ON THE ASYMPTOTIC BEHAVIOR OF FUNCTIONS HARMONIC IN A DISC

J. E. MCMILLAN

Let D be the open unit disc, and let C be the unit circle in the complex plane. Let f be a (real-valued) function that is harmonic in D. A simple continuous curve β : z(t) ($0 \le t < 1$) contained in D such that $|z(t)| \to 1$ as $t \to 1$ is a boundary path with end $\overline{\beta} \cap C$ (the bar denotes closure). If also $f(z(t)) \rightarrow a(-\infty \le a \le +\infty)$ as $t \rightarrow 1$, then β is an asymptotic path of f for the value a, and f is said to have the asymptotic value a. If there is an asymptotic path of f, for a value $a(-\infty \leq a \leq +\infty)$, with end the point ζ of C, then f is said to have the asymptotic value a at ζ . Let A denote the set of points of C at which f has an asymptotic value. If $-\infty \leq u < v \leq +\infty$, set $A(u, v) = \{\zeta \in C :$ there exists a real number a such that f has the asymptotic value a at ζ and u < a < v, and set $A' = A(-\infty, +\infty)$. We use repeatedly the fact that A(u, v)is a Borel set (see [5, Theorem 7 (iii)]), and is therefore measurable. Let d(z, S) denote the Euclidean distance from the point z to the set S in the plane. For a sequence $\langle \Gamma_n \rangle$ of Jordan arcs in D and an arc γ in C, the symbol $\Gamma_n \rightarrow \gamma$ means that to each $\varepsilon > 0$ there corresponds a natural number n_{ε} such that if $n > n_{\varepsilon}$, then

 $\Gamma_n \subset \{z : d(z, \gamma) < \varepsilon\}$ and $\gamma \subset \{z : d(z, \Gamma_n) < \varepsilon\}.$

The following theorem is closely related to the theorem [4, Theorem 1] for meromorphic functions.

THEOREM 1. Let $\zeta \in C$ and suppose that there exists a sequence $\{z_n\} \subset D$ such that $z_n \to \zeta$ and $f(z_n) \to +\infty$. Then at least one of the following three statements holds.

(i) Each open arc containing ζ contains the end of an asymptotic path of f for the value $+\infty$.

(ii) ζ is one endpoint of an arc $\gamma \subset C$ such that there exist a sequence $\{a_n\}$ of real numbers and a sequence $\{\Gamma_n\}$ of Jordan arcs such that

Received February 3, 1966.

J. E. MCMILLAN

$$a_n \uparrow + \infty$$
, $\Gamma_n \subset \{z \in D : f(z) = a_n\}, \Gamma_n \to \gamma$.

(iii) For each real number M and open arc γ containing ζ , the set $\gamma \cap A(M, +\infty)$ has positive Lebesgue measure.

Remarks. At each $\zeta \in C$, the real part of the elliptic modular function satisfies neither (ii) nor (iii). The real part of a holomorphic function having the spiral asymptotic values 0 and 1 satisfies, at each $\zeta \in C$, neither (i) nor (iii). The real part f of a holomorphic function constructed by MacLane [2, p. 75] is such that A' is dense on C, f has neither of the asymptotic values $\pm \infty$, and there exists a set $E \subset C$ with positive measure such that f does not have an asymptotic value at any point of E. Let ζ be a point of C such that the intersection of E with each open arc containing ζ has positive measure. Then neither (i) nor (ii) holds, and for each open arc γ containing ζ , the measure of $\gamma \cap A'$ is less than the measure of γ .

We first prove

LEMMA. Let λ be a real number, and suppose that Δ is a component of $\{z \in D : f(z) > \lambda\}$. Then either there exists an asymptotic path α of f for the value $+\infty$ such that $\alpha \subset \Delta$, or there exists a set $E \subset C$ with positive exterior Lebesgue measure such that each $e^{i0} \in E$ is the end of an asymptotic path α_0 , for a finite value, such that $\alpha_0 \subset \Delta$.

Remark 1. By making simple modifications in the following proof, an analogous lemma for holomorphic functions can be established. Thus, the proofs of the theorems [3, Theorem 2] and [4, Theorem 1], which are based on the lemma [3, Lemma 2], can be simplified.

