COHERENT PAIRS OF EXTENSIONS OF ASSOCIATIVE ALGEBRAS

N. RAMABHADRAN

Let K be a commutative ring with identity element and let $\Lambda_{i}, i=1,2$ be two K-projective associative algebras with identity element such that the map $k \rightarrow k \cdot 1$ of K into Λ_{i} is a monomorphism of K onto a K-direct summand of Λ_{i}, $i=1,2$. Let $\Lambda=\Lambda_{1} \otimes \Lambda_{2}$ and A be a two sided (Λ_{1}, Λ_{2}) -bimodule. Let $(\Sigma): 0 \longrightarrow A \xrightarrow{\beta} \Gamma \xrightarrow{\alpha} \Lambda \longrightarrow 0$ be an extension over Λ with kernel A (abelian). This gives rise to a pair $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ of extensions $\left(\Sigma_{i}\right): 0 \rightarrow A \rightarrow \alpha^{-1}\left(\Lambda_{i}\right) \rightarrow \Lambda_{i} \rightarrow 0$ over Λ_{i} with kernel $A, i=1,2$. The object of this paper is to give a characterization of pairs of extensions over Λ_{1} and Λ_{2} respectively, with kernel A which arise in this way from an extension over $\Lambda_{1} \otimes \Lambda_{2}$ with kernel A. This leads to the notion of coherent pairs of extensions (Def. 3.8). The corresponding problem for groups has been treated by F. Haimo and S. Maclane [2]. We define bicohomology groups $H^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ of the pair (Λ_{1}, Λ_{2}) and show (Prop. 3.14) that the set $\mathscr{C}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ of all coherent pairs of equivalence classes of extensions forms a K-module which is a homomorphic image of $H^{2}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$. The kernel of this homomorphism is also determined (Prop. 3.16). The analogous problem for Lie algebras has also been treated by us and will appear elsewhere. We have followed the notation and terminology, as in [1] and [2]. All tensor products are over K.

1. Bicohomology of a pair of associative algebras

Let K be a commutative ring with identity element 1 and Λ_{1} and Λ_{2} be two K-projective associative algebras with identity element. Further, let the map $k \rightarrow k \cdot 1$ of K into Λ_{i} be monomorphism of K onto a K-direct summand of Λ_{i}, $i=1,2$. Let A be a two sided $\left(\Lambda_{1}, \Lambda_{2}\right)$-bimodule i.e. A is a two sided Λ_{i}-module, $i=1,2$ the operators from Λ_{1} commuting with those from Λ_{2}. Let $S\left(\Lambda_{i}\right)=$ $\sum_{n \geq 0} S_{n}\left(\Lambda_{i}\right)$ be the standard complex [1] of the associative algebra Λ_{i} where

Received June 15, 1964.

$$
S_{n}\left(\Lambda_{i}\right)=\Lambda_{i}^{e} \otimes \widetilde{S}_{n}\left(\Lambda_{i}\right), \quad \widetilde{S}_{0}\left(\Lambda_{i}\right)=K
$$

and $\widetilde{S}_{n}\left(\Lambda_{i}\right)$ is the tensor product (over K) of the K-module Λ_{i} taken n-times, $n>0, \Lambda_{i}^{e}$ being the enveloping algebra $\Lambda_{i} \otimes \Lambda_{i}^{*}$ of $\Lambda_{i}, i=1,2$. It is known [1] (Since Λ_{i} is K-projective) that $S\left(\Lambda_{i}\right)$ is a Λ_{i}^{e}-projective resolution of Λ_{i}. Let $\mathscr{L}^{n}\left(\Lambda_{i}, A\right)=\operatorname{Hom}_{K}\left(\widetilde{S}_{n}\left(\Lambda_{i}\right), A\right), n \geq 0$ and $\mathscr{L}^{n, m}\left(\Lambda_{1}, \Lambda_{2} ; A\right)=\operatorname{Hom}_{K}\left(\widetilde{S}_{n}\left(\Lambda_{1}\right) \otimes\right.$ $\left.\widetilde{S}_{m}\left(A_{2}\right), A\right), n \geq 0, m \geq 0$. Then the K-module

$$
\mathscr{L}\left(\Lambda_{i}, A\right)=\sum_{n=0} \mathscr{L}^{n}\left(\Lambda_{i}, A\right)
$$

is a cochain complex [1] the coboundary operator δ_{i} being given by

$$
\begin{align*}
& \left(\delta_{i} f\right)\left(\lambda_{1}^{(i)}, \ldots, \lambda_{n+1}^{(i)}\right)=\lambda_{1}^{(i)} f\left(\lambda_{2}^{(i)}, \ldots, \lambda_{n+1}^{(i)}\right) \tag{1}\\
& \quad+\sum_{0<t<n+1}(-1)^{t} f\left(\lambda_{1}^{(i)}, \ldots, \lambda_{t}^{(i)} \cdot \lambda_{t+1}^{(i)}, \ldots, \lambda_{n+1}^{(i)}\right) \\
& \quad+(-1)^{n+1} f\left(\lambda_{1}^{(i)}, \ldots, \lambda_{n}^{(i)}\right) \cdot \lambda_{n+1}^{(i)}
\end{align*}
$$

for $f \in \mathscr{L}^{n}\left(\Lambda_{i}, A\right)$ and $\lambda_{1}^{(i)}, \ldots, \lambda_{n+1}^{(i)} \in \Lambda_{i}$. The K-modules $\mathscr{L}^{n}\left(\Lambda_{i}, A\right)$ and $\mathscr{L}^{n, m}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ can be considered as two sided ($\left.A_{1}, A_{2}\right)$-bimodules through A and, as usual, we can identify $\mathscr{L}^{n, m}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ with $\mathscr{L}^{n}\left(\Lambda_{1}, \mathscr{L}^{m}\left(\Lambda_{2}, A\right)\right)$ and $\mathscr{L}^{m}\left(\Lambda_{2}, \mathscr{L}^{n}\left(\Lambda_{1}, A\right)\right)$. Let

$$
\mathscr{L}^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)=\sum_{0=r \leq n} \mathscr{L}^{r, n-r}\left(\Lambda_{1}, \Lambda_{2} ; A\right), n \geq 0 .
$$

We define a map δ from $\mathscr{L}^{n}\left(A_{1}, \Lambda_{2} ; A\right)$ into $\mathscr{L}^{n+1}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ (which is a K-homomorphism) as follows. Let $f \in \mathscr{L}^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right), f=f_{n, 0}+\cdots+f_{0, n}$ $f_{r, n-r} \in \mathscr{L}^{r, n-r}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$. Let $\delta f=f^{\prime}=f_{n+1,0}^{\prime}+\cdots+f_{0, n+1}^{\prime}$ where

$$
\begin{equation*}
f_{r, n+1-r}^{\prime}=\delta_{1} f_{r-1, n-r+1}+(-1)^{r} \delta_{2} f_{r, n-r} . \tag{2}
\end{equation*}
$$

