D. Portelli and W. Spangher Nagoya Math. J. Vol. 110 (1988), 137-149

ON THE DIVISOR CLASS GROUPS OF A TWO-DIMENSIONAL LOCAL RING AND ITS FORM RING

DARIO PORTELLI AND WALTER SPANGHER

Introduction

Let A be a noetherian ring and let I be an ideal of A contained in the Jacobson radical of A: Rad (A). We assume that the form ring of A with respect to the ideal I: G = Gr(A, I), is a normal integral domain. Hence A is a normal integral domain and one can ask for the links between Cl (A) and Cl (G).

Let $R = \bigoplus_{n \in \mathbb{Z}} I^n$ be the Rees algebra of A with respect to the ideal I (see § 2). In a previous paper [20], the authors have proved that $\operatorname{Cl}(A) \simeq \operatorname{Cl}(R)$; moreover there exists a "canonical" map $j: \operatorname{Cl}(R) \to \operatorname{Cl}(G)$ deduced from the hypersurface section $R \to G = R/uR$ (§ 1). Following the ideas of Lipman's paper [18], in [20] an attempt was made to find out sufficient conditions for ker (j) = 0, (resp.: for ker (j) to be a torsion group). But this sufficient conditions become almost tautological when dim (A) = 2 and ht (I) = 2 (i.e. when A is a local ring and $I = \operatorname{Rad}(A)$; see §1). This paper deals with this last case.

The main result of the paper is Theorem 4; this theorem can be proved also by using the geometrical machinery of Grothendieck, Danilov, Boutot and Bådescu-Fiorentini [15, 8, 9, 6, 3] (see also the Remark 3 after the proof of Theorem 4).

Our proof mainly uses simple tools of Commutative Algebra and standard facts of Local Cohomology theory. A key point is the finiteness of a suitable local cohomology module which we derive from [15].

It is also interesting that the short exact sequences which appear in Theorem 1 of [18] are the same which appear in our proof. In a certain sense, this circumstance unifies the two techniques.

However the problem of the injectivity of $j: \operatorname{Cl}(R) \to \operatorname{Cl}(G)$ for a general hypersurface section $R \to G = R/uR$, dim (G) = 2, is rather different

Received September 26, 1986.

from that considered in this paper as the example given in Section 3 shows.

§1.

In [10] Danilov has studied the links between the groups $\operatorname{Cl}(A[[T]])$ and $\operatorname{Cl}(A)$, where A is a normal integral domain. To do this, he has defined a canonical map $j: \operatorname{Cl}(A[[T]]) \to \operatorname{Cl}(A)$. But in fact Danilov's definition works more generally to give a map $j: \operatorname{Cl}(R) \to \operatorname{Cl}(R/uR)$ for any normal integral domain R and nonunit $u \in R$ such that R/uR = G is also a normal integral domain. Let us recall the construction of j from the viewpoint of this paper.

First of all, $\operatorname{Cl}(R)$ can be thought as the group of isomorphism classes of finitely generated, reflexive, rank one *R*-modules [18, 31]; a similar interpretation holds for $\operatorname{Cl}(G)$. Let *F* be a finitely generated, reflexive, rank one *R*-module; we set: $[F]_R = (\text{isomorphism class of } F) \in \operatorname{Cl}(R)$. Let $E = F \otimes_R G$ with *F* as above; then $E^{**} = \operatorname{Hom}_G(\operatorname{Hom}_G(E, G), G)$ is a finitely generated, reflexive, rank one *G*-module. By this interpretation of the class group, we have, following $[18]: j([F]_R) = [E^{**}]_G$.

From now on we assume that R is a Z-graded ring, i.e. $R = \bigoplus_{n \in \mathbb{Z}} R_n$, and $u \in R$ is a homogeneous element. Let $\xi \in \operatorname{Cl}(R)$; then $\xi = [\mathfrak{b}]_R$ for some homogeneous integral divisorial ideal \mathfrak{b} of R. If $\mathfrak{b} = \mathfrak{b}' \cap u^n R$, $(n \ge 0)$, where \mathfrak{b}' is a homogeneous divisorial ideal with $\mathfrak{b}' \not\subseteq uR$; then $[\mathfrak{b}]_R = [\mathfrak{b}']_R$ since u is a prime element of R. Therefore there is no loss of generality in assuming that $\mathfrak{b} \not\subseteq uR$, or equivalently that u is regular for R/\mathfrak{b} . Then we get: $\mathfrak{a} = \mathfrak{b} \otimes_R G \simeq \mathfrak{b}/u\mathfrak{b} \simeq \mathfrak{b} + uR/uR$ and $j([\mathfrak{b}]_R) = [((\mathfrak{a})^{-1})^{-1}]_G$ where $((\mathfrak{a})^{-1})^{-1}$ denotes, as usual, the divisorial ideal associated to \mathfrak{a} . In the sequel we will always refer to this simpler setup whenever the map j is concerned.

The homomorphism j ties together the groups Cl(R) and Cl(G). In particular one can ask the following questions for j: when is j surjective? and: when is j injective?

