J. Austral. Math. Soc. (Series A) 35 (1983), 307

2-GROUPS OF ALMOST MAXIMAL CLASS: CORRIGENDUM

RODNEY JAMES

(Received 17 August 1982)

Communicated by D. E. Taylor

On page 354 of James (1975) (in the proof of Theorem 5.3(b)) there appear the following two sentences:

"When $n \ge 7$, replace s_1 by $s_1 s_{n-5}^{\delta}$ and s_2 by $s_2 s_{n-4}^{\delta}$. Since $(s_2 s_{n-4}^{\delta})^2 = s_2^2 s_{n-2}^{\delta}$, we may suppose $\delta = 0$."

Unfortunately, the second sentence does not follow from the first. In fact, the first sentence also forces us to replace s_4s_5 by $s_4s_5s_{n-2}^{\delta}$ and so $s_2^2(s_4s_5)^{-1}$ remains unaltered. Thus the case $\delta = 1$ is omitted in the paper.

If $\delta = 1$, then (replacing s by ss_1^{α}) we may suppose $\alpha = 0$ and so $s^4 = 1$. It is now easy to establish that we may take $s_1^2 = s_{n-3}$, s_{n-2} or 1 giving 3 more groups. Thus, the number of groups of order 2^n and class n - 2 is

(i) 29 when n = 7

(ii) 27 + 4(n, 2) when n > 7.

The extra three groups were discovered using a computer version of the nilpotent quotient algorithm as described by M. F. Newman (1977).

References

Rodney James (1975), '2-groups of almost maximal class', J. Austral. Math. Soc. Ser. A 19, 343-357. M. F. Newman (1977), 'Determination of groups of prime-power order', Group Theory, Canberra 1975, pp. 73-84 (Proc. Miniconf. Australian National University, 1975. Lecture Notes in Mathematics 573, Springer-Verlag).

School of Mathematics University of New South Wales Kensington, N.S.W. 2033

© 1983 Australian Mathematical Society 0263-6115/83 \$A2.00 + 0.00

307