N. Gupta and K. Tahara Nagoya Math. J. Vol. 100 (1985), 127-133

DIMENSION AND LOWER CENTRAL SUBGROUPS OF METABELIAN *P*-GROUPS

NARAIN GUPTA* AND KEN-ICHI TAHARA

To the memory of the late Takehiko Miyata

§1. Introduction

It is a well-known result due to Sjogren [9] that if G is a finitely generated p-group then, for all $n \leq p - 1$, the (n + 2)-th dimension subgroup $D_{n+2}(G)$ of G coincides with $\gamma_{n+2}(G)$, the (n + 2)-th term of the lower central series of G. This was earlier proved by Moran [5] for $n \leq p - 2$. For p = 2, Sjogren's result is the best possible as Rips [8] has exhibited a finite 2-group G for which $D_4(G) \neq \gamma_4(G)$ (see also Tahara [10, 11]). In this note we prove that if G is a finitely generated metabelian p-group then, for all $n \leq p$, $D_{n+2}^2(G) \subseteq \gamma_{n+2}(G)$. It follows, in particular, that, for p odd, $D_{n+2}(G) = \gamma_{n+2}(G)$ for all $n \leq p$ and all metabelian p-groups G.

§2. Notation and preliminaries

While the central idea of the proof of our main result stems from Gupta [1], with a slight repetition, it is equally convenient to give a self-contained proof using a less cumbersome notation.

Let $\mathfrak{f} = ZF(F-1)$ denote the augmentation ideal of the integral group ring ZF of a free group F freely generated by $x_1, x_2, \dots, x_m, m \geq 2$. For a fixed prime p, let $(p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_m}), \alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_m > 0$ be an *m*-tuple of p-powers, and let $S = \langle x_1^{p^{\alpha_1}}, x_2^{p^{\alpha_2}}, \dots, x_m^{\alpha_m}, F' \rangle$ be the normal subgroup of F so that F/S is abelian. Set $\mathfrak{F} = ZF(S-1)$, the ideal of ZF generated by all elements $s-1, s \in S$. For $1 \leq n \leq p$, we shall need to investigate the structure of the subgroup $D_{n+2}(\mathfrak{f}\mathfrak{F}) = F \cap (1 + \mathfrak{f}\mathfrak{F} + \mathfrak{f}^{n+2})$ of F which consists of all elements $w \in F$ such that $w - 1 \in \mathfrak{f}\mathfrak{F} + \mathfrak{f}^{n+2}$. It is clear that $[F', S]\mathfrak{f}_{n+2}(F) \subseteq D_{n+2}(\mathfrak{f}\mathfrak{F})$.

Let $w \in D_{n+2}(\mathfrak{f}\mathfrak{S})$ be an arbitrary element. Then $w - 1 \in \mathfrak{f}^2$ and it Received July 25, 1984.

*) Research supported by N.S.E.R.C., Canada.

follows that $w \in F'$. Thus, modulo F'', using the Jacobi identity, we may write w as

$$(1) w \equiv w_1 w_2 \cdots w_{m-1}$$

where

(2)
$$w_i = \prod_{j=i+1}^m [x_i, x_j]^{d_{ij}}$$

and $d_{ij} = d_{ij}(x_i, x_{i+1}, \dots, x_m) \in ZF$. For $i = 1, 2, \dots, m$, define homomorphisms $\theta_i: ZF \to ZF$ by $x_k \to 1$ if $k \leq i, x_k \to x_k$ if k > i. Since the ideals $\mathfrak{f}, \mathfrak{F}$ are invariant under θ_i 's, it follows, using $\theta_1, \theta_2, \dots, \theta_{m-2}$ in succession, that if $w - 1 \in \mathfrak{f}\mathfrak{F} + \mathfrak{f}^{n+2}$ then $w_i - 1 \in \mathfrak{f}\mathfrak{F} + \mathfrak{f}^{n+2}$ for each i. For each $k = 1, 2, \dots, m$, define