The following proposition, concerning the latter question, has been proved in [20] following the general ideas of Lipman's paper [18]:

Let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a Z-graded normal integral domain and let $u \in h$ -Rad (R) be a non-zero homogeneous element such that G = R/uR is also a normal domain. Suppose that the canonical map $j_q: \operatorname{Cl}(R_q) \to \operatorname{Cl}(G_p)$ is injective (resp.: ker (j_q) is a torsion group) for every homogeneous prime ideal Q of R such that: $u \in Q$ and depth $(R_q) \leq 3$ (of course P = Q/uR). Then also j: $\operatorname{Cl}(R) \to \operatorname{Cl}(G)$ is an injective map (resp.: ker(j) is a torsion

group).

Let us observe that the hypotheses of this proposition forces dim $(G) \ge 2$. But if G is a normal integral domain and dim (G) = 2, then G is a C.M. ring. Hence also R is a C.M. ring $(u \in h\operatorname{-Rad}(R); \text{ see } [7], \text{ Proposition 2.2})$ and the above proposition becomes almost tautological. If dim $(G) \le 1$, $\operatorname{Cl}(R)$ is simple to compute.

Therefore only the case dim (G) = 2 remains still open. After all, this is not so surprising; in fact the case dim (A) = 2 was the hardest to solve also for the problem of Danilov-Samuel, i.e. for the hypersurface section $A[[T]] \rightarrow A$ (see [26, 25, 28, 9]). Essentially, there are two (non tautological) ways to handle the case of a general hypersurface section $R \rightarrow G$ when dim (G) = 2. The most recent one is due to Flenner (see Lemma 3.4 of [12]) and is inspired to Theorem 1 of [18]. The other one is used in this paper and comes from Hilfsatz 3 of [28], or Remarque p. 164 of [27]; it is summarized in the following proposition:

PROPOSITION 1. Let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a Z-graded, normal integral domain and let $u \in h$ — Rad (R) be a non-zero, homogeneous element such that G = R/uR is also a normal integral domain. Assume that G is a C.M. ring. Let $\xi \in Cl(R)$ and let $\mathfrak{b} \subset R$ be a homogeneous, proper, divisorial ideal such that $\xi = [\mathfrak{b}]_R$, $\mathfrak{b} \not\subseteq uR$ and \mathfrak{a}^{-1} is a h-free G-module, where $\mathfrak{a} =$ $\mathfrak{b} \otimes_R G$. Then $\xi = 0$, i.e. \mathfrak{b} is h-free, if and only if R/\mathfrak{b} is a C.M. ring.

Proof. Let R/b be a C.M. ring; since u is regular for R/b, the ideal b + uR/b is an unmixed ideal of height one of R/b. Therefore b + uR is an unmixed ideal of height two of R, hence a = b + uR/uR is an unmixed ideal of height one of G. It follows that $a = ((a)^{-1})^{-1}$, so a is *h*-free and then b is *h*-free (see [5], Ch. II, 3.2, Proposition 5; with suitable modifications to the homogeneous case). The converse is trivial because R is a C.M. ring.

§ 2.

Let A be a ring and $I \subseteq \text{Rad}(A)$ an ideal of A. We fix the following notation: $R = R(A, I) = \bigoplus_{n \in \mathbb{Z}} I^n$ $(I^n = A \text{ for } n \leq 0)$ is the Rees algebra of A with respect to I. If T is an indeterminate over A, let $u = T^{-1}$. We have $R = A[a_1T, \dots, a_rT, u] \subseteq A[T, u]$ where $I = (a_1, \dots, a_r)$. G = Gr(A, I) $= \bigoplus_{n \geq 0} I^n / I^{n+1}$ is the form ring of A with respect to I; the irrelevant ideal of G is $G_+ = \bigoplus_{n>0} I^n / I^{n+1}$; let $\alpha^* = \alpha \cdot A[T, u] \cap R$ where α is an ideal of A; a^* is a graded ideal of R; $In_I(a)$ is the graded ideal of G generated by the initial forms In(x) for all $x \in a$.

We refer to [7, 20, 22, 24] for the general properties of these rings and ideals. However, for the sake of completeness, let us recall the following ones: first $G \simeq R/uR$; u is a homogeneous element and $\deg(u) = -1$. Moreover $u \in h - \operatorname{Rad}(R)$ and, finally, $\operatorname{In}_{I}(\alpha) = \alpha^{*} + uR/uR$. If G is a normal integral domain, then also R and A are normal integral domains. If G is a normal integral domain we can consider the map $j: \operatorname{Cl}(R) \to \operatorname{Cl}(G)$ defined in Section 1. Moreover, since u is a prime element of R it is easy to see that $\operatorname{Cl}(A) \xrightarrow{\sim} \operatorname{Cl}(R)$ (see [20], Proposition 1); to be precise, the isomorphism ψ between $\operatorname{Cl}(A)$ and $\operatorname{Cl}(R)$ is given by $\psi([\alpha]_A) = [\alpha^*]_R$, where α is an integral, divisorial ideal of A. Therefore, by composition, we get a homomorphism $i: \operatorname{Cl}(A) \to \operatorname{Cl}(G)$ such that $i([\alpha]_A) = [((\operatorname{In}_{I}(\alpha))^{-1})^{-1}]_G$ where α is as above.

We begin the study of the map $j: \operatorname{Cl}(R(A, I)) \to \operatorname{Cl}(G(A, I))$ with a statement concerning the surjectivity of j.

PROPOSITION 2. Let (A, m) be a local, henselian ring with dim (A) = 2. Suppose that G = Gr(A, m) is a normal integral domain. Then the map $j: Cl(R) \rightarrow Cl(G)$ is surjective.

