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ON THE DIVISOR CLASS GROUPS OF A TWO-DIMENSIONAL
LOCAL RING AND ITS FORM RING

DARIO PORTELLI AND WALTER SPANGHER

Introduction

Let A be a noetherian ring and let I be an ideal of A contained in
the Jacobson radical of A: Rad (A). We assume that the form ring of
A with respect to the ideal I: G = Gr (A, J), is a normal integral domain.
Hence A is a normal integral domain and one can ask for the links be-
tween C1(A) and C1(G).

Let R = ®nezI
n be the Rees algebra of A with respect to the ideal

I (see §2). In a previous paper [20], the authors have proved that C1(A)
~ Cl(i2); moreover there exists a "canonical" map j : Cl(R) -> Cl(G)
deduced from the hypersurface section R-+ G = R/uR (§ 1). Following the
ideas of Lipman's paper [18], in [20] an attempt was made to find out
sufficient conditions for ker (j) = 0, (resp.: for ker (j) to be a torsion group).
But this sufficient conditions become almost tautological when dim (A) = 2
and ht(J) = 2 (i.e. when A is a local ring and / = Rad (A); see §1). This
paper deals with this last case.

The main result of the paper is Theorem 4; this theorem can be
proved also by using the geometrical machinery of Grothendieck, Danilov,
Boutot and Badescu-Fiorentini [15, 8, 9, 6, 3] (see also the Remark 3 after
the proof of Theorem 4).

Our proof mainly uses simple tools of Commutative Algebra and
standard facts of Local Cohomology theory. A key point is the finiteness
of a suitable local cohomology module which we derive from [15].

It is also interesting that the short exact sequences which appear in
Theorem 1 of [18] are the same which appear in our proof. In a certain
sense, this circumstance unifies the two techniques.

However the problem of the injectivity of j : Cl(R) -> Cl (G) for a
general hypersurface section R-+G — RjuR, dim (G) = 2, is rather different
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138 DARIO PORTELLI AND WALTER SPANGHER

from that considered in this paper as the example given in Section 3 shows.

§ 1 .

In [10] Danilov has studied the links between the groups C1(A[[T]])

and C1(A), where A is a normal integral domain. To do this, he has

defined a canonical map j : Cl (A[[T]]) -> Cl(A). But in fact Danilov's

definition works more generally to give a map j : Cl (R) —> Cl (R/uR) for

any normal integral domain R and nonunit u e R such that RjuR = G is

also a normal integral domain. Let us recall the construction of j from

the viewpoint of this paper.

First of all, Cl (R) can be thought as the group of isomorphism classes

of finitely generated, reflexive, rank one 2?-modules [18, 31]; a similar

interpretation holds for Cl (G). Let F be a finitely generated, reflexive,

rank one i?-module; we set: [F]R = (isomorphism class of F) e Cl(i?). Let

E = F®R G with F as above; then E** = HomG(Hoπ^CE, G), G) is a finitely

generated, reflexive, rank one G-module. By this interpretation of the

class group, we have, following [18]: j([F]R) = [E**]G.

From now on we assume that R is a Z-graded ring, i.e. R = Θ n e z i ? n ,

and ueR is a homogeneous element. Let ξeCl(R); then ξ = [b]R for

some homogeneous integral divisorial ideal b of R. If b = B' Π unR, (n > 0),

where b' is a homogeneous divisorial ideal with B' (2 uR; then [6]^ = [6']^

since u is a prime element of R. Therefore there is no loss of generality

in assuming that b £ uR9 or equivalently that w is regular for 22/B.

Then we get: α = B ®R G ~ b/wb - B + uRjuR and;([b]Λ) = [((α)-1)-1]^ where

((α)"1)"1 denotes, as usual, the divisorial ideal associated to α. In the sequel

we will always refer to this simpler setup whenever the map j is concerned.

The homomorphism j ties together the groups Cl (R) and Cl (G). In

particular one can ask the following questions for j : when is j surjective ?

and: when is j injective?

The following proposition, concerning the latter question, has been

proved in [20] following the general ideas of Lipman's paper [18]:

Let R = ΦnezRn be a Z-graded normal integral domain and let ueh-

Rad (i?) be a non-zero homogeneous element such that G = RjuR is also a

normal domain. Suppose that the canonical map j Q : Cl (RQ) —> Cl (GP) is

injective (resp.: ker(jrρ) is a torsion group) for every homogeneous prime

ideal Q of R such that: ueQ and depth(RQ) < 3 (of course P = Q/uR).