Remark 2. The proof of this lemma involves a combination of ideas from the papers [1], [2] and [3].

Proof of the lemma. Suppose that there does not exist an asymptotic path α of f for the value $+\infty$ such that $\alpha \subset \Delta$. We prove that there exist a (finite) number $\lambda' \geq \lambda$ and a component Δ' of $\{z \in \Delta : f(z) > \lambda'\}$ such that f is bounded in Δ' . If this were not the case, we could choose $\lambda_n \uparrow +\infty$ ($\lambda_n > \lambda$), let Δ_1 be a component of $\{z \in \Delta : f(z) > \lambda_1\}$, let Δ_2 be a component of $\{z \in \Delta_1 : f(z) > \lambda_2\}$, and in this way define a sequence $\{\Delta_n\}$ such that Δ_{n+1} is a component of $\{z \in \Delta_n : f(z) > \lambda_{n+1}\}$. Let $\alpha : z(t)$ ($0 \le t < 1$) be a boundary path that is

188

eventually in each Δ_n ; that is, to each *n* there corresponds $t_n (0 \le t_n < 1)$ such that $z(t) \in \Delta_n$ if $t_n < t < 1$. Since α is an asymptotic path of *f* for the value $+\infty$ and $\alpha \subset \Delta$, we have a contradiction; and we have established the existence of λ' and Δ' with the stated properties.

By the minimum principle, Δ' is simply connected. Let $D_w = \{|w| < 1\}$, and let φ be a conformal mapping of D_w onto Δ' . Set $F(w) = f(\varphi(w))(w \in D_w)$. The radial limit $F(e^{i\theta})$ of the bounded harmonic function F at $e^{i\theta}$ exists for almost all $e^{i\theta}$, and F has a Poisson integral representation in terms of the radial limits $F(e^{i\theta})$. Since $F(w) > \lambda'(w \in D_w)$, there exists a set $E'_w \subset \{|w| = 1\}$, with positive measure, such that $F(e^{i\theta}) > \lambda'$ if $e^{i\theta} \in E'_w$. Let E_w be a subset, with positive measure, of E'_w such that the radial limit $\varphi(e^{i\theta})$ of φ at $e^{i\theta}$ exists for each $e^{i\theta} \in E_w$. If $\varphi(e^{i\theta}) \in D$, then $F(e^{i\theta}) = f(\varphi(e^{i\theta})) = \lambda'$, so $\varphi(e^{i\theta}) \in C$ if $e^{i\theta} \in E_w$. Set $E_z = \{\varphi(e^{i\theta}) : e^{i\theta} \in E_w\}$. By an extension of Löwner's lemma [6, p. 34], E_z has positive exterior measure. But if $\zeta \in E_z$, $\zeta = \varphi(e^{i\theta})$, the set $\{\varphi(re^{i\theta}) : 0 \le r < 1\}$ is a boundary path, with end ζ , that is contained in Δ' and on which f has the limit $F(e^{i\theta})$ at ζ . This completes the proof of the lemma.

Proof of Theorem 1. We clearly may suppose that $f(0) < f(z_n) - 1$ $(n \ge 1)$. Let Δ_n be the component of $\{z \in D : f(z) > f(z_n) - 1\}$ that contains z_n . Since $f(z_n) \to +\infty$, each disc $\{|z| \le r\}$ (0 < r < 1) intersects only finitely many Δ_n . Since $0 \equiv \Delta_n$, there exists a level curve L_n on the boundary of Δ_n such that 0 and Δ_n are contained in different components of $D - L_n$. Thus, it is easy to see that if (ii) does not hold, then the diameter of Δ_n tends to zero as $n \to \infty$. We suppose now that neither (i) nor (ii) holds. We wish to prove that (iii) holds, and we let M be a real number and γ an open arc containing ζ . Let γ' be an open subarc of γ that contains ζ and is such that no asymptotic path of f for the value $+\infty$ has end contained in γ' . Let n_0 be such that $f(z_{n_0}) - 1 > M$ and $\overline{\Delta}_{n_0} \cap C \subset \gamma'$. It follows from the lemma that $\gamma \cap A(M, +\infty)$ has positive exterior measure. Thus, since $A(M, +\infty)$ is measurable, (iii) holds; and the proof of Theorem 1 is complete.

