H. Saito Nagoya Math. J. Vol. 80 (1980), 129-165

ON A DECOMPOSITION OF SPACES OF CUSP FORMS AND TRACE FORMULA OF HECKE OPERATORS

HIROSHI SAITO

Introduction

For a positive integer N, put

$$arGamma_{\scriptscriptstyle 0}(N) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2({m Z}) | \, c \equiv 0 \pmod{N}
ight\}.$$

For a positive integer κ and a Dirichlet character ψ modulo N, let $S_{\epsilon}(N, \psi)$ denote the space of holomorphic cusp forms for $\Gamma_0(N)$ of weight κ and character ψ . For a positive integer *n* prime to *N*, the Hecke operator T_n is defined on $S_{\kappa}(N, \psi)$, and in the case where $\kappa \geq 2$, an explicit formula for the trace tr T_n of T_n is known by Eichler [6] and Hijikata [8]. But for higher levels, in particular, when N contains a power of a prime as a factor, this formula is not suitable for numerical computations. It is natural to ask a decomposition of $S_{\epsilon}(N, \psi)$ stable under the action of Hecke operators and a formula for tr T_n on each subspace. In fact, when ψ is the trivial character ψ_1 , Yamauchi [18] gave a decomposition of $S_{\epsilon}(N, \psi_1)$ and a formula for tr T_n on each subspace by means of the normalizers of $\Gamma_0(N)$. In the case where $N = p^{\nu}$ with a prime p, $S_{\mu}(p^{\nu}, \psi_1)$ is divided into two subspaces by this decomposition. When $\nu \geq 2$, in Saito-Yamauchi [11] another decomposition of $S_{\epsilon}(p^{\nu},\psi_{i})$ into four subspaces and the formulas for tr T_n on these subspaces were given by using the normalizer $W = \begin{pmatrix} 0 & -1 \\ p^* & 0 \end{pmatrix}$ of $\Gamma_0(p^{\nu})$ and the twisting operator R_{ϵ} for ϵ the quadratic residue symbol modulo p. In this paper, we shall generalize these results. In $\S1$, we define an operator U_{χ} on $S_{\chi}(N, \psi)$ for a character χ which satisfies a certain condition. This operator is a generalization of $R_{*}WR_{*}W$ in [11]. In a similar way as in [11], we can give a formula for tr $U_{r}T_{n}$ and also for tr $U_x WT_n$ with a normalizer W of $\Gamma_0(N)$ when ψ is trivial (§ 2. Th. 2.5. and Th. 2.9.). In § 3, we shall prove a multiplicative property of U_{χ} . This

Received May 8, 1979.

property makes it possible to define a decomposition of $S_{\epsilon}(N, \psi)$ into subspaces. This decomposition is finer than the one given in [11] even in the case where $N = p^3$ and is trivial. The trace of T_n on each subspace is given by a linear combination of tr $U_{\chi}T_n$ and tr $U_{\chi}WT_n$. In § 4, we give a numerical example for $N = 11^3$, $\kappa = 2$ and the trivial ψ . In this example, we find a congruence between a cusp form associated with a Grössencharacter of $Q(\sqrt{-11})$ and a certain primitive cusp form modulo a prime ideal \wp with the norm 99527. By means of a result of Shimura [16], this prime ideal can be related to the special values of certain *L*-functions of Q and $Q(\sqrt{-11})$. We can observe such a congruence also in the examples of Doi-Yamauchi [3] for $N = 7^3$ and [11] for $N = 11^3$. These observations were done under the influence of Doi-Ohta [4] and Doi-Hida [5]. In the Appendix, we give more examples for $N = 13^3$, 19³ under the condition that $\kappa = 2$ and ψ is trivial.

Notation

The symbols Z, Q, R, and C denote respectively the ring of rational integers, the rational number field, the real number field, and the complex number field. For a prime p, Z_p and Q_p denote the ring of p-adic integers and the field of p-adic numbers, respectively. For a prime p, v_p denotes the additive valuation of Q_p normalized as $v_p(p) = 1$. For an associative ring S with an identity element, we denote by S^{\times} the group of all invertible elements of S, and by $M_n(S)$ the ring of all square matrices of size n with coefficients in S. We put $GL_n(S) = M_n(S)^{\times}$. For subsets S_{ij} of S, $1 \leq i, j \leq n$, (S_{ij}) denotes the subsets $\{(s_{ij}) \in M_n(S) | s_{ij} \in S_{ij}\}$. For a group G and its subgroup H, we denote by $_{\widetilde{H}}$ the conjugacy with respect to H, i.e., $g_{\widetilde{H}} g'$ if and only if $h^{-1}gh = g'$ with $h \in H$, and for a subset X of G, we denote by $X|_{\widetilde{H}}$ a complete system of representatives of X with respect to H. Finally, for a finite dimensional vector space V over C and a linear operator T on V, tr T | V denotes the trace of T on V.