(3)
$$t(x_k) = 1 + x_k + \cdots + x_k^{p^{\alpha_{k-1}}}.$$

Then

(4)
$$t(x_k) = \sum_{l=1}^{p^{\alpha_k}} {p^{\alpha_k} \choose l} (x_k - 1)^{l-1}$$
$$\equiv p^{\alpha_k} + {p^{\alpha_k} \choose p} (x_k - 1)^{p-1} \mod (\mathfrak{s} + \mathfrak{f}^p) \, .$$

We can now prove,

LEMMA 2.1. Let w_i be as in (2) with $w_i - 1 \in \mathfrak{f} \mathfrak{F} + \mathfrak{f}^{n+2}$ and $n \leq p$. Then, modulo $\mathfrak{F} + \mathfrak{f}^n$, $d_{ij} \equiv t(x_i)a_{ij} \equiv t(x_j)b_{ij}$, where $t(x_i)$, $t(x_j)$ are given by (3), $a_{ij} \in \mathbb{Z}$ and $b_{ij} \in \mathbb{Z}F$. Moreover, if $\alpha_i = \alpha_j$ then $b_{ij} \in \mathbb{Z}$.

Proof. Expansion of $w_i - 1$ shows

$$(5) \qquad \sum_{j=i+1}^{m} \{(x_i-1)(x_j-1)-(x_j-1)(x_i-1)\}d_{ij} \in \mathfrak{f}\mathfrak{F} + \mathfrak{f}^{n+2}.$$

Since f is a free right ZF-module on $x_1 - 1$, $x_2 - 1$, \cdots , $x_m - 1$, it follows from (5) that, for all $j = i + 1, \cdots, m$,

$$(x_j-1)(x_i-1)d_{ij}\in \mathfrak{fS}+\mathfrak{f}^{n+2}$$
 ,

which yields

 $(6) \qquad (x_i-1)d_{ij}\in \mathfrak{S}+\mathfrak{f}^{n+1}$

and, in turn,

(7)
$$d_{ij} \in t(x_i)ZF + \mathfrak{S} + \mathfrak{f}^n$$

where $t(x_i)$ is given by (3). Since $n \leq p$, (4) induces that, for $k \geq i$, $t(x_i)(x_k-1) \equiv p^{\alpha_i-\alpha_k}p^{\alpha_k}(x_k-1) \equiv 0 \mod (\beta+j^n)$. Thus (7) implies $d_{ij} \equiv d_{ij}$.

128

 $t(x_i)a_{ij} \mod (\beta + j^n)$ with $a_{ij} \in \mathbb{Z}$. Substituting in (5) gives

$$(x_i-1)\sum_{j=i+1}^m (x_j-1)d_{ij}\in \mathfrak{f}\mathfrak{F}+\mathfrak{f}^{n+2}$$
 .

and, as before,

$$\sum_{j=i+1}^m (x_j-1)d_{ij}\in \mathfrak{Z}+\mathfrak{f}^{n+1}.$$

Using the homomorphisms $\theta_{i+1}, \dots, \theta_{m-1}$ in turn, gives

 $(8) \qquad (x_j-1)d_{ij}\in \mathfrak{S}+\mathfrak{f}^{n+1}$

for all $j = i + 1, \dots, m$, since $d_{ij} \equiv t(x_i)a_{ij} \mod (\beta + j^n)$ with $a_{ij} \in \mathbb{Z}$. Thus

(9)
$$d_{ij} \in t(x_j)ZF + \beta + \mathfrak{f}^n,$$

and if $\alpha_i = \alpha_j$ then, as before, $d_{ij} \equiv t(x_j)b_{ij} \mod (\beta + \mathfrak{f}^n)$ with $b_{ij} \in \mathbb{Z}$. This completes the proof of the lemma.

