and Q(KG) is a full-linear ring then Q(KG) is
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simple Artinian. It follows from theorem 1.7 of Hannah and O'Meara (to
appear) that if G €= C has only countable conjugacy classes and KG is prime
nonsingular, then Q(KG) is simple regardless of the presence or otherwise of
uniform right ideals. By the results of the previous section C contains all
residually finite and all locally finite groups. More complicated groups can be
constructed using the following result.

LEMMA 16. If X is a group with an ascending series whose factors all lie in
C then X E f {that is, C is P-closed).

PROOF. By corollary 6 the proof (by transfinite induction on the length of
the series for X) is trivial except possibly at limit ordinals. Suppose KG is
prime nonsingular with uniform right ideals and H =3 G such that there is an
ascending series H = H,, =s H, =9 • • • «3 HA =a • • • =3 HM = G where /tx is a limit
ordinal and, for each A < /x, Q{KHK) is simple Artinian. Since KG =
UA. M KHX, U A , ^Q(KHK) is a quotient ring of KG (by lemma 1) and, being a
union of simple rings with the same identity, is simple. Hence Q{KG) is
simple too.

LEMMA 17. Any torsion-free abelian group belongs to C.

PROOF. Let KG be prime nonsingular with uniform right ideals and
suppose H sa G such that G/H is torsion-free abelian and Q(KH) is simple.
It is enough to show that Q(KH) D soc Q(KG) / 0 and for this we may
suppose that G/H is finitely generated. But then G/H is residually finite and
theorem 11 completes the proof. (In fact it is not too hard to show that any
uniform right ideal of KH generates a uniform right ideal of KG but we do
not need that here).

PROPOSITION 18. C contains all FC-soluble, all FC-hypercentral and all
hyperabelian groups.

PROOF. Since an FC-group has a locally finite normal subgroup whose
factor group is torsion-free abelian, the result follows from lemma 17 and
theorem 15 by using lemma 16.

PROPOSITION 19. C contains all radical groups.

PROOF. Suppose KG is prime nonsingular with uniform right ideals and
H S3 G such that G/H is radical and Q{KH) is simple. By lemma 16 we may
suppose G/H is locally nilpotent. Choose 0 / a £ KG n soc Q{KG) and let
H, = (H,suppa). For any finite subset X of G, H, is subnormal in (H,,X)
since G/H is locally nilpotent. By lemma 1 and corollary 6 O(KH,)C
Q(KG) and is a full linear ring. But HJH is nilpotent and Q(KH) is simple.
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By proposition 18, Q(KH,) is simple and since QiKH,) D soc Q(KG) / 0 the
result follows.

For our final result we need the following easy lemma.

LEMMA 20. // G contains a noncyclic free subgroup then Q(KG) cannot
be semisimple Artinian.

PROOF. If H is such a subgroup then KH is a non-Ore domain and so has
an infinite family of nonzero independent right ideals. Hence so does KG and
so Q(KG) is not Artinian.

PROPOSITION 21. Suppose KG is prime nonsingular with uniform right
ideals and H *3 G such that G/H is linear and Q(KH) is simple Artinian. If
char/C = 0 then Q(KG) is simple Artinian.

PROOF. If G/H is soluble-by-Iocally-finite then the result holds regard-
less of char AT (by proposition 18 and theorem 15). Otherwise G/H must
contain a noncyclic free subgroup by theorem 10.17 of Wehrfritz (1973).
Hence G contains a noncyclic free group. Say x,yEG such that (x, y) is free
but not cyclic. Choose some nonzero a E. KG such that aKG is a uniform
right ideal and let N be the subgroup of G generated by H, x, y and supp a.
Then aKN is a uniform right ideal of KN and, because char K = 0, KN is
nonsingular by theorem 4 of Snider (to appear). But Q(KH) is simple
Artinian and N/H, being a finitely generated linear group, is residually finite
(by theorem 4.2 of Wehrfritz (1973)). By corollary 12, Q(KN) is semisimple
Artinian and, since N contains a noncyclic free group, we have a contradic-
tion. This completes the proof.

The above results show that for several large classes of groups the
maximal right quotient ring of a group algebra cannot be an infinite
dimensional full-linear ring. It is perhaps too soon to conjecture that this is
true for all groups but I have been unable to construct a counterexample. A
related problem is that of determining when group algebras have nonzero
socle: if a prime group algebra had nonzero socle its maximal right quotient
ring would be an infinite dimensional full-linear ring. However Richardson (to
appear) has conjectured that the group algebra of a non-locally-finite group
has zero socle. In particular (by theorem 5) this would mean that prime group
algebras always have zero socle.

Finally we summarise what little is known about the existence of uniform
right ideals in group algebras. All previous work (that I know of) has
concerned itself with determining whether a group algebra is an order in an
Artinian ring. A necessary condition for this to happen is that the group
contain no infinite locally finite subgroups (see Hughes (1973)). The weakest
sufficient condition known seems to be the existence of an ascending series
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[11] Uniform right ideals 349

whose factors are all cyclic, and only finitely many of which are finite (see
Hughes (1973) once more). But as the example at the end of section 2 shows,
this restriction on the number of finite factors is still too strong. Also related
to all this is the result of Lewin (1972) which states that if G is soluble and KG
is a domain then KG is an Ore domain (and so KG is itself uniform).

Note: We have just learnt that K. Brown has apparently also proved
proposition 7. For more results on the equality Q{KH) • G = Q(KG) (see the
remark after theorem 15) the reader should consult Lawrence and Louden
(submitted), and the author's paper "Quotient rings of subgroup algebras"
(submitted).
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