Proof. Let P be a homogeneous, height one, prime ideal of G. Pick $\overline{x} \in P - P^{(2)}$ with \overline{x} homogeneous. Let $x \in A$ be an element such that $\operatorname{In}(x) = \overline{x}$. Expand xA to a prime ideal Q, maximal among those disjointed from the multiplicatively closed set $\{y \in A | \operatorname{In}(y) \notin P\}$; clearly $\operatorname{ht}(Q) = 1$. From the isomorphism $G(A/Q, m/Q) \simeq G(A, m)/\operatorname{In}(Q)$ and the choice of \overline{x} it follows that $((\operatorname{In}(Q))^{-1})^{-1} = P$ (see Lemma 6 of [1]). Therefore $j([Q^*]_{\mathbb{R}}) = [P]_G$, where $Q^* = Q \cdot A[T, u] \cap \mathbb{R}$. Since $\operatorname{Cl}(G)$ is generated by the classes of homogeneous, height one prime ideals of G, the thesis follows.

Remark. The following example shows that we cannot delete the requirement "G is normal" in Proposition 2. Let $A = R[[X, Y, Z]]/(x^2 + Y^2 + Z^3)$ (*R* is the field of real numbers); A is a local complete factorial ring, and dim(A) = 2 (see ex. (25, 4) of [17]). But $G(A, m) \simeq R$ [X, Y, Z]/ $(X^2 + Y^2)$ is not even normal, hence it cannot be factorial.

The next proposition deals with the case $ht(I) \leq 1$.

PROPOSITION 3. Let A be a ring with dim (A) = 2, and let $I \subset \text{Rad}(A)$ be an ideal of A such that ht $(I) \leq 1$ and G = Gr(A, I) is a normal integral

domain.

a) If I is invertible, then Cl(A) is embedded in Cl(G);

b) If G is an almost factorial ring (in particular if G is a factorial ring) then I is invertible.

Proof. If $\operatorname{ht}(I) = 0$ there is nothing to prove, so we assume that $\operatorname{ht}(I) = 1$. We have that $G_0 = A/I$ is a Krull domain. Since $\dim(A/I)$ = 1, A/I is a Dedekind domain; in particular it satisfies the property (R_1) of Serre and moreover $\operatorname{Cl}(A/I) \simeq \operatorname{Pic}(A/I)$. But I is invertible and $I \subseteq \operatorname{Rad}(A)$; by localization at the maximal ideals, we have that A is an (R_2) ring, hence A is locally factorial and $\operatorname{Cl}(A) \simeq \operatorname{Pic}(A)$. Since $I \subseteq$ $\operatorname{Rad}(A)$, the canonical map $\operatorname{Pic}(A) \to \operatorname{Pic}(A/I)$ is injective (see [2], Proposition 1.4). From the hypothesis "I is invertible" it follows that G is a flat G_0 -module (Lemma 2.1 of [23]). So the extension $G_0 \to G$ satisfies condition (PDE) and the induced homomorphism $\operatorname{Cl}(G_0) \to \operatorname{Cl}(G)$ is injective ([13], Proposition 10.7). This completes the proof of a).

The irrelevant ideal G_+ of G is a prime ideal. We easily get $G_+^{(p)} = \bigoplus_{n \ge p} G_n = G_+^p$ for all p > 0. Therefore, since $G_+ = \text{In}(I)$ and ht(In(I)) = ht(I) = 1, we have that G_+ is a projective G-module, since G is an almost factorial ring. But $I/I^2 \simeq G_+/G_+^2 \simeq G_+ \otimes_G G_0$, so I/I^2 is a projective A/I-module. Then I is locally principal since A_I is a DVR (see Lemma 2.1 of [23]).

Remark. In general the embedding $f: \operatorname{Cl}(A) \to \operatorname{Cl}(G)$ constructed in the proof is different from the map obtained by the composition of the isomorphism $\psi: \operatorname{Cl}(A) \xrightarrow{\sim} \operatorname{Cl}(R)$ and $j: \operatorname{Cl}(R) \to \operatorname{Cl}(G)$, i.e. from the map i.

If ht (I) = 2, from $I \subseteq \text{Rad}(A)$ and dim(A) = 2 it follows that (A, I) is a local ring, i.e. I = Rad(A). In the next theorem a sufficient condition is given for the map $j: \operatorname{Cl}(R) \to \operatorname{Cl}(G)$ to be injective when ht (I) = 2.

Local cohomology is the key tool in the proof of Theorem 4, so let us make some general remarks on it. Let S be a graded ring, $J \subset S$ a graded ideal and M a graded S-module. Since $H_J^i(M) = \underline{\lim}_n \operatorname{Ext}_S^i(S/J^n, M)$ for all $i \ge 0$, the local cohomology modules are graded modules in this case. Moreover, let

$$0 \longrightarrow M' \xrightarrow{\rho} M \xrightarrow{\pi} M'' \longrightarrow 0$$

be a short exact sequence of graded S-modules. Suppose ρ and π graded,

respectively of degree d and t. Then the corresponding long exact cohomology sequence is graded as follows:

$$\cdots \longrightarrow H^{i}_{J}(M') \xrightarrow{H^{i}_{J}(\rho)} H^{i}_{J}(M) \xrightarrow{H^{i}_{J}(\pi)} H^{i}_{J}(M'') \xrightarrow{\theta_{i}} H^{i+1}_{J}(M') \longrightarrow \cdots$$

THEOREM 4. Let (A, Q) be a local ring with dim (A) = 2. Assume that:

(1)
$$(H^2_{G_+}(G))_n = 0 \text{ for all } n > 0$$

Then the map $j: \operatorname{Cl}(R) \longrightarrow \operatorname{Cl}(G)$ is injective.

