A FUNCTION ALGEBRA ON RIEMANN SURFACES

MITSURU NAKAI

1. Introduction. In this note, we treat the problem to determine the conformal structure of the closed surface by the structure of the differentiable function algebra as the normed algebra with a certain norm.

A similar investigation is found in Myers [1]. He concerns himself with determining the Riemannian structure of the compact manifold using a certain normed algebra of differentiable functions.

We have shown in [2] the fact that the Royden's ring as a topological ring determines the quasiconformal structure of the Riemann surface. Thus it is natural to inquire whether the Royden's ring as a normed ring characterizes the Riemann surface or not. This problem is positively answered for closed surfaces by reduction to the following: A topological mapping between two surfaces with the annular maximal dilatation ${ }^{1)} 1$ is a conformal ${ }^{2}$ mapping.
2. Royden's ring, We denote by R an open or closed Riemann surface and by $M(R)$ its Royden's ring, i.e., the normed ring of all bounded continuous functions on R which are absolutely continuous in the sense of Tonelli ${ }^{3)}$ with finite Dirichlet integrals. The norm of f in $M(R)$ is given by

$$
\begin{equation*}
\|f\|_{1}=\|f\|_{\infty}+\sqrt{\bar{D}[f]}, \tag{1}
\end{equation*}
$$

where $\|f\|_{\infty}$ denotes the uniform norm $\sup (|f(P)| ; P \in R)$. Then $M(R)$ is a complete normed ring with respect to the norm (1).

We denote by $C^{n} \cap M(R)$ the incomplete normed subring of $M(R)$ consisting of all C^{n}-functions in $M(R)$. The following holds (cf. [2]).

Lemma 1. $\mathrm{C}^{n} \cap M(R)$ is dense in $M(R)(n=1,2, \ldots)$.

[^0]Let A be an annulus which is contained in a simply connected domain D in R and whose boundary consists of two simple closed curves C_{0} and C_{1}. We assume that the simply connected domain (C_{0}) $\subset D$ bounded by C_{0} includes C_{1}. Define a continuous function $f_{A}(P)$ on R as follows: $f_{A}(P)=0$ if $P \in R-\left(C_{0}\right)$, $f_{A}(P)=1$ if $P \in \overline{\left(C_{1}\right)}$, the closure of the simply connected domain $\left(C_{1}\right)$ in D bounded by C_{1}, and $f_{A}(P)$ is harmonic in $\left(C_{0}\right)-\overline{\left(C_{1}\right)}$. Clearly f_{A} is contained in $M(R)$. We shall call f_{A} the fundamental function with the base A. Denote by F_{P}^{R} the totality of fundamental functions in $M(R)$ whose bases contain the fixed point P in R. The linear space with real coefficients generated by F_{P}^{R} will be denoted by \widetilde{F}_{P}^{R}. We notice that the functions in \widetilde{F}_{P}^{R} is harmonic at P.

Let $z=x+i y$ be a local parameter at P. We define

$$
\mathfrak{M}_{P, z}^{R}=\left\{\left(f_{x x}(P), f_{x y}(P), f_{x}(P), f_{y}(P)\right) ; f \in \widetilde{F}_{P}^{R}\right\} .
$$

Then $\mathfrak{M}_{P, z}^{R}$ is a linear subspace of 4 -dimensional real linear space \mathbf{R}^{4}. For this space we can show the following:

Lemma 2. $\mathfrak{M}_{P, z}^{R}=\mathbf{R}^{4}$.

Proof. Let z be valid in a simply connected domain D in R. Then P is represented $a+i b$ in terms of z. Let (ε, η) be a pair of real numbers such that an annulus $B_{\left(\varepsilon, \eta, r_{1}, r_{2}\right)}=\left\{Q ; r_{1}<|a+i b+\varepsilon+i \eta-z(Q)|<r_{2}\right\}$ is contained in D with its closure and that $P \in B_{\left(\varepsilon, \eta, r_{1}, r_{2}\right)}$. The totality of such pairs (ε, η) contains a punctured disc E in the (ε, η)-plane: $0<|\varepsilon+i \eta|<\min (|z(Q)-z(P)|$; $Q \in \partial D) .{ }^{4)}$ Let $f(Q)$ be the fundamental function with the base $B_{\left(s, r, r_{1}, r_{2}\right)}$. Then