Then also j : Cl(R) —> Cl(G) is an injective map (resp.: kerO') is a torsion
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group).

Let us observe that the hypotheses of this proposition forces dim (G)

> 2. But if G is a normal integral domain and dim (G) = 2, then G is a

CM. ring. Hence also R is a CM. ring (u e Λ-Rad(JS); see [7], Proposi-

tion 2.2) and the above proposition becomes almost tautological. If dim(G)

< 1, Cl(i?) is simple to compute.

Therefore only the case dim (G) = 2 remains still open. After all, this

is not so surprising; in fact the case dim (A) = 2 was the hardest to solve

also for the problem of Danilov-Samuel, i.e. for the hypersurface section

A[[T]] -> A (see [26, 25, 28, 9]). Essentially, there are two (non tautological)

ways to handle the case of a general hypersurface section R-+G when

dim(G) = 2. The most recent one is due to Flenner (see Lemma 3.4 of

[12]) and is inspired to Theorem 1 of [18]. The other one is used in this

paper and comes from Hilfsatz 3 of [28], or Remarque p. 164 of [27]; it is

summarized in the following proposition:

PROPOSITION 1. Let R = ®nezRn be a Z-graded, normal integral do-

main and let ue h — Rad(R) be a non-zero, homogeneous element such that

G = R\uR is also a normal integral domain. Assume that G is a CM.

ring. Let ξ e Cl (R) and let ft c R be a homogeneous, proper, divisorial

ideal such that ξ = [ft]R, ft (2 uR and a~ι is a h-free G-module, where a =

Λ G. Then ξ = 0, i.e. ft is h-free, if and only if Rjft is a CM. ring.

Proof. Let Rjft be a CM. ring; since u is regular for Rift, the ideal

ft + uRjft is an unmixed ideal of height one of Rift. Therefore ft + uR is

an unmixed ideal of height two of R, hence a = ft + uR/uR is an unmixed

ideal of height one of G. It follows that α = ((α)"1)"1, so α is Λ-free and

then ft is h-ίree (see [5], Ch. II, 3.2, Proposition 5; with suitable modifica-

tions to the homogeneous case). The converse is trivial because R is a

CM. ring.

§ QΔ

Let A be a ring and I c= Rad (A) an ideal of A. We fix the following

notation: R = R(A, I) = ®nezI
n (In = A for n < 0) is the Rees algebra of

A with respect to I. If T is an indeterminate over A, let u — T~\ We

have R = A [a,T, , arT, u] c A[T, u] where I = (au , ar). G = Gr(A, I)

= ®n^QInIIn+ί is the form ring of A with respect to /; the irrelevant ideal

of G is G+ = Θ n > 0 I n // n + 1 ; let α* = aΆ[T, u] 0 R where a is an ideal of
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140 DARIO PORTELLI AND WALTER SPANGHER

A; α* is a graded ideal of R; In7(α) is the graded ideal of G generated

by the initial forms In (x) for all xe a.

We refer to [7, 20, 22, 24] for the general properties of these rings and

ideals. However, for the sake of completeness, let us recall the following

ones: first G ~ R/uR; u is a homogeneous element and deg(u) = — 1.

Moreover ueh — Rad(R) and, finally, In7(a) = a* + uRjuR. If G is a

normal integral domain, then also R and A are normal integral domains.

If G is a normal integral domain we can consider the map j : Cl (R) —• C1(G)

defined in Section 1. Moreover, since u is a prime element of R it is

easy to see that Cl (A) ~ > Cl (R) (see [20], Proposition 1); to be precise,
ψ

the isomorphism ψ between Cl (A) and Cl (R) is given by ψ([a]A) --= [α*]^,

where a is an integral, divisorial ideal of A. Therefore, by composition,

we get a homomorphism ί: C1(A) -> C1(G) such that i([αL) = [((In^α))-1)-1]^

where α is as above.

We begin the study of the map j : Cl(J?(A, I))-> Cl(G(A, J)) with a

statement concerning the surjectivity of j .

PROPOSITION 2. Let (A, m) be a local, henselίan ring with dim (A) = 2.

Suppose that G = Gr (A, TΠ) is α normal integral domain. Then the map

j : Cl (i?) -» Cl (G) is surjective.

Proof. Let P be a homogeneous, height one, prime ideal of G. Pick

x e P — P ( 2 ) with x homogeneous. Let xe A be an element such that

In (x) = x. Expand xA to a prime ideal Q, maximal among those disjointed

from the multiplicatively closed set {ye A\In(y) £ P}; clearly ht(Q) = 1.