Proof. We shall give the proof in several steps.

Step 1. Let b be a homogeneous integral (proper) divisorial ideal of R such that $b \not\subseteq uR$; suppose that a^{-1} is a h-free G-module (where a denotes, as usual, $b \otimes_R G \simeq b + uR/uR$). By Proposition 1 we have only to show that R/b is a C.M. ring. R is a h-local ring; indeed $\mathfrak{m} = (Q^*, u)$ is a maximal ideal of R and $\mathfrak{m} = h - \operatorname{Rad}(R)$. Then also R/b is a h-local ring and $\mathfrak{n} = \mathfrak{m}/\mathfrak{b} = h - \operatorname{Rad}(R/b)$. R/b is a C.M. ring if and only if $(R/b)_{\mathfrak{n}}$ is a C.M. ring (see [19], Theorem 1.1). But $(R/b)_{\mathfrak{n}}$ is a C.M. ring if and only if $H^{\mathfrak{o}}_{\overline{\mathfrak{n}}}((R/b)_{\mathfrak{n}}) = H^{\mathfrak{i}}_{\overline{\mathfrak{n}}}((R/b)_{\mathfrak{n}}) = 0$ (where $\overline{\mathfrak{n}} = \mathfrak{n} \cdot (R/b)_{\mathfrak{n}}$). Now $H^{\mathfrak{o}}_{\overline{\mathfrak{n}}}((R/b)_{\mathfrak{n}}) = 0$ since u is a regular element for R/b. R is a C.M. ring and depth $(R_{\mathfrak{m}}) = 3$; then from the long exact sequence for the local cohomology and from Theorem 4.3 of [29] we get: $H^{\mathfrak{l}}_{\mathfrak{n}}(R/b) \simeq H^{\mathfrak{a}}_{\mathfrak{m}}(R/b) \simeq H^{\mathfrak{a}}_{\mathfrak{m}}(b)$. As $H^{\mathfrak{l}}_{\mathfrak{n}}(R/b) \otimes_{R/b}(R/b)_{\mathfrak{n}} \simeq H^{\mathfrak{l}}_{\mathfrak{m}}(R/b)_{\mathfrak{n}}$ (see [29], Theorem 5.1), it will be sufficient to show that $H^{\mathfrak{m}}_{\mathfrak{m}}(b) = 0$.

Step 2. $H^2_{\mathfrak{m}}(\mathfrak{b})$ is a finitely generated *R*-module. To see this it is sufficient to prove that $H^2_{\mathfrak{m}}(\hat{\mathfrak{b}})$ is a finitely generated \hat{R} -module, where $\hat{R} = (\widehat{R}, \mathfrak{m}) \simeq (\widehat{R_{\mathfrak{m}}}, \mathfrak{m}R_{\mathfrak{m}})$. In fact we have (see [30], Theorem 4.5): $H^2_{\mathfrak{m}}(\hat{\mathfrak{b}})$ $\simeq H^2_{\mathfrak{m}R_{\mathfrak{m}}}(\mathfrak{b}R_{\mathfrak{m}}) \otimes_{R_{\mathfrak{m}}}\hat{R}$; therefore $H^2_{\mathfrak{m}}(\hat{\mathfrak{b}})$ is finitely generated over \hat{R} if and only if $H^2_{\mathfrak{m}R_{\mathfrak{m}}}(\mathfrak{b}R_{\mathfrak{m}})$ is a finitely generated $R_{\mathfrak{m}}$ -module (see [5], Proposition 11, Ch. I. 3.6.) and this last condition is equivalent to " $H^2_{\mathfrak{m}}(\mathfrak{b})$ is finitely generated over R" since $H^2_{\mathfrak{m}R_{\mathfrak{m}}}(\mathfrak{b}R_{\mathfrak{m}}) \simeq H^2_{\mathfrak{m}}(\mathfrak{b}) \otimes_R R_{\mathfrak{m}}$ (see [21], Proposition 11). Since \hat{R} is a C.M. ring and since $\hat{\mathfrak{b}}$ is an unmixed ideal of height one of \hat{R} (see [14], 9.3 and 13.8), for every prime ideal P of \hat{R} such that $\operatorname{ht}(P) = 2$, depth ($\hat{\mathfrak{b}}_P$) = 2. The finite generation of $H^2_{\mathfrak{m}}(\hat{\mathfrak{b}})$ over \hat{R} then follows from [15], Expose VIII, Corollaire 2.3.