$$
\begin{aligned}
f(Q) & =\mu\left(\log r_{2}-\log |a+i b+\varepsilon+i \eta-z(Q)|\right), \\
\mu & =1 /\left(\log r_{2}-\log r_{1}\right),
\end{aligned}
$$

for Q in $B_{\left.1 \varepsilon, \eta_{1}, r_{1}, r_{2}\right)}$. Hence we get

$$
\begin{aligned}
& \left(f_{x x}(P), f_{x y}(P), f_{x}(P), f_{y}(P)\right) \\
& \quad=\frac{-\mu}{|\varepsilon+i \eta|^{4}}\left(-\varepsilon^{2}+\eta^{2}, 2 \varepsilon \eta,-\varepsilon\left(\varepsilon^{2}+\eta^{2}\right),-\eta\left(\varepsilon^{2}+\eta^{2}\right)\right),
\end{aligned}
$$

which shows that $\mathfrak{P}_{P, z}^{R}$ contains the linear subspace \mathfrak{P}^{\prime} which is generated by

$$
\left\{\left(\left(\eta^{2}-\varepsilon^{2}\right), 2 \varepsilon \eta,-\varepsilon\left(\varepsilon^{2}+\eta^{2}\right),-\eta\left(\varepsilon^{2}+\eta^{2}\right)\right) ;(\varepsilon, \eta) \in E\right\} .
$$

[^1]It is easy to see, choosing ε and η suitably, that \mathbb{M}^{\prime} contains unit vectors $(1,0,0, .0), \ldots,(0,0,0.1)$ and hence $\mathfrak{m}_{P, z}^{R}$ is of 4 dimension. This completes the proof.

Let K be a compact domain in R whose boundary consists of a finite number of closed Jordan curves. First, for a function f in $C^{1} \cap M(R)$, the function $\pi_{K} f$ is defined as follows: $\pi_{K} f=f$ in $R-K$ and $\pi_{K} f$ is the harmonic function in K with boundary values f on ∂K. Then by Dirichlet principle and the maximum principle of harmonic functions, we get the following

$$
\begin{equation*}
\left\|\pi_{K} f\right\| \leqq\|f\| . \tag{2}
\end{equation*}
$$

By Green's formula, we also have the equality.

$$
\begin{equation*}
D[f]=D\left[\pi_{K} f\right]+D\left[f-\pi_{K} f\right] . \tag{3}
\end{equation*}
$$

Thus π_{K} is a linear operator of $C^{1} \cap M(R)$ into $M(R)$ and, using Lemma 1 and the inequality (2), we see that π_{K} can be extended to the whole $M(R)$ preserving the relations (2) and (3). We shall call π_{K} the harmonizer on $M(R)$ with respect to K. Summing up these, we get

Lemma 3. The harmonizer π_{K} is a linear operator with $\pi_{K} \cdot \pi_{K}=\pi_{K}$ of $M(R)$ into $M(R)$ possessing the following properties:
(a) $\pi_{K} f=f$ in $R-K$ and $\pi_{K} f$ is harmonic in K,
(b) (2) and (3) hold for all f in $M(R)$,
(c) $\pi_{K} f=0$ if and only if $f=0$ in $R-K$.
3. Maximal dilatation. Let T be a topological mapping of a Riemann surface R_{1} onto another surface R_{2}. The annular maximal dilatation $K^{*}(T)$ of T is defined by the following

$$
\begin{equation*}
K^{*}(T)=\inf \left(\lambda ; \lambda^{-1} \bmod A \leqq \bmod T A \leqq \lambda \bmod A\right) \tag{4}
\end{equation*}
$$

Here A runs over all annuli with boundary consisting of two Jordan closed curves in R_{1} and $\bmod A$ denotes the modulus of A. It is clear that $1 \leqq K^{*}(T)$ $\leqq \infty$. It is known that $K^{*}(T) \leqq K(T) \leqq e^{\pi K^{*}(T)}$ holds, where $K(T)$ denotes the maximal dilatation in the sense of Pfluger-Ahlfors, i.e., the one using quadrilaterals instead of annuli in (4). It is well known that $K\left(T^{\prime}\right)=1$ if and only if T is a conformal mapping. We shall prove the corresponding fact for $K^{*}(T)$.

Theorem 1. A topological mapping T of R_{1} onto R_{2} is conformal if and only if $K^{*}(T)=1$.