It is well known that if f is bounded above in a neighborhood of the point ζ of C, then f has finite radial limits at almost all points of some open arc containing ζ . Thus, as a consequence of Theorem 1 we have

COROLLARY. Let γ be an arc in C. Suppose that there exists a set $S \subset \gamma$, that is dense on γ (i.e. $\gamma \subset \overline{S}$), such that to each $\zeta \in S$ there corresponds a boundary

J. E. MCMILLAN

path with end ζ on which f is bounded above. Then for each subarc γ' of γ , either f has the asymptotic value $+\infty$ at a point of γ' , or $\gamma' \cap A'$ has positive measure.

As a simple application of Theorem 1, we prove

THEOREM 2. Let γ be an arc in C. Suppose that there exists a set $S \subset \gamma$, that is dense on γ , such that to each $\zeta \in S$ there corresponds a boundary path with end ζ on which f is either bounded above or bounded below. Then for each subarc γ' of γ , either f has an infinite asymptotic value at a point of γ' , or $\gamma' \cap A'$ has positive measure. In particular, A is dense on γ .

Remark. This result is closely related to theorems of MacLane [2, pp. 10, 25] for holomorphic functions.

Proof of Theorem 2. Suppose that there exists a subarc r' of r such that f does not have an infinite asymptotic value at a point of r', and $r' \cap A'$ does not have positive measure. Then, since A' is measurable, $r' \cap A'$ has measure zero. Let ζ be an interior point of r' and apply Theorem 1. Either there exists an asymptotic path of f for the value $+\infty$ whose end is a subarc of r', or (ii) holds. In either case there exist a sequence $\{\Gamma_n\}$ of Jordan arcs in D and a subarc γ_0 of r' such that $\Gamma_n \to \gamma_0$ and the minimum value of f on Γ_n tends to $+\infty$ as $n\to\infty$. Now let ζ be an interior point of γ_0 and apply Theorem 1 to the function -f. It follows as before that there exist a sequence $\{\Gamma'_n\}$ of Jordan arcs in D and a subarc γ_1 of γ_0 such that $\Gamma'_n \to \gamma_1$ and the maximum value of f on Γ'_n tends to $-\infty$ as $n\to\infty$. With this contradiction the proof of Theorem 2 is complete.

Similarly, we obtain

THEOREM 3. Let γ be an arc in C. Suppose that there exists a set $S \subset \gamma$, that is dense on γ , such that to each $\zeta \in S$ there corresponds a boundary path with end ζ on which f is bounded. Then for each subarc γ' of γ , either f has both of the asymptotic values $+\infty$ and $-\infty$ at points of γ' , or $\gamma' \cap A'$ has positive measure.

The following global result is an immediate consequence of the lemma.

THEOREM 4. Suppose that f is not bounded above. Then either f has the asymptotic value $+\infty$, or for each real number M, the set $A(M, +\infty)$ has positive measure.

Remark. The real part f of a holomorphic function constructed by MacLane [2, p. 71] is such that f has neither of the asymptotic values $\pm \infty$, and at each $\zeta \in C$,

$$\limsup_{z\to\zeta} f(z) = +\infty \text{ and } \liminf_{z\to\zeta} f(z) = -\infty.$$

It is now easy to see that we also have

THEOREM 5. Either f has both $+\infty$ and $-\infty$ as asymptotic values, or A' has positive measure.

REFERENCES

- F. Bagemihl and W. Seidel: Koebe arcs and Fatou points of normal functions, Comment. Math. Helv., 36 (1961), 9-18.
- [2] G. R. MacLane: Asymptotic values of holomorphic functions, Rice Univ. Studies, 49 (1963), 1-83.
- [3] J. E. McMillan: Asymptotic values of functions holomorphic in the unit disc, Michigan Math. J., 12 (1965), 141-154.
- [4] J. E. McMillan: On local asymptotic properties, the asymptotic value sets, and ambiguous properties of functions meromorphic in the open unit disc, Ann. Acad. Sci. Fenn., A. I., 384 (1965), 1-12.
- [5] J. E. McMillan: Boundary properties of functions continuous in a disc, Michigan Math. J. (to appear).
- [6] K. Noshiro: Cluster sets, Berlin-Göttingen-Heidelberg, 1960.

University of Wisconsin-Milwaukee