Since δ_{1} and δ_{2} commute and $\delta_{i}^{2}=0, i=1,2$ it follows that $\delta^{2}=0$. Thus the graded K-module $\mathscr{L}\left(A_{1}, \Lambda_{2} ; A\right)=\sum_{n \geq 0} \mathscr{L}^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ is a cochain complex with δ as coboundary operator. Elements of $\mathscr{L}^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ are called n bicochains of the pair $\left(\Lambda_{1}, \Lambda_{2}\right)$ with values in A, those of $Z^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)=$ Kernel $\delta, \delta: \mathscr{L}^{n} \rightarrow \mathscr{L}^{n+1}$ are called n-bicocycles and those of $B^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ $=$ image of $\delta, \delta: \mathscr{L}^{n-1} \rightarrow \mathscr{L}^{n}, n \geq 1$ are called n-bicoboundaries. Further we define $B^{0}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ to be 0 . Since $\delta^{2}=0$ we have the bicohomology module $H^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)=Z^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right) / B^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right), n \geq 0$. Let $\Lambda=\Lambda_{1} \otimes \Lambda_{2}$. Then $S(A)$ is A^{e}-projective resolution of Λ. Since Λ_{i} is K-projective, $i=1,2$, it follows [1] that, the $\Lambda_{1}^{e} \otimes \Lambda_{2}^{e}\left(=\Lambda^{e}\right)$-module

$$
S\left(\Lambda_{1}\right) \otimes S\left(\Lambda_{2}\right)=\sum_{n \approx 0} S_{r}\left(\Lambda_{1}, \Lambda_{2}\right)
$$

where

$$
S_{r}\left(\Lambda_{1}, \Lambda_{2}\right)=\sum_{0 \leq r \leq n} S_{r}\left(\Lambda_{1}\right) \otimes S_{n-r}\left(\Lambda_{2}\right)
$$

considered as tensor product of the complexes $S\left(A_{1}\right)$ and $S\left(\Lambda_{2}\right)$, is a Λ^{e}-projective resolution of Λ. Thus $H^{n}(\Lambda, A)$, the $n^{\text {th }}$ cohomology module of the K-algebra Λ, can also be considered as the $n^{t h}$ derived groups of the complex $\sum_{n \geqslant 0} \mathrm{Hom}_{\Lambda^{e}}$ ($\left.S_{n}\left(\Lambda_{1}, \Lambda_{2}\right), A\right)$. Comparing the coboundary operators in this complex and in $\mathscr{L}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ we have

Proposition 1.1. $H^{n}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ is isomorphic to $H^{n}(\Lambda, A)$ as K-modules, $n \geq 0$.

Let $N\left(\Lambda_{i}\right), i=1,2$ and $N(\Lambda)$ denote the normalized standard complexes [1] of the K-algebras Λ_{i} and Λ respectively. $\quad N\left(\Lambda_{i}\right)=\sum_{n \geqslant 0} N_{n}\left(\Lambda_{i}\right), N_{n}\left(\Lambda_{i}\right)=\Lambda_{i}^{e} \otimes \tilde{N}_{n}\left(\Lambda_{i}\right)$ where $\tilde{N}_{0}\left(\Lambda_{i}\right)=K$ and $\tilde{N}_{n}\left(\Lambda_{i}\right)$ is the tensor product (over K) of the K module $\Lambda_{i}^{\prime}=$ cokernel ($K \rightarrow \Lambda_{i}$), taken n-times, $n>0$ (Because of our assumption on Λ_{i} and K, this cokernel is a K-direct summand of $\left.\Lambda_{i}\right)$. It follows that $N\left(\Lambda_{i}\right)$ (resp. $N(\Lambda)$) is a Λ_{i}^{e}-(resp. Λ^{e}-) projective resolution of Λ_{i} (resp. $)^{\text {) . Let }}$ $N^{n}\left(\Lambda_{i}, A\right)=\operatorname{Hom}_{K}\left(\tilde{N}_{n}\left(\Lambda_{i}\right), A\right)$. Thus $N^{n}\left(\Lambda_{i}, A\right)$ can be identified with the submodule of $\mathscr{L}^{n}\left(\Lambda_{i}, A\right)$ consisting of those elements f which take the value 0 if any one of the variables λ_{i} is 1 . Such cochains are called normalized cochains. Then $N\left(\Lambda_{i}, A\right)=\sum_{n \geq 0} N^{n}\left(\Lambda_{i}, A\right)$ is a cochain complex with the coboundary operator, denoted again by δ_{i}, given by the formula (1). Similarly $N(\Lambda, A)=\sum_{n \geq 0} N^{n}(\Lambda, A)$ is a cochain complex (normalized). Thus $H^{n}\left(1_{i}, A\right)$, $i=1,2$ (resp. $H^{n}(A, A)$) can also be considered as the $n^{\text {th }}$ derived groups of $N\left(\Lambda_{i}, A\right)\left(\right.$ resp. $N(\Lambda, A)$). Let ξ be the map from $N(\Lambda)$ into $N\left(A_{1}\right) \otimes N\left(\Lambda_{2}\right)$ [1] defined by

$$
\begin{align*}
& \xi\left(\left(\lambda_{0}^{(1)} \otimes \lambda_{0}^{(2)}\right)\left[\lambda_{1}^{(1)} \otimes \lambda_{1}^{(2)}, \ldots, \lambda_{n}^{(1)} \otimes \lambda_{n}^{(2)}\right]\left(\mu_{0}^{(1)} \otimes \mu_{0}^{(2)}\right)\right) \tag{3}\\
= & \sum_{0=r=n} \lambda_{0}^{(1)}\left[\lambda_{1}^{(1)}, \ldots, \lambda_{r}^{(1)}\right] \lambda_{r+1}^{(1)} \cdots \lambda_{n}^{(1)} \cdot \mu_{j}^{(1)} \otimes \lambda_{0}^{(2)} \cdots \lambda_{r}^{(2)}\left[\lambda_{r+1}^{(2)}, \ldots, \lambda_{n}^{(2)}\right] \mu_{0}^{(2)}
\end{align*}
$$

for $n \geq 0$, and

$$
\lambda_{0}^{(i)}, \ldots, \lambda_{n}^{(i)}, \mu_{0}^{(i)} \in \Lambda_{i}, i=1,2 .
$$