Now, let $\frac{\partial}{\partial x_k} d$ be a free partial derivative of $d \in \mathbb{Z}F$ with respect to x_k . Then we prove,

LEMMA 2.2.
$$\frac{\partial}{\partial x_k} d_{ij} \in p^{\alpha_k} ZF + \beta + \mathfrak{f}^{n-1}, \ i < k, \ and$$

 $\frac{\partial}{\partial x_i} d_{ij} \in \begin{cases} p^{\alpha_i} ZF + \beta + \mathfrak{f}^{n-1} & \text{if } \alpha_i = \alpha_j \\ p^{\alpha_i} ZF + p^{\alpha_i^{-1}} (x_i - 1)^{p-2} ZF + \beta + \mathfrak{f}^{n-1} & \text{if } \alpha_i > \alpha_j \end{cases}.$

Proof. We have

$$rac{\partial}{\partial x_k}(\hat{s}) \subseteq \hat{s} + p^{a_k} ZF; \; rac{\partial}{\partial x_k}(\mathfrak{f}^n) \subseteq \mathfrak{f}^{n-1} \, .$$

Thus since $d_{ij} \equiv t(x_i)a_{ij} \mod (\beta + j^n)$ with $a_{ij} \in \mathbb{Z}$, it follows that

$$rac{\partial}{\partial x_k} d_{ij} \equiv 0 ext{ mod } (p^{lpha_k} ZF + ilde{arsigma} + ilde{arsigma}^{n-1}) \,.$$

By (4) and $d_{ij} \equiv t(x_i)a_{ij} \mod (\beta + f^n)$, we have

$$rac{\partial}{\partial x_i}d_{ij}\equiv a_{ij}inom{p^{lpha_i}}{p}(p-1)(x_i-1)^{p-2} \operatorname{mod}\left(p^{lpha_i}ZF+\mathfrak{S}+\mathfrak{f}^{n-1}
ight).$$

Since $p^{\alpha_i^{-1}}$ divides $\binom{p^{\alpha_i}}{p}$, $\frac{\partial}{\partial x_i} d_{ij} \equiv 0 \mod (p^{\alpha_i^{-1}}(x_i - 1)^{p-2}ZF + p^{\alpha_i}ZF + \beta + j^{n-1})$. If $\alpha_i = \alpha_j$ then $b_{ij} \in Z$, and we may differentiate $d_{ij} \equiv t(x_j)b_{ij}$ with

respect to x_i to obtain the desired result.

Next, we need to expand $[x_i, x_j]^{d_{ij}} - 1$ modulo $(f^2 \hat{s} + f^{n+2})$. We first observe,

$$egin{aligned} & [x_i, x_j] x_i^{eta_i} x_{i+1}^{eta_{i+1}} \cdots x_m^{eta_m} - 1 \ & \equiv x_m^{-eta_m} \cdots x_{i+1}^{-eta_{i+1}+1} x_i^{-eta_i} ([x_i, x_j] - 1) x_i^{eta_i} x_{i+1}^{eta_{i+1}+1} \cdots x_m^{eta_m} \ & \equiv ([x_i, x_j] - 1) x_i^{eta_i} x_{i+1}^{eta_{i+1}+1} \cdots x_m^{eta_m} - \sum\limits_{k=i}^m eta_k (x_k - 1) ([x_i, x_j] - 1) x_i^{eta_i} x_{i+1}^{eta_{i+1}+1} \cdots x_m^{eta_m} \ & \equiv ([x_i, x_j] - 1) x_i^{eta_i} \cdots x_m^{eta_m} - \sum\limits_{k=i}^m (x_k - 1) ([x_i, x_j]^{x_k (eta/eta x_k)} (x_i^{eta_i} \cdots x_m^{eta_m}) - 1) \,. \end{aligned}$$

Thus,

$$[x_i, x_j]^{d_{ij}} - 1 \equiv ([x_i, x_j] - 1)d_{ij} - \sum_{k=i}^m (x_k - 1)([x_i, x_j]^{x_k(\partial/\partial x_k)d_{ij}} - 1)$$