DIVISOR CLASS GROUPS

Step 3. The hypothesis " a^{-1} is *h*-free" implies $((a)^{-1})^{-1} = xG$, where x is a homogeneous element of G of degree d > 0. Then $a = b + uR/uR = xG \cap I$, where I is an eventual embedded primary component; since a is homogeneous and dim(G) = 2, I is irrelevent, i.e. $\sqrt{I} = G_+$. Now we have $H^1_{G_+}(G) = H^0_{G_+}(G) = 0$ since G is a C.M. ring. But $((a)^{-1})^{-1} = xG \simeq G(-d)$, hence $H^i_{G_+}(((a)^{-1})^{-1}) \simeq H^i_{G_+}(G)(-d)$. From the short exact sequence:

$$(2) \qquad \qquad 0 \longrightarrow \mathfrak{a} \longrightarrow ((\mathfrak{a})^{-1})^{-1} \longrightarrow C \longrightarrow 0$$

it follows that $H^{i}_{G_{+}}(\mathfrak{a}) \simeq H^{0}_{G_{+}}(C) = C$ where the isomorphism is of degree zero. Then from $(((\mathfrak{a})^{-1})^{-1})_{n} = 0$ for all n < d we get: $(H^{1}_{G_{+}}(\mathfrak{a}))_{n} = 0$ for all n < d. Since Supp $(C) \subseteq \{G_{+}\}$ we have $H^{i}_{G_{+}}(C) = 0$ for all i > 0. Therefore from the long exact cohomology sequence associated to (2) we get: $H^{2}_{G_{+}}(\mathfrak{a}) \simeq H^{2}_{G_{+}}(((\mathfrak{a})^{-1})^{-1}) \simeq H^{2}_{G_{+}}(G)(-d)$ where both isomorphisms are of degree zero. Now the hypothesis (1) comes into play to get: $(H^{2}_{G_{+}}(\mathfrak{a}))_{n} = 0$ for all n > d.

Finally, from the canonical isomorphisms (of degree zero) $H^1_{G_+}(\mathfrak{a}) \simeq H^1_{\mathfrak{m}}(\mathfrak{a})$ and $H^2_{G_+}(\mathfrak{a}) \simeq H^2_{\mathfrak{m}}(\mathfrak{a})$ we get:

$$(3) \qquad (H^1_m(\mathfrak{a}))_n = 0 \quad \text{for all } n < d,$$

(4)
$$(H^2_{\mathfrak{m}}(\mathfrak{a}))_n = 0$$
 for all $n > d$.

Step 4. Let

$$(5) \qquad \cdots \longrightarrow (H^1_{\mathfrak{m}}(\mathfrak{a}))_n \longrightarrow (H^2_{\mathfrak{m}}(\mathfrak{b}))_{n+1} \xrightarrow{\cdot u} (H^2_{\mathfrak{m}}(\mathfrak{b}))_n \longrightarrow (H^2_{\mathfrak{m}}(\mathfrak{a}))_n \longrightarrow \cdots$$

be the long exact cohomology sequence corresponding to the short exact sequence:

$$0 \longrightarrow \mathfrak{b} \xrightarrow{\cdot u} \mathfrak{b} \xrightarrow{(0)} \mathfrak{a} \longrightarrow 0$$

From (5) and (3) it follows that u is a regular element for all homogeneous elements of $H^2_{\mathfrak{m}}(\mathfrak{b})$ of degree $\leq d$. Let $x \in (H^2_{\mathfrak{m}}(\mathfrak{b}))_n$ with $n \leq d$; by definition of local cohomology there exists a positive integer t such that $\mathfrak{m}^t \cdot x = 0$; but $u \in \mathfrak{m}$, hence $u^t \cdot x = 0$; therefore x = 0 and $(H^2_{\mathfrak{m}}(\mathfrak{b}))_n = 0$ for all $n \leq d$. (this is essentially the proof of Lemma 1.2 of [30]). Therefore, from (5) and (4) it follows $H^2_{\mathfrak{m}}(\mathfrak{b}) = uH^2_{\mathfrak{m}}(\mathfrak{b})$. But $u \in h - \operatorname{Rad}(R)$, hence $H^2_{\mathfrak{m}}(\mathfrak{b}) = 0$ by Step 2 and the homogeneous Nakayama's lemma.

Remarks.

1) Since \hat{R} is a local ring we can derive the finite generation of

 $H^2_{\hat{\mathfrak{m}}}(\hat{\mathfrak{b}})$ over \hat{R} , also from [15], Exposé V, Corollaire 3.6. Since \hat{R} is flat over R, u is a regular element for \hat{R} . Therefore: $\operatorname{Gr}(\hat{R}, u\hat{R}) \simeq \hat{R}/u\hat{R}[T] \simeq$ $\hat{G}[T]$, where T is an indeterminate over $\hat{R}/u\hat{R}$ and $\hat{G} = (\widehat{G}, \widehat{G}_+)$. It follows that \hat{R} is a normal integral domain (see § 3, Proposition 6, a)).

2) With the same notations of Theorem 4, but without the hypothesis (1), we can prove the following result:

For every ideal J of A, let $c = JA[T, u] \cap R$. Then $(H_m^2(c))_n = 0$ for all $n \leq 0$. Let $\{u, x, y\}$ be a homogeneous system of parameters in R with deg (x) = deg(y) = 1; thus the Čech complex of c is given by:

$$C'(u, x, y; \mathfrak{c}); 0 \xrightarrow{d_0} \mathfrak{c}_u \oplus \mathfrak{c}_x \oplus \mathfrak{c}_y \xrightarrow{d_1} \mathfrak{c}_{ux} \oplus \mathfrak{c}_{uy} \oplus \mathfrak{c}_{xy} \xrightarrow{d_2} \mathfrak{c}_{uxy} \longrightarrow 0$$

All the modules have a natural grading and the maps d_i are as usual. Assume $\sigma = (d/(ux)^p; e/(uy)^p; f/(xy)^p) \in \ker(d_2)$, (i.e. $-dy^p + ex^p - fu^p = 0$) with d, e, f homogeneous elements of c, and $\deg(d) = \deg(e) = \deg(f) - 2p = n \leq 0$.