Then it is known [1] that ξ is a 'map' over the identity of Λ. 今 gives rise to a K-homomorphism ξ^{*} from $\left.\operatorname{Hom}_{\Lambda_{1}{ }^{\circ} \otimes \Lambda_{2} e}{ }^{e} \sum_{00=r=n} N_{r}\left(\Lambda_{1}\right) \otimes N_{n-r}\left(\Lambda_{2}\right), A\right)$ into $\operatorname{Hom}_{\Lambda^{e}}\left(N_{n}(A), A\right)$ for $n \geq 0$. In particular for $n=2$ we have the following formula
(4)

$$
\begin{aligned}
& \xi^{*}\left(\omega_{1}+r+\omega_{2}\right)\left(\lambda_{1}^{(1)} \otimes \lambda_{1}^{(2)}, \lambda_{2}^{(1)} \otimes \lambda_{2}^{(2)}\right) \\
= & \omega_{1}\left(\lambda_{1}^{(1)}, \lambda_{2}^{(1)}\right) \cdot \lambda_{1}^{(2)} \cdot \lambda_{2}^{(2)}+\lambda_{1}^{(2)} r\left(\lambda_{1}^{(1)}, \lambda_{2}^{(2)}\right) \cdot \lambda_{2}^{(1)}+\lambda_{1}^{(1)} \cdot \lambda_{2}^{(1)} \omega_{2}\left(\lambda_{1}^{(2)}, \lambda_{2}^{(2)}\right) .
\end{aligned}
$$

Where $\omega_{1} \in \operatorname{Hom}_{\Lambda_{1}^{e} \otimes \Lambda_{2}}\left(N_{2}\left(\Lambda_{1}\right) \otimes \Lambda_{2}^{e}, A\right)=\operatorname{Hom}_{K}\left(\tilde{N}_{2}\left(\Lambda_{1}\right), A\right)$

$$
r \in \operatorname{Hom}_{\Lambda_{1} e}^{e} \otimes \Lambda_{2} e\left(N_{1}\left(\Lambda_{1}\right) \otimes N_{1}\left(\Lambda_{2}\right), A\right)=\operatorname{Hom}_{K}\left(\widetilde{N}_{1}\left(\Lambda_{1}\right) \otimes \tilde{N}_{1}\left(\Lambda_{2}\right), A\right)
$$

and

$$
\omega_{2} \in \operatorname{Hom}_{\Lambda_{1}^{e} \otimes \Lambda_{2} e}\left(\Lambda_{1}^{e} \otimes N_{2}\left(\Lambda_{2}\right), A\right)=\operatorname{Hom}_{K}\left(\widetilde{N}_{2}\left(\Lambda_{2}\right), A\right) .
$$

If $\omega=\xi^{*}\left(\omega_{1}+r+\omega_{2}\right)$ then ω is a 2 -cochain (normalized) of A with values in A and ω is a 2 -cocycle if and only if (i) ω_{i} is a 2 -cocycle and (ii) $\delta_{i} \omega_{j}=(-1)^{j} \delta_{j} r$, $i \neq j, i=1$, 2 (The formula (4) will be used later in Prop. 3.10).

2. Stability Lie algebra

Let Γ be an associative K-algebra (with identity) and M a two-sided ideal of Γ and Γ / M the quotient algebra.

Definition 2.1. The stability Lie algebra of the chain $\Gamma \supset M \supset 0$ denoted by $S(\Gamma \supset M \supset 0)$ is the set of all derivations of Γ which are trivial on M and which induce the trivial derivation on $\Gamma / M . S(\Gamma \supset M \supset 0)$ is an abelian subalgebra of the Lie algebra $\mathfrak{D}(\Gamma)$ of all derivations of Γ. Let Λ be a K-projective associative algebra (with identity) and A a two sided Λ-module. Let $(\Sigma): 0 \longrightarrow A \xrightarrow{\beta} \Gamma$ $\xrightarrow{\alpha} \Lambda \longrightarrow 0$ be an extension over Λ with kernel A (abelian).

Lemma 2.2. There exists a K-isomorphism of $S(\Gamma \supset \beta(A) \supset 0)$ onto $Z^{1}(\Lambda, A)$ (the K-module of 1-cocycles of Λ with values in A).

Proof. Let $\theta: S(\Gamma \supset \beta(A) \supset 0) \rightarrow Z^{1}(\Lambda, A)$ be the mapping defined by the relation $\beta(\theta(s)(\lambda))=s(r), \gamma \in \Gamma, s \in S$, and $\lambda=\alpha(\gamma) \in A$. Then θ is a K-isomorphism.

3. Coherent pairs of extensions of associative algebras

Let A_{1} and A_{2} be two K-projective associative algebras with identity such that the map $k \rightarrow k \cdot 1$ is a monomorphism of K onto a K-direct summand of Λ_{i}, $i=1,2$ and A be a two sided (Λ_{1}, Λ_{2})-bimodule.

Let $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$

$$
\begin{align*}
& \left(\Sigma_{1}\right): 0 \longrightarrow A \xrightarrow{\beta_{1}} \Gamma_{1} \xrightarrow{\alpha_{1}} \Lambda_{1} \longrightarrow 0 \tag{5}\\
& \left(\Sigma_{2}\right): 0 \longrightarrow A \xrightarrow{\beta_{2}} \Gamma_{2} \xrightarrow{\alpha_{2}} \Lambda_{2} \longrightarrow 0
\end{align*}
$$

be a pair of extensions over Λ_{1} and Λ_{2} respectively with kernel A (abelian). Let $L\left(\lambda_{i}\right)$ (resp. $R\left(\lambda_{i}\right)$), $\lambda_{i} \in \Lambda_{i}$ denote the operator on A corresponding to λ_{i} with respect to the left Λ_{i}-module (resp. right Λ_{i}-module) structure of A. i.e. $L\left(\lambda_{i}\right) \cdot a=\lambda_{i} \cdot a: R\left(\lambda_{i}\right) \cdot a=a \cdot \lambda_{i}, a \in A, \lambda_{i} \in \Lambda_{i}$.

Definition 3.1. A complementary extending derivation for an element $\lambda_{i} \in \Lambda_{i}$, $i=1,2$ is an extension $\zeta_{i}\left(\lambda_{i}\right)$ of the operator $L\left(\lambda_{i}\right)-R\left(\lambda_{i}\right)$ as a derivation of $\Gamma_{j}, i \neq j$ such that $\zeta_{i}\left(\lambda_{i}\right)$ induces the trivial derivation on Λ_{j}.

Definition 3.2. A pair $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ of extensions over Λ_{1} and Λ_{2} respectively with kernel A is called a complementary pair of extensions if, for $i=1,2$ there exists a K-homomorphism $\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D}\left(l_{j}^{\prime}\right), i \neq j$, as K-modules, such that $\zeta_{i}\left(\lambda_{i}\right)$ is a complementary extending derivation for λ_{i} and $\zeta_{i}(1)=0$.