From the isomorphism G{AIQ, m/Q) ~ G(A, m)/In (Q) and the choice of x

it follows that ((In (Q))'1)"1 = P (see Lemma 6 of [1]). Therefore j([Q*]B) =

[P]G9 where Q* = Q- A[T, u] Π R. Since C1(G) is generated by the classes

of homogeneous, height one prime ideals of G, the thesis follows.

Remark. The following example shows that we cannot delete the

requirement "G is normal" in Proposition 2. Let A = R[[X9 Y, Z]]/(x2 +

Y2 + Z3) (R is the field of real numbers); A is a local complete factorial

ring, and dim (A) = 2 (see ex. (25, 4) of [17]). But G(Af m) ~ R [X, Y, Z]j

(X2 + Y2) is not even normal, hence it cannot be factorial.

The next proposition deals with the case ht (/) < 1.

PROPOSITION 3. Let A be a ring with dim (A) = 2, and let I c Rad (A)

be an ideal of A such that ht (I) < 1 and G = Gr (A, /) is a normal integral
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domain.

a) If I is ίnvertίble, then C1(A) is embedded in C1(G);

b) If G is an almost factorial ring (in particular if G is a factorial

ring) then I is inυertible.

Proof. If ht(I) = 0 there is nothing to prove, so we assume that

ht (/) = 1. We have that Go = A\I is a Krull domain. Since dim (A/I)

= 1, Ajl is a Dedekind domain; in particular it satisfies the property

(i?!> of Serre and moreover Cl (A/I) ~ Pic (A/I). But I is invertible and

I cz Rad (A) by localization at the maximal ideals, we have that A is an

(R2) ring, hence A is locally factorial and Cl (A) ~ Pic (A). Since I cz

Rad (A), the canonical map Pic (A)-> Pic (A/I) is injective (see [2], Pro-

position 1.4). From the hypothesis "I is invertible" it follows that G is

a flat G0-module (Lemma 2.1 of [23]). So the extension GQ-> G satisfies

condition (PDE) and the induced homomorphism Cl (Go) -> Cl (G) is injec-

tive ([13], Proposition 10.7). This completes the proof of a).

The irrelevant ideal G+ of G is a prime ideal. We easily gat GJ)) =

®n>v Gn = Gl for all p > 0. Therefore, since G+ = In (/) and ht (In (I)) =

ht(/) = 1, we have that G+ is a projective G-module, since G is an almost

factorial ring. But I/Γ ~ G+/G\ ~ G+ <g)G Go, so I/Γ is a projective Ajl-

module. Then I is locally principal since A7 is a DVR (see Lemma 2.1

of [23]).

Remark. In general the embedding /: Cl (A) ~> C1(G) constructed in

the proof is different from the map obtained by the composition of the

isomorphism ψ: Cl (A) ̂  Cl (i?) a n d j : Cl (R) -• Cl (G), i.e. from the map i.

If ht (I) = 2, from I c= Rad (A) and dim (A) = 2 it follows that (A, I)

is a local ring, i.e. I = Rad (A). In the next theorem a sufficient condition

is given for the map j : Cl (R) -* Cl (G) to be injective when ht(I) = 2.

Local cohomology is the key tool in the proof of Theorem 4, so let

us make some general remarks on it. Let S be a graded ring, J C S a

graded ideal and M a graded S-module. Since Hj(M) = ]hnn Extι

5 (S/Jπ,M)

for all i > 0, the local cohomology modules are graded modules in this

case. Moreover, let

0 t̂f'ΛilίΛtf̂  >0
(d) (t)

be a short exact sequence of graded S-modules. Suppose p and π graded,

https://doi.org/10.1017/S0027763000002919 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002919


142 DARIO PORTELLI AND WALTER SPANGHER

respectively of degree d and t. Then the corresponding long exact co-

homology sequence is graded as follows:

THEOREM 4. Let (A, Q) be a local ring with dim (A) = 2. Assume

that:

( 1 ) (HMG))n = 0 /or αZZ τι > 0

Then the map j : C1(J?) >Cl(G) is injective.

Proof. We shall give the proof in several steps.