Proof. First we show that $f \in \widetilde{F}_{T P}^{R_{2}}$ implies $f \circ T \in \widetilde{F}_{P}^{R_{1}}$. For this aim, we have only to prove that $f \circ T$ is harmonic on A_{1} if f is in $F_{T P}^{R_{2}}$, where A_{1} is the inverse image of the base A_{2} of f by T. Let $z=x+i y$ and $w=u+i v$ be uniformizers valid in neighbourhoods of A_{1} and A_{2}, respectively. Let $\varphi_{1}\left(\right.$ resp. φ_{2}^{-1}) be a conformal mapping of a circular ring A_{1}^{*} (resp. A_{2}) onto A_{1} (resp. a circular ring A_{2}^{*}).

Putting $T^{*}=\varphi_{2} \circ T \circ \varphi_{1}$ and considering T^{*} as a topological mapping of A_{1}^{*} onto A_{2}^{*}, we see that $K^{*}\left(T^{*}\right)=1$. Thus we may assume $A_{1}^{*}: r_{1}<\left|z^{*}\right|<r_{2}$, $A_{2}^{*}: r_{1}<\left|w^{*}\right|<r_{2}$. Let A_{1}^{*} be divided into A_{11}^{*} and A_{12}^{*} by a concentric circle l_{1}^{*} and let A_{21}^{*}, A_{22}^{*} and l_{2}^{*} be their images under T^{*}. As we have

$$
\bmod A_{2}^{*}=\bmod A_{1}^{*}=\bmod A_{11}^{*}+\bmod A_{12}^{*}
$$

and

$$
\bmod A_{1 k}^{*}=\bmod A_{2 k}^{*} \quad(k=1,2)
$$

we get

$$
\bmod A_{2}^{*}=\bmod A_{21}^{*}+\bmod A_{22}^{*}
$$

which shows l_{2}^{*} is the concentric circle with the same radius as l_{1}^{*}. Hence we see that

$$
\begin{equation*}
\left|T^{*} z^{*}\right|=\left|z^{*}\right| \tag{5}
\end{equation*}
$$

Since, obviously, $f\left(\varphi_{2}^{-1}\left(w^{*}\right)\right)$ is a harmonic measure of $\left|w^{*}\right|=r_{1}$ with respect to A_{2}^{*}, we have

$$
\begin{equation*}
f\left(\varphi_{2}^{-1}\left(w^{*}\right)\right)=\log \left(k /\left|w^{*}\right|\right) \tag{6}
\end{equation*}
$$

where μ and k are suitable constants. By using (5) and (6),

$$
\begin{aligned}
f \circ T(z)=f \circ \varphi_{2}^{-1} \circ T^{*} \circ \varphi_{1}^{-1}(z) & =\log \left(k^{\prime}\left|T^{*} \circ \varphi_{1}^{-1}(z)\right|\right) \\
& =\mu \log \left(k /\left|\varphi_{1}^{-1}(z)\right|\right)
\end{aligned}
$$

which shows $f \circ T$ is harmonic in A_{1}.
Next we show that u and v are in class C^{1}, where $u(z)$ and $v(z)$ are the local equations of $T: w=T z=u(z)+i v(z)$. Let a point $z=x+i y$ be fixed. Putting, for example,

$$
\Delta u=\Delta u(\Delta x)=u(x+\Delta x, y)-u(x, y)
$$

we get, for f in $\widetilde{F}_{T_{2}}^{R_{2}}$,

$$
\begin{align*}
& \frac{1}{\Delta x}(f \circ T(x+\Delta x, y)-f \circ T(x, y)) \tag{7}\\
& \quad=f_{u}(u+\theta \Delta u, v+\theta \Delta v) \frac{\Delta u}{\Delta x}+f_{v}(u+\theta \Delta u, v+\theta \Delta v) \frac{\Delta v}{\Delta x}, \quad 0 \leqq \theta \leqq 1
\end{align*}
$$

Now we can see that

$$
-\infty<\lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x} \leqq \varlimsup_{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x}<\infty .
$$