Since Λ_{i} is K-projective, the exact sequence $\left(\Sigma_{i}\right), i=1,2$ splits as a sequence of K-modules. Further, as $K \cdot 1$ is a K-direct summand of Λ_{i}, we can assume that $\Lambda_{i}=K \cdot 1 \oplus \Lambda_{i}^{\prime}$ and the splitting $u_{i}: \Lambda_{i} \rightarrow \Gamma_{i}$ can be chosen such that $u_{i}(1)$ $=1$. Let ω_{i} be the 2 -cocycle of Λ_{i} with values in A associated to the extension (Σ_{i}) by means of the splitting u_{i}. i.e.

$$
u_{i}\left(\lambda_{1}^{(i)}\right) \cdot u_{i}\left(\lambda_{2}^{(i)}\right)-u_{i}\left(\lambda_{1}^{(i)} \cdot \lambda_{2}^{(i)}\right)=\beta_{i}\left(\omega_{i}\left(\lambda_{1}^{(i)}, \lambda_{2}^{(i)}\right)\right), \lambda_{1}^{(i)}, \lambda_{2}^{(i)} \in \Lambda_{i} .
$$

ω_{i} is then a normalized 2 -cocycle and the elements γ_{i} of Γ_{i} can be expressed uniquely in the form $\gamma_{i}=\beta_{i}\left(a_{i}\right)+u_{i}\left(\lambda_{i}\right), \lambda_{i}=\alpha_{i}\left(\gamma_{i}\right)$ for some $a_{i} \in A$.

Proposition 3.3. $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ is a complementary pair if and only if there exists a pair of functions r_{1}, r_{2} such that $r_{i} \in \operatorname{Hom}_{K}\left(\widetilde{N}_{1}\left(\Lambda_{1}\right) \otimes \widetilde{N}_{1}\left(\Lambda_{2}\right), A\right)$ satisfying the following conditions:

$$
\begin{align*}
& \beta_{j}\left(r_{i}\left(\lambda_{1}, \lambda_{2}\right)\right)=\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(u_{j}\left(\lambda_{j}\right)\right) \tag{6}\\
& \delta_{j} r_{i}=\delta_{i} \omega_{j}, \quad i \neq j, i=1,2 . \tag{7}
\end{align*}
$$

Proof. Let $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ be a complementary pair. Then there exists a K homomorphism $\left.\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D} . \Gamma_{j}\right), i \neq j$ (as K-modules) such that $\zeta_{i}\left(\lambda_{i}\right)$ is a complementary extending derivation for $\lambda_{i}, i=1,2$ and $\zeta_{i}(1)=0$. As $\zeta_{i}\left(\lambda_{i}\right)$ induces the trivial derivation on $\Lambda_{j}, i \neq j\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(\gamma_{j}\right) \in \beta_{j}(A)$ for $\gamma_{j} \in \Gamma_{j}$. In particular for $\lambda_{j} \in \Lambda_{j},\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(u_{j}\left(\lambda_{j}\right)\right) \in \beta_{j}(A)$. (u_{j} is a splitting of $\left.\left(\Sigma_{j}\right)\right)$. Let us denote by $\beta_{j}\left(r_{i}\left(\lambda_{1}, \lambda_{2}\right)\right)$ the element $\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(u_{j}\left(\lambda_{j}\right)\right)$. Thus we have function $r_{i}, i=1,2$, $r_{i}: \Lambda_{1} \times \Lambda_{2} \rightarrow A$ such that $\beta_{j}\left(r_{i}\left(\lambda_{1}, \lambda_{2}\right)\right)=\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(u_{j}\left(\lambda_{j}\right)\right), i \neq j$. Since $\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D}\left(\Gamma_{j}\right)$ is a K-homomorphism and $\zeta_{i}(1)=0$ it follows that $r_{i} \in \operatorname{Hom}_{K}\left(\widetilde{N}_{1}\left(\Lambda_{1}\right) \otimes\right.$
$\left.\tilde{N}_{1}\left(\Lambda_{2}\right), A\right)$. As $\zeta_{i}\left(\lambda_{i}\right)$ is a derivation of Γ_{j} it can be seen that the 2 -cocycles ω_{i} (normalized) corresponding to the extension $\left(\Sigma_{i}\right)$ satisfy the relation (7). Conversely, we define $\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D}\left(\Gamma_{j}\right), i \neq j$ as follows:

$$
\begin{aligned}
\gamma_{j} \in \Gamma_{j}, \gamma_{j} & =\beta_{j}\left(a_{j}\right)+u_{j}\left(\lambda_{j}\right), \lambda_{j}=\alpha_{j}\left(\gamma_{j}\right) \\
\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(\gamma_{j}\right) & =\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(\beta_{j}\left(a_{j}\right)\right)+\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(u_{j}\left(\lambda_{j}\right)\right) \\
& =\beta_{j}\left(\left(L\left(\lambda_{i}\right)-R\left(\lambda_{i}\right)\right)\left(a_{j}\right)+r_{i}\left(\lambda_{1}, \lambda_{2}\right)\right) .
\end{aligned}
$$

The relation (7) shows that $\zeta_{i}\left(\lambda_{i}\right)$ is a complementary extending derivation and, as $r_{i} \in \operatorname{Hom}_{K}\left(\widetilde{N}_{1}\left(\Lambda_{i}\right) \otimes \tilde{N}_{1}\left(\Lambda_{2}\right), A\right), \zeta_{i}$ is a homomorphism of K-modules.

Lemma 3.4. Let $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ be a complementary pair and u_{i}, u_{i}^{\prime} be two splittings of $\left(\Sigma_{i}\right)$ as K-modules such that $u_{i}(1)=u_{i}^{\prime}(1)=1$ and r_{i}, r_{i}^{\prime} be the associated functions. Then there exists $c_{i} \in \operatorname{Hom}_{K}\left(\widetilde{N}_{1}\left(\Lambda_{i}\right), A\right)$ such that $r_{i}^{\prime}=r_{i}+\delta_{i} c_{j}, i \neq j$, $i=1,2$.

Lemma 3.5. Let $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ be a complementary pair. Any two complementary extending derivations $\zeta_{i}\left(\lambda_{i}\right), \zeta_{i}^{\prime}\left(\lambda_{i}\right)$ for $\lambda_{i} \in \Lambda_{i}$ differ by an element $s\left(\lambda_{i}\right) \in S\left(\Gamma_{j} \supset\right.$ $\left.\beta_{j}(A) \supset 0\right) i \neq j$ and conversely.

The proofs of these two lemmas are straight forward verifications.
Definition 3.6. A partial cocycle z is an element $z \in \operatorname{Hom}_{\kappa}\left(\widetilde{N}_{1}\left(\Lambda_{1}\right) \otimes \widetilde{N}_{1}\left(\Lambda_{2}\right)\right.$, A) such that z belongs to $\operatorname{Hom}_{\Sigma}\left(\widetilde{N}_{1}\left(\Lambda_{j}\right), Z^{1}\left(\Lambda_{i}, A\right)\right)$ for $i=1$ or $2, i \neq j$ (In this case, we denote z by z_{i}).