Step 1. Let 6 be a homogeneous integral (proper) divisorial ideal of

R such that h g uR; suppose that α"1 is a /ι-free G-module (where α de-

notes, as usual, 6 ®Λ G ^ b + uR/uR). By Proposition 1 we have only to

show that R/h is a CM. ring. R is a /i-local ring; indeed m = (Q*, u) is

a maximal ideal of R and m = h — Rad (i?). Then also Rfb is a Λ-local

ring and n = m/6 = A - Rad (R/6). JR/B is a CM. ring if and only if (R/h)n

is a CM. ring (see [19], Theorem 1.1). But (JS/6)n is a CM. ring if and

only if Hiί(Rlb)n) = î ((i?/E>)π) = 0 (where ΰ = n-(Λ/6).). Now ffi((i?/6)n)

= 0 since w is a regular element for R/h. R is a CM. ring and depth (Rm)

= 3; then from the long exact sequence for the local cohomology and

from Theorem 4.3 of [29] we get: #ϊ(Λ/δ) ~ H&Rfb) ~ i?m

2(b). As H&Rfb)

®R/i(R/ί))n ~ Hi((Rfb)n) (see [29], Theorem 5.1), it will be sufficient to show

that HM = 0.

Step 2. Hffi) is a finitely generated iϊ-module. To see this it is

sufficient to prove that #*(&) is a finitely generated jR-module, where

R = Cfcm) ~ (ίQmRJ In fact we have (see [30], Theorem 4.5): J5Γ?(6)

~H£RJ]bRΏ)®llmR; therefore H?(h) is finitely generated over R if and only

if H*RmφRm) is a finitely generated i?m-module (see [5], Proposition 11, Ch.

I. 3.6.) and this last condition is equivalent to *Ήffi) is finitely generated

over R" since H*RJ]bRm) ~ ίΓm

2(E») ®R Rm (see [21], Proposition 11). Since R

is a CM. ring and since 6 is an unmixed ideal of height one of R (see

[14], 9.3 and 13.8), for every prime ideal P of R such that ht(P) = 2,

depth (6P) = 2. The finite generation of Hjffi) over R then follows from

[15], Expose VIII, Corollaire 2.3.
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Step 3. The hypothesis "α" 1 is /ι-free" implies ((α)"1)"1 = xG, where

x is a homogeneous element of G of degree d > 0. Then α = 6 + uR/uR

= xG ΓΊ J, where I is an eventual embedded primary component; since α

is homogeneous and dim(G) = 2, / is irrelevent, i.e. V I — G+. Now we

have #έ+(G) = #£+(G) = 0 since G is a CM. ring. But ((α)"1)"1 = xG ~

G(—d), hence //^(((α)"1)"1) — HG+(G)(—d). From the short exact sequence:

( 2 ) 0 >a >((a)-1)-1 >C >Q

it follows that HG+(a) ~ HG+(C) = C where the isomorphism is of degree

zero. Then from (((α)"1)"1). = 0 for all n < d we get: (HG+(ά))n = 0 for all

n < d. Since Supp(C) c {G+} we have HG+(C) = 0 for all i > 0. There-

fore from the long exact cohomology sequence associated to (2) we get:

HG+(a) ~ ^^(((α)"1)"1) — HG+(G)( — d) where both isomorphisms are of degree

zero. Now the hypothesis (1) comes into play to get: (HG+(a))n = 0 for

all n > d.

Finally, from the canonical isomorphisms (of degree zero) HG+(ά) ~

HM and HG+(a) ~ m(a) we get:

( 3) (#m(α))n = 0 for all ^ < c?,

( 4 ) (Hl{a))n = 0 for all 7i > d .

Step 4. Let

( 5 )

be the long exact cohomology sequence corresponding to the short exact

sequence:

0—>h-^>h—>a—>0
(-D (0)

From (5) and (3) it follows that u is a regular element for all homogeneous

elements of H*(b) of degree < d. Let x e (H*(b))n with n < d; by definition

of local cohomology there exists a positive integer t such that m'-x = 0;

but uem, hence uι x — 0; therefore x = 0 and (Hffi))n — 0 for all n ^ d.

(this is essentially the proof of Lemma 1.2 of [30]). Therefore, from (5)

and (4) it follows H*(b) = uHffi). But u e h - Rad(Λ), hence iϊm

2(&) = 0

by Step 2 and the homogeneous Nakayama's lemma.

Remarks.

1) Since R is a local ring we can derive the finite generation of
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£Γ?(6) over R, also from [15], Expose V, Corollaire 3.6. Since R is flat

over R, u is a regular element for i?. Therefore: Gr(i?, wi?) ~ R/uR[T] ~

Gr[T], where T i s an indeterminate over R/uR and G = (G, G+). It follows

that R is a normal integral domain (see § 3, Proposition 6, a)).