We prove that there exists $\rho = (a/u^p; b/x^p; c/y^p)$, with a, b, c homogeneous elements of c, such that $d_1(\rho) = \sigma$ i.e. $ax^p - bu^p = d$ and $ay^p - cu^p = e$ (the third equation $by^p - cx^p = f$ is dependent upon the others). If $p \leq 0$, the proof is trivial. Let p > 0. Since (u^p, x^p, y^p) is an *R*-regular sequence, we have $d \in (x^p, u^p)$, $e \in (y^p, u^p)$. On the other hand, one can easily prove that $\bigoplus_{n \leq 0} (x^p, u^p)_n$ and $\bigoplus_{n \leq 0} (y^p, u^p)_n$ are included in $\bigoplus_{n \leq 0} (u^p)_n$; hence $d, e \in (u^p)$.

We now recall that u^p is regular for R/c; therefore the system

$$egin{cases} ax^p-bu^p=d\ ay^p-cu^p=e \end{cases}$$

has solutions if we take a = 0.

3) Theorem 4 has many sources; in particular see [8, 12, 3, 4]. Instead of condition (1) of Theorem 4 in these papers is used the equivalent condition:

(6)
$$H^{1}(Y, \Theta_{Y}(n)) = 0 \text{ for all } n > 0$$

where Y = Proj(G) (see [16], Ch. III, Proposition 2.1.5.)

For the sake of completeness we briefly show how the geometrical techniques work to get results as in Theorem 4.

Let $\mathscr{R} = \bigoplus_{n \ge 0} Q^n$ be the blow-up algebra with respect to the ideal Q, and set: $X = \operatorname{Proj}(\mathscr{R}), Y = \operatorname{Proj}(G)$; let $\chi: Y \to X$ be the closed immersion deduced from the canonical map $\mathscr{R} \to \mathscr{R}/Q\mathscr{R} \simeq G$.

Since A and G are normal integral domains of dimension two, it follows easily that the canonical morphism $X \to \text{Spec}(A)$ is a desingularization of Spec(A). In particular we get that the canonical morphism $\varphi: \text{Pic}(X) \to \text{Pic}(X - Y)$ is surjective (see [16] IV, 21. 6. 11). Moreover: $\text{Ker } \varphi = [\Theta_X(1)] \cdot Z$, and this is an infinite cyclic group. But $X - Y \simeq$ $\text{Spec}(A) - \{\mathfrak{m}\}$; therefore $\text{Pic}(X - Y) \simeq \text{Pic}(\text{Spec}(A) - \{\mathfrak{m}\}) \simeq \text{Cl}(A)$ (see [13], 18. 10) and we get the short exact sequence:

$$0 \longrightarrow Z \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Cl}(A) \longrightarrow 0$$

Another well known short exact sequence is the following:

 $0 \longrightarrow Z \longrightarrow \operatorname{Pic}(Y) \longrightarrow \operatorname{Cl}(G) \longrightarrow 0$

where the first morphism maps 1 to $[\Theta_r(1)]$. Finally, we consider the morphism χ^* : Pic $(X) \rightarrow$ Pic (Y) deduced from the closed immersion χ : $Y \longrightarrow X$. Putting all together we get the following diagram:

where $\bar{\chi}$ is deduced from χ^* . It is easily checked that $\bar{\chi} = i$. From the "snake-lemma" it follows that the maps χ^* and $\bar{\chi} = i$ have isomorphic kernels and cokernels. The geometrical techniques developed in [15, 9, 6, 3] allow a direct study of χ^* . Now we sketch their use.

First of all, we can define for all $n \ge 0$ a graded ring $G_n = \bigoplus_{i\ge 0} Q^i/Q^{i+n+1}$; in particular we have $G_0 = G$. If $m \ge n$ we get an epimorphic map $G_m \to G_n$. Let $Y_n = \operatorname{Proj}(G_n)$; we have a closed immersion $Y_n \longrightarrow Y_m$ whenever $m \ge n$.

If (A, Q) is henselian, then the sequence $\{\operatorname{Pic}(Y_n)\}_n$ is essentially constant and $\operatorname{Pic}(X) = \lim_{n} \operatorname{Pic}(Y_n)$ (see [6], Ch. IV, Proposition 6.2). By virtue of well-known Theorem of Mori ([13], Corollary 6.12), we can reduce to the case "(A, Q) henselian" by replacing A with $\hat{A} = (\widehat{A}, \widehat{Q})$. Moreover, for all $n \ge 0$ we have a short exact sequence of abelian sheaves on the topological space of Y:

(7)
$$0 \longrightarrow (i_{n+1})_* \Theta_Y(n+1) \longrightarrow (\Theta_{Y_{n+1}})^* \longrightarrow (\Theta_{Y_n})^* \longrightarrow 1$$

where $i_{n+1}: Y \to Y_{n+1}$ is the canonical closed immersion. Since dim(Y) = 1

the long exact sequence deduced from (7) is:

(8) $H^{1}(Y, \Theta_{Y}(n+1)) \longrightarrow \operatorname{Pic}(Y_{n+1}) \longrightarrow \operatorname{Pic}(Y_{n}) \longrightarrow 0$

If condition (6) holds, we get χ^* : Pic(X) \simeq Pic(Y) and Theorem 4 follows. On the other hand, without any hypothesis on G, we get easily the following:

PROPOSITION 5. If char(k) = p > 0, then ker(χ^*) = ker(i) is a p-torsion group.