Proposition 3.7. Let $\left(\Sigma_{1}\right)$, $\left(\Sigma_{2}\right)$ be a complementary pair. Then for (i) different splittings u_{i}^{\prime} of $\left(\Sigma_{i}\right)$ such that $u_{i}^{\prime}(1)=1$ (ii) complementary extending derivations of Γ_{j} for elements of $\Lambda_{i}, i \neq j$ for different homomorphisms $\zeta_{i}^{\prime}: \Lambda_{i} \rightarrow$ $\mathfrak{D}\left(\Gamma_{j}\right)$ as K-modules, the sum $r_{1}+r_{2}$ (of the associated functions r_{i} as in Prop. 3.3) gets changed into $r_{1}+r_{2}+z_{1}+z_{2}$ where $z_{i}, i=1,2$ are partial cocycles, $z_{i} \in \operatorname{Hom}_{K}$ $\left(\widetilde{N}_{1}\left(\Lambda_{j}\right), Z^{1}\left(\Lambda_{i}, A\right)\right.$).

The proof is a straightforward verification.
Definition 3.8. A complementary pair (Σ_{1}), (Σ_{3}) of extensions over Λ_{1} and Λ_{2} respectively with kernel A is called a coherent pair if, for some splittings u_{i} of (Σ_{i}) such that $u_{i}(1)=1$ and some K-homomorphism $\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D}\left(\Gamma_{j}\right) i \neq j$ (as K-modules) such that $\zeta_{i}(1)=0$ and $\zeta_{i}\left(\lambda_{i}\right)$ is a complementary extending derivation of Γ_{j} for λ_{i}, the sum $r_{1}+r_{2}$ of the associated functions r_{i} (as in Prop. 3,3)
is equal to the sum $z_{1}+z_{3}$ for some partial cocycles

$$
z_{i} \in \operatorname{Hom}_{k}\left(\tilde{N}_{1}\left(\Lambda_{j}\right), Z^{1}\left(\Lambda_{i}, A\right)\right), i \neq j, i=1,2
$$

From Prop. 3.7, we see that this property of being coherent depends only on the extensions (Σ_{1}), (Σ_{2}). We give a criterion for coherence in the following.

Proposition 3.9. A complementary pair $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ is a coherent pair, if and only if, for some choice of splittings u_{i} of $\left(\Sigma_{i}\right)$ with $u_{i}(1)=1$ and K-homomorphism $\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D}\left(\Gamma_{j}\right), i \neq j$ (as K-modules) for $i=1,2$ such that $\zeta_{i}(1)=0$ and $\zeta_{i}\left(\lambda_{i}\right)$ is complementary extending derivation for λ_{i}, the sum $\rho_{1}+\rho_{2}$ of the associated functions ρ_{i} (as given by Prop. 3.3) is 0.

Proof. Let $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ be a coherent pair. Then for some splitting u_{i} of (Σ_{i}) such that $u_{i}(1)=1$ and homomorphism $\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D}\left(\Gamma_{j}\right), i \neq j, i=1,2$ the sum $r_{1}+r_{2}$ of the associated functions r_{i} is equal to the sum $z_{1}+z_{2}, z_{i}$ being partial cocycle belonging to $\operatorname{Hom}_{K}\left(\widetilde{N}_{1}\left(\Lambda_{j}\right), Z^{1}\left(\Lambda_{i}, A\right)\right), i=1,2$ i.e. $r_{1}+r_{2}=z_{1}+z_{2}$. With the same splittings u_{i} but with the homomorphism $\zeta_{i}^{\prime}: \Lambda_{i} \rightarrow \mathfrak{D}\left(\Gamma_{j}\right)$, $\zeta_{i}^{\prime}=\zeta_{i}+\theta_{j}^{-1}\left(-z_{j}\right)\left(\theta_{j}\right.$ is the K-isomorphism of $S\left(\Gamma_{j} \supset \beta_{j}(A) \supset 0\right)$ onto $Z^{1}\left(\Lambda_{j}, A\right)$ of Lemma 2.2), we see that the sum $\rho_{1}+\rho_{2}$ of the associated functions ρ_{i} is equal to $r_{1}+r_{2}-z_{1}-z_{2}=0$. Conversely if $\rho_{1}+\rho_{2}=0$ with $z_{1}=z_{2}=0$ we see that the pair $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ is coherent.

An example of a coherent pair

Let $\Lambda=\Lambda_{1} \otimes \Lambda_{2}$ (with the same assumptions on Λ_{i} and K, as earlier). Then A is a two sided Λ-module. Let $(\Sigma): 0 \longrightarrow A \xrightarrow{\beta} I^{\alpha} \Lambda \longrightarrow 0$ be an extension over Λ with kernel A (abelian). Further let $\Gamma_{i}=\alpha^{-1}\left(\Lambda_{i}\right), i=1,2\left(\Lambda_{i}\right.$ is identified as a sub-algebra of Λ). Then we have a pair $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ of extensions, $\left(\Sigma_{i}\right): 0 \longrightarrow A \xrightarrow{\beta_{i}} \Gamma_{i} \xrightarrow{\alpha_{i}} \Lambda_{i} \longrightarrow 0, \alpha_{i}=\alpha \mid \Gamma_{i}$ and $\beta_{i}=\beta$. Let $u_{i}: \Lambda_{i} \rightarrow \Gamma_{i}$ be a splitting of $\left(\Sigma_{i}\right)$ as K-modules such that $u_{i}(1)=1$. We shall define a complementary extending derivation $\zeta_{i}\left(\lambda_{i}\right)$ for $\lambda_{i}, i=1,2$ as follows:

$$
\begin{gather*}
\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(\gamma_{j}\right)=\left[u_{i}\left(\lambda_{i}\right), \gamma_{j}\right]=u_{i}\left(\lambda_{i}\right) \cdot r_{j}-\gamma_{j} \cdot u_{i}\left(\lambda_{i}\right) \tag{8}\\
i \neq j, i=1,2: \gamma_{j} \in \Gamma_{j}^{-} \text {and } \lambda_{i} \in \Lambda_{i} .
\end{gather*}
$$

Then $\zeta_{i}\left(\lambda_{i}\right)$ is a derivation of $\Gamma_{j}, i \neq j, \zeta_{i}(1)=0$ and induces trivial derivation on Λ_{j} and $\zeta_{i}: \Lambda_{i} \rightarrow \mathscr{D}\left(\Gamma_{j}\right)$ is a K-homomorphism. Thus $\left(\Sigma_{1}\right),\left(\Sigma_{3}\right)$ is a complementary pair. $\quad \beta_{j}\left(r_{i}\left(\lambda_{1}, \lambda_{2}\right)\right)=\left(\zeta_{i}\left(\lambda_{i}\right)\right)\left(u_{j}\left(\lambda_{j}\right)\right)=\left[u_{i}\left(\lambda_{i}\right), u_{j}\left(\lambda_{j}\right)\right], i \neq j$. Hence $r_{1}+r_{2}=0$ i.e. $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ is a coherent pair,