Contrary to the assertion, assume that there exists a sequence $\left\{\Delta x_{n}\right\} \rightarrow 0$ such that $\lim _{n \rightarrow \infty} \frac{\Delta v\left(\Delta x_{n}\right)}{\Delta x_{n}}=\infty$. By Lemma 2, there exists f in $\widetilde{F}_{T z}^{R_{2}}$ satisfying $\left(f_{u}(T z)\right.$, $\left.f_{v}(T z)\right)=(1,1)$ or $(-1,1)$. As f and $f \circ T$ are harmonic at $T z$ and z, respec tively, we arrived at the following contradiction: $\lim _{n \rightarrow \infty} \frac{\Delta u\left(\Delta x_{n}\right)}{\Delta x_{n}}=-\infty$ and at the same time $=\infty$. Thus $\lim _{\Delta x \rightarrow 0} \frac{\Delta v}{\Delta x}<\infty$. Similarly, we get $\lim \frac{\Delta v}{\Delta x}>-\infty$. Again choosing f in $\widetilde{F}_{T z}^{R_{2}}$ such that $\left(f_{u}(T z), f_{v}(T z)\right)=(1,0)$, we get from (7) and from the above argument that

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=\frac{\partial f \circ T}{\partial x}(z) .
$$

Hence $u_{x}(z)$ and similarly $v_{x}(z)$ must exist. From (7) it follows that

$$
\begin{equation*}
\frac{\partial}{\partial x} f \circ T(z)=f_{u}(u, v) u_{x}(z)+f_{v}(u, v) v_{x}(z) \tag{7}
\end{equation*}
$$

By the similar argument as used in showing the existence of $\lim _{\Delta x \rightarrow 0} \Delta u$, the continuity of u_{x} and v_{x} can be easily proved. We get the existence and the continuity of u_{y} and v_{y}, similarly.

Applying the similar argument to (7)', we have the existence of $u_{x x}, u_{x y}$, $v_{x x}$ and $v_{x y}$ and their continuity and also for $u_{y y}$ and $v_{y y}$.

Finally we obtain

$$
\begin{align*}
\triangle(f \circ T(z))=f_{u u}(T z)\left(u_{x}^{2}\right. & \left.+u_{y}^{2}-v_{x}^{2}-v_{y}^{2}\right)+2 f_{u v}(T)\left(u_{x} v_{x}+u_{y} v_{y}\right) \tag{8}\\
& +f_{u z}(T z) \triangle u+f_{v}(T z) \triangle v,
\end{align*}
$$

where \triangle is Laplacian. By Lemma 2, we get

$$
\begin{align*}
& \triangle u=\triangle v=0 \tag{9}\\
& u_{x}^{2}+u_{y}^{2}=v_{x}^{2}+v_{y}^{2}, u_{x} v_{x}+u_{y} v_{y}=0,
\end{align*}
$$

which implies the Cauchy-Riemann relation for (u, v) or ($u,-v$) which shows that $T z$ is a direct or an indirect conformal mapping. This completes the proof
of Theorem 1.
4. Algebras of differentiable functions. Here we state our main result in this note.

Theorem 2. Two closed Riemann surfaces R_{1} and R_{2} are conformally equivalent if and only if their Royden's rings $M\left(R_{1}\right)$ and $M\left(R_{2}\right)$ are isometrically isomorphic.

In other words, the normed ring theoretic structure of Royden's ring determines the conformal structure of the closed surface.

Proof. The necessity of our condition is evident. So we have only to show that an isometric isomorphism σ of $M\left(R_{1}\right)$ onto $M\left(R_{2}\right)$ is induced by a direct or indirect conformal mapping T of R_{2} onto R_{1}.

Let R_{j}^{*} be the character space of $M\left(R_{j}\right)$, i.e., the totality of homomorphisms of $M\left(R_{j}\right)$ onto the complex number field preserving the positiveness. Then there exists a natural correspondence T of R_{2}^{*} onto R_{1}^{*} induced by $\sigma: T \%(f)$ $=\%\left(f^{\sigma}\right)$ for $\chi \in R_{2}^{*}, f \in M\left(R_{1}\right)$. But, for compact spaces R_{k}, it is easy to see that $R_{k}^{*}=R_{k}$. Here we consider $P \in R_{k}$ as a character defined by $P(f)=f(P)$ for $f \in M\left(R_{k}\right)$. Moreover the topology of R_{k} as a Riemann surface is coincident with the weak* topology $\sigma\left(R_{k}^{*}, M\left(R_{k}\right)\right)$ of $R_{k}^{*}=R_{k}$. Thus, by definition it is clear that T is a topological mapping.