With the same notations of Theorem 4, let \mathfrak{b} be a homogeneous, proper, divisorial ideal of R, $\mathfrak{b} \not\subseteq uR$ such that $[\mathfrak{b}]_R \in \ker(j)$. If $\mathfrak{b} = P_1^{(n_1)}$ $\cap \cdots \cap P_r^{(n_r)}$ is the primary decomposition of \mathfrak{b} , put $\mathfrak{b}^{(p^m)} = P_1^{(n_1p^m)} \cap \cdots \cap$ $P_r^{(n_rp^m)}$ for m > 0. Then Proposition 5 means that $H^2_{\mathfrak{m}}(\mathfrak{b}^{(p^m)}) = 0$ for some $m \ge 0$. The authors were unable to prove directly this fact.

§ 3. Concluding remarks

1) As the following counterexample shows, the hypothesis (1) of Theorem 4 does not suffice to deduce the injectivity of $j: \operatorname{Cl}(R) \to \operatorname{Cl}(G)$ when $R \to R/uR = G$ is a general hypersurface section. Let k be an algebraically closed field. Let R = k[X, Y, Z, W]/(XY - ZW) = k[x, y, z, w] and let G = R/(x - y). G is the homogeneous coordinate ring of a smooth conic in P_k^2 , hence G satisfies the hypothesis (1) of Theorem 4. But $\operatorname{Cl}(R)$ $\simeq Z$ and $\operatorname{Cl}(G) \simeq Z/2Z$.

2) If a form ring G is given, we can consider two rings of special relevance for our problem: G_{G_+} and $\hat{G} = (\widehat{G}, \widehat{G}_+)$. This relevance is partially explained by the properties collected in the following:

PROPOSITION 6. Let G = G(A, I) be a normal integral domain, where $I \subseteq \text{Rad}(A)$ as always. Then we have:

a) Gr $(\hat{G}, \hat{G}_{+}) \simeq$ Gr $(G, G_{+}) \simeq G$, hence \hat{G} is a normal integral domain.

b) Let c be a homogeneous ideal of G; then $\operatorname{In}_{\hat{\sigma}_+}(c\hat{G}) \simeq c$ where the isomorphism is that of a). In particular, let $m: \operatorname{Cl}(G) \to \operatorname{Cl}(\hat{G})$ the homomorphism deduced from the flat extension $G \to \hat{G}$, i.e. $m([c]_G) = [c\hat{G}]_{\hat{\sigma}}$ for every integral divisorial ideal c of G. Then $i \cdot m = 1_{\operatorname{CI}(G)}$.

c) Gr $(G_{G_+}, G_+G_{G_+}) \simeq G \otimes_{G/G_+} K$ (graded isomorphism) where K is the quotient field of A/I. In particular, if I is maximal, then G is a h-local ring and Gr $(G_{G_+}, G_+G_{G_+}) \simeq G$.

d) Let c be a homogeneous ideal of G; then $In_{G+G_{G_{+}}}(c_{G_{+}})$ is graded iso-

morphic to $c \otimes_{G/G_+} K$, where K is the residue field of G_{G_+} . In particular, if I is maximal, we have $\operatorname{In}_{G_+G_{G_+}}(c_{G_+}) \simeq c$; if we consider $\operatorname{Cl}(G) \xrightarrow{\sigma} \operatorname{Cl}(G_{G_+}) \xrightarrow{\overline{i}} \operatorname{Cl}(G)$ where σ is the canonical isomorphism ([13], Corollary 10.3), we have $\overline{i} \cdot \sigma = 1_{\operatorname{Cl}(G)}$ and consequently $\overline{i} = \sigma^{-1}$.

Proof. Easy calculations.

Now let $G = \bigoplus_{n \ge 0} G_n$ be a graded two dimensional normal domain such that G_0 is a field, $G = G_0[G_1]$ and G is a finitely generated algebra over G_0 . Since Danilov's condition DCG (i.e. $\operatorname{Cl}(G) \simeq \operatorname{Cl}(G[[T]])$) is equivalent to $(H^1_{G_+}(G))_n = 0$ for all $n \ge 0$ (see [12], Satz 4.4), from DCG condition it trivially follows that $\operatorname{Cl}(G) \simeq \operatorname{Cl}(\widehat{G})$, since this is equivalent to $(H^1_{G_+}(G))_n = 0$ for all n > 0. (see [12], Theorem 4.1). Moreover there exist factorial graded rings as G such that $\operatorname{Cl}(G) \simeq \operatorname{Cl}(\widehat{G})$ but not satisfying the DCG condition (see [9], page 128).

However, condition (1) is not necessary for j to be injective as the following example shows.

Let $G = \mathbf{Q}[X, Y, Z]/(X^4 + Y^4 - Z^4)$ where \mathbf{Q} is the field of rational numbers; $\operatorname{Cl}(G)$ is finite (see [11]); but $\operatorname{Cl}(G) \neq \operatorname{Cl}(\hat{G})$, since $\operatorname{Cl}(\hat{G}) \simeq$ $\operatorname{Cl}(G) \oplus \mathbf{Q}$ (see [12]); then take $A = G_{G_+}$. Since \overline{i} is an isomorphism (see Proposition 6.d)), j is surjective by definition of \overline{i} . Morevoer $\operatorname{Cl}(R)$, $\operatorname{Cl}(A)$ and $\operatorname{Cl}(G)$ are finite sets with the same number of elements; hence j is injective.