Proposition 3.10. Let $\left(\Sigma_{1}\right)$, $\left(\Sigma_{2}\right)$

$$
\begin{align*}
& \left(\Sigma_{1}\right): 0 \longrightarrow A \xrightarrow{\beta_{1}} \Gamma_{1} \xrightarrow{\alpha_{1}} \Lambda_{1} \longrightarrow 0 \tag{9}\\
& \left(\Sigma_{2}\right): 0 \longrightarrow A \xrightarrow{\beta_{2}} \Gamma_{2} \xrightarrow{\alpha_{2}} \Lambda_{2} \longrightarrow 0
\end{align*}
$$

be a coherent pair of extensions (with the same assumptions on Λ_{i} and K, as earlier).
Then (i) there exists an extension (Σ)

$$
\begin{equation*}
(\Sigma): 0 \longrightarrow A \xrightarrow{\beta} \Gamma \xrightarrow{\alpha} \Lambda_{1} \otimes \Lambda_{2} \longrightarrow 0 \tag{10}
\end{equation*}
$$

over $\Lambda_{1} \otimes \Lambda_{2}$ with kernel A
(ii) there exists operator K-isomorphisms $\varphi_{i}: \alpha^{-1}\left(\Lambda_{i}\right) \rightarrow I_{i}, i=1,2$ (with respect to operators from $\Lambda_{j}, i \neq j$ and
(iii) $\alpha_{i} \cdot \varphi_{i}=\alpha \mid \alpha^{-1}\left(\Lambda_{i}\right), i=1,2$.

Proof. Let $\left(\Sigma_{i}\right): 0 \longrightarrow A \xrightarrow{\beta_{i}} \Gamma_{i} \xrightarrow{\alpha_{i}} \Lambda_{i} \longrightarrow 0$ be a coherent pair. Let us choose (i) splitting $u_{i}: \Lambda_{i} \rightarrow \Gamma_{i}$ such that $u_{i}(1)=1$ with ω_{i} as associated 2-cocycles (normalized) and (2) K-homomorphism $\zeta_{i}: \Lambda_{i} \rightarrow \mathfrak{D}\left(\Gamma_{j}\right), i \neq j$ so that the sum $r_{1}+r_{2}=0$ (of the associated functions r_{i} (Prop. 3.9)). Let $r=r_{1}=-r_{2}$. Then the 2-bicochain $\omega_{1}+r+\omega_{2}$ is a 2-bicocycle and let $\omega=\xi^{*}\left(\omega_{1}+r+\omega_{2}\right)$ (ξ^{*} given by (4)). Then ω is a 2-cocycle (normalized) of $\Lambda_{1} \otimes \Lambda_{2}$ with values in A. Let $\Gamma=A \oplus\left(\Lambda_{1} \otimes \Lambda_{2}\right)$ (direct sum as K-modules). We shall, as usual, denote by the pairs $\left(a, \Sigma_{i} \lambda_{1 i} \otimes \lambda_{2 i}\right)$ the elements of $\Gamma, a \in A, \lambda_{1 i} \in \Lambda_{1}, \quad \lambda_{2 i} \in \Lambda_{2}$. Let $\beta: A \rightarrow \Gamma, \alpha: \Gamma \rightarrow \Lambda_{1} \otimes \Lambda_{2}$ be defined by $\beta(a)=(a, 0)$ and $\alpha\left(\left(a, \sum \lambda_{1 i} \otimes \lambda_{2 i}\right)\right)=$ $\sum \lambda_{1 i} \otimes \lambda_{2 i}$. We define a multiplication in Γ, as usual, by means of the 2 -cocycle ω.

$$
\begin{align*}
& \left(a_{1}, \lambda_{11} \otimes \lambda_{21}\right) \cdot\left(a_{2}, \lambda_{12} \otimes \lambda_{22}\right) \tag{11}\\
& \quad=\left(a_{1} \cdot \lambda_{12} \cdot \lambda_{22}+\lambda_{11} \cdot \lambda_{12} \cdot a_{2}+\omega_{1}\left(\lambda_{11}, \lambda_{12}\right) \lambda_{21} \cdot \lambda_{22}\right. \\
& \left.\quad \quad+\lambda_{21} r\left(\lambda_{11}, \lambda_{22}\right) \lambda_{12}+\lambda_{11} \cdot \lambda_{12} \omega_{2}\left(\lambda_{21}, \lambda_{22}\right), \lambda_{11} \cdot \lambda_{12} \otimes \lambda_{21} \cdot \lambda_{22}\right)
\end{align*}
$$

(from (4)). Then Γ is an associative K-algebra and (Σ):0 $A \xrightarrow{\beta} \Gamma \xrightarrow{\alpha} \Lambda_{1} \otimes$ $\Lambda_{2} \longrightarrow 0$ is an extension over $\Lambda_{1} \otimes \Lambda_{2}$ with kernel A. As in the example given above, this gives rise to a coherent pair $\left(\Sigma_{1}^{\prime}\right),\left(\Sigma_{2}^{\prime}\right)$ of extensions over Λ_{1} and Λ_{2} respectively with kernel A where

$$
\begin{equation*}
\left(\Sigma_{i}^{\prime}\right): 0 \longrightarrow A \xrightarrow{\beta_{i}^{\prime}} \alpha^{-1}\left(\Lambda_{i}\right) \xrightarrow{\alpha_{i}^{\prime}} \Lambda_{i} \longrightarrow 0 \tag{12}
\end{equation*}
$$

where $\alpha_{i}^{\prime}=\alpha \mid \alpha^{-1}\left(\Lambda_{i}\right)$ and $\beta_{i}^{\prime}=\beta$. Let us define the mapping $\varphi_{i}: \alpha^{-1}\left(\Lambda_{i}\right) \rightarrow \Gamma_{i}$ as follows.

$$
\begin{array}{ll}
\text { Case } & i=1: \varphi\left(\left(a, \lambda_{1} \otimes 1\right)\right)=\beta_{1}(a)+u_{1}\left(\lambda_{1}\right) \\
\text { Case } & i=2: \varphi_{2}\left(\left(a, 1 \otimes \lambda_{2}\right)\right)=\beta_{2}(a)+u_{2}\left(\lambda_{2}\right) .
\end{array}
$$

Then $\varphi_{i}, i=1,2$ is an isomorphism of K-algebras. We shall verify here only that the multiplication is preserved and this is operator isomorphism.