Now, modulo $(\mathfrak{f}^2\mathfrak{G} + \mathfrak{f}^{n+2})$

$$egin{aligned} &([x_i,x_j]-1)d_{ij}\equiv x_i^{-1}x_j^{-1}\{(x_i-1)(x_j-1)-(x_j-1)(x_i-1)\}d_{ij}\ &\equiv\{(x_i-1)(x_j-1)-(x_j-1)(x_i-1)\}d_{ij}\ &-(x_i-1)\{(x_i-1)(x_j-1)-(x_j-1)(x_i-1)\}d_{ij}\ &-(x_j-1)\{(x_i-1)(x_j-1)-(x_j-1)(x_i-1)\}d_{ij},\ &\equiv(x_i-1)(x_j-1)d_{ij}-(x_j-1)(x_i-1)d_{ij},\ &by\ (6)\ {
m and}\ (8)\ &\equiv(x_i-1)(x_j-1)t(x_j)b_{ij}-(x_j-1)(x_i-1)t(x_i)a_{ij},\ &by\ {
m Lemma}\ 2.1\ &\equiv(x_i-1)(x_j^{p^{a_j}b_{ij}}-1)-(x_i-1)(x_i^{p^{a_i}a_{ij}}-1)\,. \end{aligned}$$

Thus we have,

LEMMA 2.3. Modulo $(f^2 \beta + f^{n+2})$,

$$egin{aligned} & [x_i, x_j]^{d_{ij}} - 1 \equiv (x_i - 1)(x_j^{a_{jb_{ij}}} - 1) - (x_j - 1)(x_i^{a_{ia_{ij}}} - 1) \ & - \sum\limits_{k=i}^m (x_k - 1)([x_i, x_j]^{x_k(\partial \partial x_k)d_{ij}} - 1) \,. \end{aligned}$$

Finally, using (6) and (8), we have, for any x_k , mod $[F', S] \mathcal{I}_{n+3}(F)$,

$$\begin{split} [[x_i, x_j]^{d_{ij}}, x_k] &\equiv [x_i, x_j, x_k]^{d_{ij}} \\ &\equiv [x_i, x_k, x_j]^{d_{ij}} [x_k, x_j, x_i]^{d_{ij}} \\ &\equiv [x_i, x_k]^{(-1+x_j)d_{ij}} [x_k, x_j]^{(-1+x_i)d_{ij}} \\ &\equiv 1 \,. \end{split}$$

Thus we have,

130

LEMMA 2.4 (Gupta [2]). $[D_{n+2}(\mathfrak{fg}), F] \subseteq [F', S] \mathcal{I}_{n+3}(F)$ for all $n \geq 0$.

This completes our preliminary discussions.

§3. The main theorem

Let G be a finitely generated metabelian p-group. Then G admits a presentation of the form

$$G=F\!/\!R=\langle x_1,x_2,\,\cdots,\,x_m;\,x_1^{p^{a_1}}\zeta_1,\,x_2^{p^{a_2}}\zeta_2,\,\cdots,\,x_m^{p^{a_m}}\zeta_m,\zeta_{m+1},\,\cdots,\,F''
angle\,,$$

where $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_m > 0$ (see for instance [4], page 149). Let S be the normal subgroup of F generated by $x_1^{p\alpha_1}, x_2^{p\alpha_2}, \cdots, x_m^{p\alpha_m}$ and F', then it follows that $S' \subseteq R \subseteq S$. In terms of the free group rings, the dimension subgroup $D_{n+2}(G) = D_{n+2}(\mathfrak{r})/R$, where $\mathfrak{r} = ZF(R-1)$ and $D_{n+2}(\mathfrak{r}) = F \cap$ $(1 + \mathfrak{r} + \mathfrak{f}^{n+2})$. Then $R\mathcal{T}_{n+2}(F) \subseteq D_{n+2}(\mathfrak{r})$. If $z \in D_{n+2}(\mathfrak{r})$, then $z - 1 \in \mathfrak{r} + \mathfrak{f}^{n+2}$ implies that $zr - 1 \in \mathfrak{fr} + \mathfrak{f}^{n+2}$ for some $r \in R$. It follows that $D_{n+2}(G) =$ $\mathcal{T}_{n+2}(G)$ if and only if $D_{n+2}(\mathfrak{fr}) = F \cap (1 + \mathfrak{fr} + \mathfrak{f}^{n+2}) \subseteq R\mathcal{T}_{n+2}(F)$. We now prove our main result.