3) The authors do not know the existence of factorial graded ring G satisfying the general above-mentioned hypotheses and such that $\operatorname{Cl}(G) \neq \operatorname{Cl}(\hat{G})$.

ACKNOWLEDGMENT. The authors are thankful to the referee for his suggestions.

References

- [1] S. S. Abhyankar, Nonprefactorial local ring, Amer. J. Math., 89 (1967), 1137-1146.
- [2] M. Arezzo e S. Greco, Sul gruppo delle classi di ideali, Ann. Sc. Norm. Super. Pisa Cl. Sci. IV Ser., 21 (1967), 459-483.
- [3] L. Bădescu e M. Fiorentini, Criteri di semifattorialità e di fattorialità per gli anelli locali con applicazioni geometriche, Ann. Mat. Pura Appl. IV Ser., 103 (1975), 211-222.
- [4] J. Bingener und U. Storch, Zur berechnung der Divisorenklassengruppen kompletter lokaler Ringe, Nova Acta Leopold. Neue Folge, 52/240 (1981), 7-63.
- [5] N. Bourbaki, Algèbre Commutative ChI-VII, Paris: Hermann (1961-65).

- [6] J. F. Boutot, Schéma de Picard local, Lect. Notes Math., 632, Berlin, Heidelberg, New York: Springer (1978).
- [7] M. P. Cavaliere and G. Niesi, On Serre's conditions in the form ring of an ideal, J. Math. Kyoto Univ., 21 (1981), 537-546.
- [8] V. I. Danilov, The group of ideal classes of a completed ring, Math. USSR Sb., 6 (1968), 493-500.
- [9] ----, On a conjecture of Samuel, Math. USSR Sb., 10 (1970), 127-137.
- [10] —, Rings with a discrete group of divisor classes, Math. USSR Sb., 12 (1970), 368-386.
- [11] D. K. Faddeev, Group of divisor classes on the curve defined by the equation $X^4 + Y^4 = 1$, Sov. Math. Dokl., 1 (1961), 1149-1151.
- [12] H. Flenner, Divisorenklassengruppen quasihomogener Singularitäten, J. Reine Angew. Math., 238 (1981), 128–160.
- [13] R. Fossum, The divisor class group of a Krull domain, Berlin-Heidelberg-New York: Springer (1973).
- [14] S. Greco and P. Salmon, Topics in m-adic Topologies, Berlin-Heidelberg-New York: Springer (1971).
- [15] A. Grothendieck, Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux (SGA 2), Amsterdam: North Holland (1968).
- [16] A. Grothendieck et J. Dieudonné, Eléments de géométrie algébrique. Ch. III;
 Ch. IV (Quartième Partie), Publ. Math. Inst. Hautes Etud. Sci., 11;32 (1961; 1967).
- [17] J. Lipman, Rational Singularities with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Etud. Sci., 36 (1969).
- [18] —, Rings with discrete divisor class group: theorem of Danilov-Samuel, Am. J. Math., 101 (1979), 203-211.
- [19] J. Matijevich, Three local conditions on a graded ring, Trans. Am. Math. Soc., 205 (1975), 275-284.
- [20] D. Portelli e W. Spangher, Condizioni di fattorialità ed anello graduato associato ad un ideale, Ann. Univ. Ferrara Nuova Ser. Sez. VII, 28 (1982), 181–195.
- [21] —, On the divisor class group of localizations, completions and Veronesean subrings of Z-graded Krull domains, Ann. Univ. Ferrara Nuova Ser. Sez. VII, 30 (1984), 97-118.
- [22] L. J. Jr. Ratliff, On Rees localities and H_i -local rings, Pac. J. Math., 60 (1975), 169–194.
- [23] L. Robbiano and G. Valla, Primary powers of a prime ideal, Pac. J. Math., 63 (1976), 491-498.
- [24] M. E. Rossi, Altezza e dimensione nell'anello graduato associato ad un ideale, Rend. Semin. Mat. Torino, 36 (1977-78), 305-312.
- [25] P. Salmon, Su un problema posto da P. Samuel, Atti Accad. Naz. Lincei VIII Ser. Rend. Cl. Sci. Fis. Mat. Nat., 40 (1966), 801-803.
- [26] P. Samuel, On unique factorization domains, Ill. J. Math., 5 (1961), 1-17.
- [27] —, Sur les anneaux factoriels, Bull. Soc. Math. Fr., 89 (1961), 155-173.
- [28] G. Scheja, Einige beispiele faktorieller lokaler Ringe, Math. Ann., 172 (1967), 124-134.
- [29] R. Y. Sharp, Local cohomology theory in commutative algebra, Q. J. Math. Oxf. II Ser., 21 (1970), 425-434.
- [30] —, Some results on the vanishing of local cohomology modules, Proc. Lond. Math. Soc. III Ser., 30 (1975), 177–195.
- [31] S. Yuan, Reflexive modules and Algebra Class group over noetheriam integrallyclosed domains, J. Algebra, 32 (1974), 405-417.

DIVISOR CLASS GROUPS

Dipartimento di Scienze matematiche Università degli Studi di Trieste Piazzale Europa n. 1 34100 — TRIESTE Italy