Case $i=1, j=2$:

$$
\begin{aligned}
& \varphi_{1}\left(\left(a, \lambda_{11} \otimes 1\right) \cdot\left(a_{2}, \lambda_{12} \otimes 1\right)\right) \\
= & \beta_{1}\left(a_{1} \cdot \lambda_{12}+\lambda_{11} \cdot a_{2}+\omega_{1}\left(\lambda_{11}, \lambda_{12}\right)\right)+u_{1}\left(\lambda_{11} \cdot \lambda_{12}\right) \\
= & \varphi_{1}\left(\left(a_{1}, \lambda_{11} \otimes 1\right)\right) \cdot \varphi_{1}\left(\left(a_{2}, \lambda_{12} \otimes 1\right)\right)
\end{aligned}
$$

Let $\lambda_{2} \in \Lambda_{2}$:

$$
\begin{aligned}
& \varphi_{1}\left(\left[\left(0,1 \otimes \lambda_{2}\right),\left(a, \lambda_{1} \otimes 1\right)\right]\right) \\
= & \varphi_{1}\left(\left(L\left(\lambda_{2}\right)-R\left(\lambda_{2}\right)\right)(a)-r\left(\lambda_{1}, \lambda_{2}\right), 0\right) \\
= & \beta_{1}\left(\left(L\left(\lambda_{2}\right)-R\left(\lambda_{2}\right)\right)(a)-r\left(\lambda_{1}, \lambda_{2}\right)\right) \\
= & \zeta_{2}\left(\lambda_{2}\right) \cdot \varphi_{1}\left(\left(a, \lambda_{1} \otimes 1\right)\right) .
\end{aligned}
$$

i.e. $\varphi_{1}: \alpha^{-1}\left(\Lambda_{1}\right) \rightarrow \Gamma_{1}$ is operator isomorphism with operators from Λ_{2}. Similarly for $i=2$ we show φ_{2} is operator isomorphism of $\alpha^{-1}\left(\Lambda_{2}\right)$ onto Γ_{2}. Further $\left(\alpha_{1} \cdot \varphi_{1}\right)\left(\left(a, \lambda_{1} \otimes 1\right)\right)=\lambda_{1}=\alpha\left(\left(a, \lambda_{1} \otimes 1\right)\right)$ i.e. $\alpha_{1} \cdot \varphi_{1}=\alpha \mid \alpha^{-1}\left(\lambda_{1}\right)$. Similarly $\alpha_{2} \cdot \varphi_{2}$ $=\alpha \mid \alpha^{-i}\left(\Lambda_{2}\right)$. We summarize together the Prop. 3.10 and the example given earlier in

Theorem 3.11. Let $(\Sigma): 0 \longrightarrow A \xrightarrow{\beta} \Gamma \xrightarrow{\alpha} \Lambda \longrightarrow 0$ be an extension over $\Lambda=\Lambda_{1} \otimes \Lambda_{2}$ with kernel A, Λ_{i} being K-projective associative algebra with identity such that the map $k \rightarrow k \cdot 1$ is a monomorphism of K onto a K-direct summand of $\Lambda_{i}, i=1,2$ and A a two sided $\left(\Lambda_{1}, \Lambda_{2}\right)$-bimodule. Then $\left(\Sigma_{i}^{\prime}\right): 0 \rightarrow A \rightarrow \alpha^{-1}\left(\Lambda_{i}\right) \rightarrow \Lambda_{i} \rightarrow 0 i=1,2$ is a coherent pair of extensions over Λ_{i} with kernel A, the complementary extending derivations on $\alpha^{-1}\left(\Lambda_{j}\right)$ for $\lambda_{i} \in \Lambda_{i}, i \neq j$ being given by inner derivation of coset representatives $u_{i}\left(\lambda_{i}\right)$ of elements of Λ_{i} in $\alpha^{-1}\left(\Lambda_{i}\right), u_{i}: \Lambda_{i} \rightarrow \alpha^{-1}\left(\Lambda_{i}\right)$ being a splitting of $\left(\Sigma_{i}^{\prime}\right)$ as K-modules with $u_{i}(1)=1$. Conversely if $\left(\Sigma_{i}\right): 0 \longrightarrow A \xrightarrow{\beta_{i}} \Gamma_{i} \xrightarrow{\alpha_{i}} \Lambda_{i} \longrightarrow 0$ $(i=1,2)$ is a coherent pair of extensions over Λ_{i} with kernel A then (1) there exists an extension $(\Sigma): 0 \longrightarrow A \xrightarrow{\beta} \Gamma \xrightarrow{\alpha} \Lambda_{1} \otimes \Lambda_{2} \longrightarrow 0$ over $\Lambda_{1} \otimes \Lambda_{2}$ with kernel A (2) there exists a pair of operator isomorphisms φ_{i} from $\alpha^{-1}\left(\Lambda_{i}\right)$ onto $\Gamma_{i}, i=1,2$ (as K-algebras) and (3) $\alpha_{i} \cdot \varphi_{i}=\alpha \mid \alpha^{-1}\left(\Lambda_{i}\right), i=1,2$.

Let $\mathscr{C}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ denote the set of all coherent pairs of equivalence classes
of extensions over Λ_{1} and Λ_{2} with kernel A (with the same assumptions on Λ_{i}, A and K, as earlier). A coherent pair $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ of extensions determines at least one quadruple $\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}$ where $\omega_{i} \in Z^{2}\left(\Lambda_{i}, A\right)$ (normalized 2-cocycle) and $r_{i} \in \operatorname{Hom}_{K}\left(\tilde{N}_{1}\left(\Lambda_{1}\right) \otimes \tilde{N}_{1}\left(\Lambda_{2}\right), A\right)$ such that (1) $\delta_{i} \omega_{j}=\delta_{j} r_{i}, i \neq j, i=1,2$ and (2) $r_{1}+r_{2}=z_{1}+z_{2}$ where z_{i} is a partial cocycle, $z_{i} \in \operatorname{Hom}_{K}\left(\tilde{N}_{\mathrm{i}}\left(\Lambda_{j}\right), Z^{1}\left(\Lambda_{i}, A\right)\right.$), $i \neq j$ we shall call such a quadruple a standard quadruple. Conversely, any standard quadruple $\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}$ determines a coherent pair of extensions.

Definition 3.12. Two standard quadruples $\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}\left\{\omega_{1}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \omega_{2}^{\prime}\right\}$ are called equivalent if (1) there exists a 1 -cochain c_{i} (normalized) such that $\omega_{i}^{\prime}-\omega_{i}=\delta_{i} c_{i}$ for $i=1,2$ and (2) there exists partial cocycle z_{i} such that $r_{i}^{\prime}-r_{i}=\delta_{i} c_{j}+z_{j} . \quad$ A standard quadruple of the form $\left\{\delta_{1} c_{1}, \delta_{1} c_{2}+z_{2}, \delta_{2} c_{1}+z_{1}, \delta_{2} c_{2}\right\}$ is called a trivial quadruple.