Let A_{2} be an annulus with boundary consisting of two Jordan curves. Let $T A_{2}=\mathrm{A}_{1} . \quad$ We shall prove that $\bmod A_{1}=\bmod A_{2}$, or $K^{*}(T)=1$.

For the aim, we notice that

$$
\begin{equation*}
\left\|f^{\jmath}\right\|_{\infty}=\|f\|_{\infty} \quad \text { for } f \text { in } M\left(R_{1}\right) . \tag{10}
\end{equation*}
$$

In fact, $\|f\|_{\infty}=\sup (|\lambda| ; \lambda \in S(f))$, where $S(f)$ is the spectra of f in $M\left(R_{1}\right)$, that is, the totality of complex numbers such that $f-\lambda$ is not inversible. Clearly, $S(f)=S\left(f^{\sigma}\right)$, so (10) follows. Thus by the isometricity of σ with respect to the norm (1), we get

$$
\begin{equation*}
D\left[f^{\sigma}\right]=D[f] . \tag{11}
\end{equation*}
$$

Let f_{2} be the fundamental function with the base A_{2} and put $\tilde{f}_{1}=f_{2}^{\sigma^{-1}}$. Obviously, $\pi_{A_{1}} \tilde{f}_{1}=f_{1}$ is a fundamental function with the base A_{1}. Putting $\tilde{f}_{2}=f_{1}^{\sigma}$, we have $\pi_{A_{2}} \tilde{f}_{2}=f_{2}$. By (3) and (11), it holds

$$
\begin{aligned}
D\left[f_{1}\right]=D\left[f_{1}^{\sigma}\right] & =D\left[\tilde{f}_{2}\right] \geq D\left[\pi_{A_{2}} \tilde{f}_{2}\right]=D\left[f_{2}\right]=D\left[\widetilde{f}_{1}^{a}\right] \\
& =D\left[\tilde{f}_{1}\right] \geq D\left[\pi_{A_{1}} \tilde{f}_{1}\right]=D\left[f_{1}\right] .
\end{aligned}
$$

Thus we get $D\left[f_{1}\right]=D\left[f_{2}\right] . \quad$ As $\bmod \mathrm{A}_{j}=2 \pi / D\left[f_{j}\right]$, we get $\bmod A_{1}=\bmod A_{2}$ or $K^{*}(T)=1$.

By Theorem 1, the topological mapping T is conformal. This completes the proof of Theorem 2.

Corollary. Two closed Riemann surfaces R_{1} and R_{2} are conformally equivalent if and only if $C^{n}\left(R_{1}\right)$ and $C^{n}\left(R_{2}\right)$ are isometrically isomorphic, where $C^{n}\left(R_{j}\right)$ denotes the incomplete normed ring of all functions in the class C^{n} with the norm (1). Here n is an arbitrary positive integer.

Proof. Let σ be an isometric isomorphism of $C^{n}\left(R_{1}\right)$ onto $C^{n}\left(R_{2}\right)$. Then by Lemma $1, \sigma$ can be extended to the isometric isomorphism of $M\left(R_{1}\right)$ onto $M\left(R_{2}\right)$. Thus R_{1} and R_{2} are conformally equivalent.

The converse is obvious. This completes the proof.

References

[1] S. B. Myers, Algebras of differentiable functions, Proc. Amer. Math. Soc., Vol. 5, 915922 (1954).
[2] M. Nakai, On a ring isomorphism induced by quasiconformal mappings, Nagoya Math. J., Vol. 14, 201-221 (1959).

Mathematical Institute
 Nagoya University

[^0]: Received March 16, 1959.

 1) The definition will be given in $\$ 3$.
 ${ }^{2}$) Here and hereafter the term conformal includes both of the direct and the indirect one.
 ${ }^{3)}$ A function $f(x, y)$ on $[a, b ; c, d]$ is called absolutely continuous in the sense of Tonelli if $f(x, y)$ is absolutely continuous in $x \in[a, b]$ for almost every fixed values $y \in[c, d]$ and the corresponding fact holds if x and y are interchanged and further f_{x} and $f_{y l}$ are locally integrable. The notion is carried over Riemann surfaces using local parameters.
[^1]: ${ }^{4)}$ For the set D, we denote by ∂D the boundary of D.