THEOREM 3.1. $D_{n+2}^2(\mathfrak{fr}) \subseteq R \mathfrak{i}_{n+2}(F)$ for all $n \leq p$.

Proof. Let $w \in D_{n+2}(fr)$. Then $w - 1 \in fr + f^{n+2} \subseteq f\mathfrak{S} + f^{n+2}$, and by Lemma 2.1,

$$w\equiv \prod\limits_{1\leq i< j\leq m} [x_i,x_j]^{d_{ij}} \, ext{mod} \, F''$$
 ,

where $d_{ij} \equiv t(x_i)a_{ij} \equiv t(x_j)b_{ij} \mod (\beta + \beta^n)$. Now, $w - 1 \in \beta r + \beta^{n+2}$ implies $w - 1 \in \beta r + \beta^2 + \beta^{n+2}$. Then it follows by Lemma 2.3, that

(10)
$$w-1 \equiv \sum_{k=1}^{m} (x_k-1)(y_k u_k^{-1}-1) \equiv 0 \mod (\mathfrak{fr} + \mathfrak{f}^2 \mathfrak{s} + \mathfrak{f}^{n+2}),$$

where

$${\mathcal Y}_k = \prod\limits_{i < k} x_i^{-p^{lpha_{ik}}} \prod\limits_{k < j} x_j^{p^{ajb}_{jk}}, \qquad {\mathcal U}_k = \prod\limits_{\substack{i < j \ i \le k}} [x_i, x_j]^{x_k (\partial \partial x_k) d_{ij}}.$$

From (10) it follows that for each $k = 1, 2, \dots, m$,

$$y_k u_k^{-1} - 1 \in \mathfrak{r} + \mathfrak{f}\mathfrak{S} + \mathfrak{f}^{n+1}$$

which yields, in turn, using $fr \subseteq f\mathfrak{s}$,

$$y_k u_k^{-1} r_k - 1 \in \mathfrak{f} \mathfrak{S} + \mathfrak{f}^{n+1}$$

with some $r_k \in R$, and by Lemma 2.4, for all $k = 1, 2, \dots, m$,

 $[x_k, y_k u_k^{-1} r_k] \in R \mathcal{T}_{n+2}(F),$

which reduces to

$$[x_k, y_k u_k^{-1}] \in R \mathcal{I}_{n+2}(F)$$

and hence

(11)
$$[x_k, u_k^{-1}][x_k, y_k] \in R \Upsilon_{n+2}(F) .$$

Next, $[x_k, u_k^{-1}] \equiv [x_k, u_k]^{-1} \mod R \mathcal{I}_{n+2}(F)$, and $[x_k, u_k]$ is a product of commutators of the form

$$[x_k, [x_i, x_j]^{x_k(\partial/\partial x_k)d_{ij}}], \quad 1 \leq i \leq k, \quad 1 \leq i < j \leq m.$$

By Lemma 2.2, for either i < k or i = k and $\alpha_i = \alpha_j$,

$$egin{aligned} & [x_k, [x_i, x_j]^{x_k(\partial/\partial x_k)d_{ij}}] \equiv [x_k, [x_i, x_j]^{p^{a_k}x_k v}] ext{ for some } v \in ZF \,, \ & \equiv [x_k^{p^{a_k}}, [x_i, x_j]^{x_k v}] \ & \equiv 1 \mod [F', S] \varUpsilon_{n+2}(F) \,. \end{aligned}$$