Let $\mathscr{S}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ denote the set of all equivalence classes of standard quadruples. Then $\mathscr{S}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ is a K-module under componentwise addition and scalar multiplication of representatives. It is also clear that there exists a bijection of $\mathscr{S}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$ onto $\mathscr{C}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$. Hereafter we shall identify \mathscr{C} with \mathscr{S}. \mathscr{C} is not empty because the pair $\left(\Sigma_{1}\right),\left(\Sigma_{2}\right)$ where $\left(\Sigma_{i}\right)$ is the inessential extension over Λ_{i} with kernel A, is a coherent pair. Let us now define the following maps

$$
\begin{align*}
& \Omega_{i}: H^{2}\left(\Lambda_{1}, \Lambda_{2} ; A\right) \rightarrow H^{2}\left(\Lambda_{i}, A\right), i=1,2 \\
& \Omega: H^{2}\left(\Lambda_{1}, \Lambda_{2} ; A\right) \rightarrow H^{2}\left(\Lambda_{1}, A\right) \oplus H^{2}\left(\Lambda_{2}, A\right) \tag{13}\\
& I: H^{2}\left(\Lambda_{1}, \Lambda_{2} ; A\right) \rightarrow \mathscr{S}\left(\Lambda_{1}, \Lambda_{2} ; A\right) \\
& \Delta: \mathscr{S}\left(\Lambda_{1}, \Lambda_{2} ; A\right) \rightarrow H^{2}\left(\Lambda_{1}, A\right) \oplus H^{2}\left(\Lambda_{2}, A\right) .
\end{align*}
$$

Let $\omega_{1}+r+\omega_{2}$ be a representative 2 -bicocycle of an element of $H^{2}\left(\Lambda_{1}, \Lambda_{2} ; A\right)$

$$
\begin{aligned}
& \Omega_{i}\left(\omega_{1}+r+\omega_{2}\right)=\text { the cohomology class of } \omega_{i} \text { in } H^{2}\left(\Lambda_{i}, A\right) \\
& \Omega\left(\omega_{1}+r+\omega_{2}\right)=\Omega_{1}\left(\omega_{1}+r+\omega_{2}\right)+\Omega_{2}\left(\omega_{1}+r+\omega_{2}\right) . \\
& \Pi\left(\omega_{1}+r+\omega_{2}\right)=\text { equivalence class of the standard quadruple }\left\{\omega_{1}, r,-r, \omega_{2}\right\} \\
& \Lambda\left(\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}\right)=\left(\text { class of } \omega_{1}, \text { class of } \omega_{2}\right) .
\end{aligned}
$$

These are well defined K-homomorphisms. Let Ω_{i} be the kernel of Ω_{i} and Ω the kernel of Ω. Then $\Omega=\Omega_{1} \cap \Omega_{2}$.

Proposition 3.13. Ω consists of the classes of elements of the form ($0, r, 0$) where $r \in \operatorname{Hom}_{K}\left(\widetilde{N}_{1}\left(\Lambda_{1}\right) \otimes \widetilde{N}_{1}\left(\Lambda_{2}\right), A\right)$ such that $\delta_{i} r=0, i=1,2$.

The proof is straightforward verification.
Proposition 3.14. II is an epimorphism.
Proof: Let $\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}$ be a representative of an element in \mathcal{S}. As this standard quadruple corresponds to a coherent pair of extensions, we can assume that $r_{1}=r=-r_{2}$. Then $\omega_{1}+r+\omega_{2}$ is a 2 -bicocycle and the image under Π of the bicohomology class of $\omega_{1}+r+\omega_{2}$ is the element in \mathscr{S} which we started with.

Proposition 3.15. Δ is a monomorphism.
Proof. Enough to verify that kernel Δ is 0 . Let $\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}$ be a representative of an element in Ker Δ. Then

$$
\Delta\left(\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}\right)=0 \in H^{2}\left(\Lambda_{1}, A\right) \oplus H^{2}\left(\Lambda_{2}, A\right)
$$

i.e. there exists a 1 -cochain $c_{i} \in \operatorname{Hom}_{K}\left(\tilde{N}_{1}\left(\Lambda_{i}\right), A\right)$ such that $\omega_{i}=\delta_{i} c_{i}, i=1,2$. Hence the equivalence class of $\left\{\omega_{1}, r_{1}, r_{2}, \omega_{2}\right\}$ corresponds to the coherent pair of inessential extensions and this is the zero of \mathscr{S} i.e. $\operatorname{Ker} \Delta=0$.

Proposition 3.16. The kernel of Π is Ω (the kernel of Ω).
Proof. Let $\omega_{1}+r+\omega_{2}$ be a representative of an element in Ker II. Then $\Pi\left(\omega_{1}+r+\omega_{2}\right)=$ class of $\left\{\omega_{1}, r,-r, \omega_{2}\right\}=0$ in \mathscr{S}. $\left\{\omega_{1}, r,-r, \omega_{2}\right\}$ is equivalent to a quadruple $\left\{\delta_{1} c_{1}, \delta_{1} c_{2}+z_{2}, \delta_{2} c_{1}+z_{1}, \delta_{2} c_{2}\right\}$ for a (normalized) 1-chain $c_{i}, i=1,2$ and partial cocycle $z_{i}, i=1,2$. Thus $\omega_{i}=\delta_{i} c_{i}$ and $r=r_{1}=-r_{2}=\delta_{1} c_{2}+z_{2}=$ $-\delta_{2} c_{1}-z_{1}$. Hence $\left(\omega_{1}+r+\omega_{2}\right)$ is bicohomologous to ($0, r^{\prime}, 0$) where $r^{\prime}=\delta_{2} c_{1}+z_{2}$ $=-\delta_{1} c_{2}-z_{1}$.
$\delta_{1} r^{\prime}=\delta_{2} r^{\prime}=0$ i.e. Ker $\Pi \subset \Omega$. Let $\omega_{1}+r+\omega_{2}$ be a representative of an element in Ω. Then $\omega_{1}+r+\omega_{2}$ is bicohomologous to a bicocycle of the form ($0, r^{\prime}, 0$) where $\delta_{i} r^{\prime}=0, i=1,2$. Then $\Pi\left(\omega_{1}+r+\omega_{2}\right)=\Pi\left(\right.$ class of $\left.\left(0, r^{\prime}, 0\right)\right)=$ class of $\left\{0, r^{\prime},-r^{\prime}, 0\right\}=0 \in \mathscr{S}$ i.e. $\mathscr{A} \subset \operatorname{Ker} \Pi$. Hence $\operatorname{Ker} \Pi=\{$.

We summarize these together in the following:
Theorem 3.17. Let Λ_{1} and Λ_{2} be two associative K-algebras (with all assumptions as earlier) and let A be a two sided (Λ_{1}, Λ_{2})-bimodule. Then we have the following commutative diagram in which rows and columns are exact:

References

[1] H. Cartan and S. Eilenberg: HOMOLOGICAL ALGEBRA, Princeton University Press, 1956.
[2] F. Haimo and S. Maclane: The Cohomology theory of a pair of groups, Ill. J. Math., V. 5 (1961), 45-60.

National College,
TIRUCHIRAPALLI-1 (Madras State, INDIA.)