2) With the same notations of Theorem 4, but without the hypothesis

(1), we can prove the following result:

For every ideal J of A, let c = JA[T, u] Π R. Then (H*(c))n = 0 for

all n < 0. Let {#, X, y} be a homogeneous system of parameters in R with

deg(x) = deg(^) = 1; thus the Cech complex of c is given by:

C'(u, x,y; c); 0—Q->cu®cx® cy—
ι-+cuxΘcuy φ c x y — ^ c u x y >0

All the modules have a natural grading and the maps dt are as usual.

Assume σ = (dl(ux)p; el(uy)p; fl(xy)p) e ker (d2), (i.e. —dyp + exp - fup = 0)

with d, e, / homogeneous elements of c, and άeg(d) = deg(e) = deg(/) —

2p = 7i < 0.

We prove that there exists p — (a/up; b/xp; cjyp), with α, 6, c homo-

geneous elements of c, such that dλ{p) = σ i.e. axp — bup = d and ayp —

cwp = e (the third equation fryp — cxp = / is dependent upon the others).

If p < 0, the proof is trivial. Let p > 0. Since (wp, JCP, y ) is an i?-regular

sequence, we have d e (xp, up), e e (yp, up). On the other hand, one can

easily prove that Θ n < 0(* p, up)n and ®n^(yp, uv)n are included in ®n<,{up)n;

hence d, e e (up).

We now recall that up is regular for R/c; therefore the system

'axp — bup = d

ayp — cup = e

has solutions if we take a = 0.

3) Theorem 4 has many sources; in particular see [8,12,3,4]. In-

stead of condition (1) of Theorem 4 in these papers is used the equivalent

condition:

( 6 ) H\Y, Θγ(ή)) = 0 for all n > 0

where Y = Proj (G) (see [16], Ch. Ill, Proposition 2.1.5.)

For the sake of completeness we briefly show how the geometrical

techniques work to get results as in Theorem 4.

Let 9t = ®n>0 Qn be the blow-up algebra with respect to the ideal Q,

and set: X = Proj (3t), Y = Proj (G); let X: Y-> X be the closed immersion
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deduced from the canonical map 01 -> 0ί\Q0ί ~ G.

Since A and G are normal integral domains of dimension two, it

follows easily that the canonical morphism X-+ Spec (A) is a desingulari-

zation of Spec (A). In particular we get that the canonical morphism

<p: Pic (X) -> Pic (X - Y) is surjective (see [16] IV, 21. 6. 11). Moreover:

Ker φ = [Θχ(ϊ)] Z, and this is an infinite cyclic group. But X — Y ~

Spec (A) - {m}; therefore Pic(X - Y) ~ Pic (Spec (A) - {m}) ~ C1(A) (see

[13], 18. 10) and we get the short exact sequence:

0 >Z > Pic(X) > C1(A) > 0

Another well known short exact sequence is the following:

0 > Z > Pic (Y) > Cl (G) > 0

where the first morphism maps 1 to [ΘΓ(1)]. Finally, we consider the

morphism X*: Pic (X)—>Pic(Y) deduced from the closed immersion X: Y

<=—> X. Putting all together we get the following diagram:

0 > Z > Pic(X) > C1(A) > 0

\i

0 > Z > Pic(Y) > C1(G) > 0

where X is deduced from X*. It is easily checked that X = ί. From the

"snake-lemma" it follows that the maps X* and X = i have isomorphic

kernels and cokernels. The geometrical techniques developed in [15, 9, 6,

3] allow a direct study of X*. Now we sketch their use.

First of all, we can define for all n > 0 a graded ring Gn =

®ί>oQΊQί+n+u, in particular we have Go = G. If m>n we get an

epimorphic map Gm-> Gn. Let Yn = Proj (GJ; we have a closed immersion

Yn <=—> Ym whenever m > n.