If i = k and $\alpha_i > \alpha_j$, then by Lemma 2.2, for some $v, w \in ZF$,

$$\begin{split} [x_{i}, [x_{i}, x_{j}]^{x_{i}(\partial/\partial x_{i})d_{ij}}] &\equiv [x_{i}, [x_{i}, x_{j}]^{x_{i}p^{\alpha_{i}}v + p^{\alpha_{i}-1}(x_{i}-1)^{p-2}w}] \\ &\equiv [[x_{i}, x_{j}]^{(x_{i}-1)^{p-2} \cdot p^{\alpha_{i}-1}w}, x_{i}]^{-1} \\ &\equiv [x_{j}^{p^{\alpha_{j}}}, \underbrace{x_{i}, \cdots, x_{i}}_{p}]^{p^{\alpha_{i}-1-\alpha_{jw}}} \mod [F', S]\gamma_{n+2}(F) \\ &\equiv [\zeta_{j}, \underbrace{x_{i}, \cdots, x_{i}}_{p}]^{p^{\alpha_{i}-1-\alpha_{jw}}} \mod R\gamma_{n+2}(F) \\ &\equiv 1 \mod R\gamma_{n+2}(F) \,. \end{split}$$

Thus (11) is reduced to $[x_k, y_k] \in R\mathcal{I}_{n+2}(F)$. However,

$$\begin{split} [x_k, y_k] &\equiv \prod_{i < k} [x_i^{p^{\alpha_i a_{ik}}}, x_k] \prod_{k < j} [x_k, x_j^{p^{\alpha_j b_k j}}] \\ &\equiv \prod_{i < k} [x_i, x_k]^{d_{ik}} \prod_{k < j} [x_k, x_j]^{d_{kj}} \operatorname{mod} [F', S] \varUpsilon_{n+2}(F) \,. \end{split}$$

Thus

$$w^2 \equiv \prod_{k=1}^m [x_k, y_k] \equiv 1 \mod R \varUpsilon_{n+2}(F)$$
.

This completes the proof of our main theorem.

As a corollary we obtain,

THEOREM 3.2. Let G be a finitely generated metabelian p-group. Then

132

- (a) $D_{n+2}(G) = \gamma_{n+2}(G)$ for all $n \leq p 1$,
- (b) if p = 2, $D_4^2(G) \subseteq \gamma_4(G)$,
- (c) if p is odd, $D_{n+2}(G) = \mathcal{I}_{n+2}(G)$.

For p = 3, part (a) of Theorem 3.2 was first proved by Passi [6]; part (b) is due to Losey [3]. We refer the reader to Passi [7] for a general background on the dimension subgroup problem.

References

- N. Gupta, On the dimension subgroups of metabelian groups, J. Pure Appl. Algebra, 24 (1982), 1-6.
- [2] —, Sjogren's Theorem for dimension subgroups—The metabelian case, Annals of Math. Study (1985), to appear.
- [3] G. Losey, N-series and filtration of the augmentation ideal, Canad. J. Math., 26 (1974), 962-977.
- [4] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966.
- [5] S. Moran, Dimension subgroups mod n, Proc. Camb. Phil. Soc., 68 (1970), 579– 582.
- [6] I.B.S. Passi, Dimension subgroups, J. Algebra, 9 (1968), 152-182.
- [7] —, Group Rings and Their Augmentation Ideals, Springer Lecture Notes in Math., 715 (1979), Springer-Verlag, Berlin-Heidelberg-New York.
- [8] E. Rips, On the fourth integer dimension subgroup, Israel J. Math., 12 (1972), 342-346.
- [9] J. A. Sjogren, Dimension and lower central subgroups, J. Pure Appl. Algebra, 14 (1979), 175-194.
- [10] K. Tahara, On the structure of Q₀(G) and the fourth dimension subgroup, Japan.
 J. Math. (New Ser.), 3 (1977), 381-394.
- [11] —, The fourth dimension subgroups and polynomial maps, II, Nagoya Math. J., 69 (1978), 1-7.

Narain Gupta Department of Mathematics University of Manitoba Winnipeg, R3T 2N2 Canada

Ken-Ichi Tahara Department of Mathematics Aichi University of Education Kariya, 448 Japan