If (A, Q) is henselian, then the sequence {Pic(Yw)}w is essentially con-

stant and Pic(X) = limPic(Yn) (see [6], Ch. IV, Proposition 6.2). By virtue
n

of well-known Theorem of Mori ([13], Corollary 6.12), we can reduce to

the case "(A, Q) henselian" by replacing A with A = (A, Q). Moreover,

for all n > 0 we have a short exact sequence of abelian sheaves on the

topological space of Y:

( 7) 0 • (ίn+1)*Θγ(n + 1 ) > (ΘYn+ί)* > (ΘYnY • 1

where in+1: Y—> Yn+1 is the canonical closed immersion. Since dim(Y) = 1
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the long exact sequence deduced from (7) is:

( 8) H\Y, Θγ(n + 1)) > Pic (Yn+1) > Pic (Yn) > 0

If condition (6) holds, we get %*: Pic(X) ~ Έ>ic(Y) and Theorem 4

follows. On the other hand, without any hypothesis on G, we get easily

the following:

PROPOSITION 5. If char (k) = p > 0, then ker (%*) = ker (ί) is a p-

torsion group.

With the same notations of Theorem 4, let 6 be a homogeneous,

proper, divisorial ideal of R, h ξ£ uR such that [b]R e ker (/). If 6 = Pίni)

Π Π P$ nr) is the primary decomposition of 6, put b(ί>m) = ptw*) n Π

P^^m> for m > 0. Then Proposition 5 means that H*φ{pm)) = 0 for some

m > 0. The authors were unable to prove directly this fact.

§ 3. Concluding remarks

1) As the following counterexample shows, the hypothesis (1) of

Theorem 4 does not suffice to deduce the injectivity of j : Cl (R) -> Cl (G)

when R —> RjuR = G is a general hypersurface section. Let & be an alge-

braically closed field. Let R = k[X, Y, Z, W]/(XY - ZW) - k[x, y, z, w] and

let G — i?/(x — y). G is the homogeneous coordinate ring of a smooth

conic in P|, hence G satisfies the hypothesis (1) of Theorem 4. But Cl(i?)

- Z and C1(G)~Z/2Z.

2) If a form ring G is given, we can consider two rings of special

relevance for our problem: GG+ and G = (G, G+). This relevance is par-

tially explained by the properties collected in the following:

PROPOSITION 6. Let G = G(A, I) be a normal integral domain, where

ί c Rad(A) as always. Then we have:

a) Gr (G, G+) ~ Gr (G, G+) 2̂  G, /irace G is a normal integral domain.

b) Let c be a homogeneous ideal of G; then In^+(cG) ^ c where the

isomorphism is that of a). 7n particular, let m: Cl(G)-> Cl (G) ί/ie homo-

morphίsm deduced from the flat extension G ~> G, i.e. m([c]G) = [CG]G /or

every integral divisorial ideal c of G. Then ί-m = lCi«?)

c) Gr(GG + , G+GG+) ~ G®G/G+K (graded isomorphism) where K is the

quotient field of Ajl. In particular, if I is maximal, then G is a h-local

ring and GY(GG+, G+GG+) ^ G.

d) Let c be a homogeneous ideal of G; then InG+GG+(cG+) is graded ίso-
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morphia to c®G/G+K, where K is the residue field of GG+. In particular,

if I is maximal, we have I n σ + G G + (cσ+) ~ c; if we consider C1(G) >Cl(GG+)

>Cl(G) where σ is the canonical isomorphism ([13], Corollary 10.3), we

have i-σ = 1C1(G) and consequently i = σ~\

Proof. Easy calculations.

Now let G = ®n>Q Gn be a graded two dimensional normal domain

such that Go is a field, G = GotGJ and G is a finitely generated algebra

over Go. Since Danilov's condition DCG (i.e. Cl (G) ~ Cl (G[[T]J) is equi-

valent to (Hι

G+(G))n = 0 for all π > 0 (see [12], Satz 4.4), from DCG con-

dition it trivially follows that Cl (G) ~ Cl (G), since this is equivalent to

(HG+(G))n = 0 for all n > 0. (see [12], Theorem 4.1). Moreover there exist

factorial graded rings as G such that Cl (G) ~ Cl (G) but not satisfying

the DCG condition (see [9], page 128).

However, condition (1) is not necessary for j to be injective as the

following example shows.

Let G = Q[X, y, Z]/(XA + 74 - Z4) where Q is the field of rational

numbers; C1(G) is finite (see [11]); but Cl(G) Φ Cl(G), since C1(G)-

C1(G)0Q (see [12]); then take A = GG+. Since i is an isomorphism (see

Proposition 6.d)), j is surjective by definition of ί. Morevoer Cl(i?), C1(A)

and Cl (G) are finite sets with the same number of elements hence j is

injective.

3) The authors do not know the existence of factorial graded ring

G satisfying the general above-mentioned hypotheses and such that

Cl(G)Φ Cl (Cf).
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