§1. The operator U_r

Let \mathfrak{H} denote the complex upper half plane $\{z \in C | \operatorname{Im}(z) > 0\}$ and $GL_2(\mathbb{R})^+$ = $\{\gamma \in GL_2(\mathbb{R}) | \det \gamma > 0\}$. Let κ be a positive integer. For a complexvalued function f(z) on \mathfrak{H} and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})^+$, we define a function $f|[\gamma]$, on \mathfrak{H} by

$$(f|[\gamma]_{\star})(z) = (\det \gamma)^{{\star}/{2}}(cz+d)^{-{\star}}f(\gamma(z)),$$

where $\gamma(z) = (az + b)/(cz + d)$ for $z \in \mathfrak{S}$. For a positive integer N and a Dirichlet character ψ modulo N such that $\psi(-1) = (-1)^{\epsilon}$, let $G_{\epsilon}(N, \psi)$ denote the vector space of holomorphic modular forms f(z) satisfying

$$f|[\gamma]_{\epsilon}=\psi(d)f \qquad ext{for all } \gamma=egin{pmatrix} a & b \ c & d \end{pmatrix}\in arGamma_{0}(N) \;.$$

We denote by $S_{\epsilon}(N, \psi)$ the subspace of $G_{\epsilon}(N, \psi)$ consisting of cusp forms and by $S_{\epsilon}^{0}(N, \psi)$ the space of new forms in $S_{\epsilon}(N, \psi)$. For the trivial character ψ_{1} , we put $S_{\epsilon}(N) = S_{\epsilon}(N, \psi_{1})$ and $S_{\epsilon}^{0}(N) = S_{\epsilon}^{0}(N, \psi_{1})$. For a positive integer *n* prime to *N*, the Hecke operator T_{n} on $S_{\epsilon}(N, \psi)$ is defined in the usual way by

$$f|T_n = n^{\epsilon/2-1} \sum_{\substack{ad = n \\ b \mod d}} \psi(a) f \left| \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \right|_{\epsilon}$$

For a Dirichlet character χ , we denote by f_{χ} the conductor of χ . Let χ be a primitive character with $f_{\chi} = c$. Then for $f \in S_{\kappa}(N, \psi)$, the twisting operator R_{χ} is defined as follows;

$$f|R_{z} = \frac{1}{\mathfrak{g}(\bar{\chi})} \sum_{i \mod c} \bar{\chi}(i) f \left| \begin{bmatrix} \begin{pmatrix} 1 & i/c \\ 0 & 1 \end{bmatrix} \right|_{s},$$

where $g(\bar{\chi})$ is the Gauss sum for $\bar{\chi}$. Then it is known (c.f. [13]) that $f|R_{\chi}$ belongs to $S_{\epsilon}(N', \psi\chi^2)$, where N' is the least common multiple of N, $f_{\psi}f_{\chi}$ and f_{χ}^2 . For a positive divisor M of N such that (M, N/M) = 1, we choose and fix an element γ_M of $SL_2(Z)$ which satisfies

$$\gamma_{\scriptscriptstyle M} \equiv egin{cases} \begin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} & \pmod{M^4} \ \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} & \pmod{(N/M)^4} \end{cases}$$

and put

$$\eta_{\scriptscriptstyle M} = \gamma_{\scriptscriptstyle M} egin{pmatrix} M & 0 \ 0 & 1 \end{pmatrix}.$$

For M = N and M = 1, we take respectively

$$\eta_{\scriptscriptstyle N} = egin{pmatrix} 0 & -1 \ N & 0 \end{pmatrix}, \qquad \eta_{\scriptscriptstyle 1} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}.$$

For a positive divisor M of N, we denote by \tilde{M} the divisor of N such that the sets of primes which divide M and \tilde{M} are the same and $(\tilde{M}, N/\tilde{M})$ = 1. For a positive divisor M of N, we put $\eta_M = \eta_{\bar{M}}$, and define the operator W_{M} by

$$f|W_{M}=f|[\eta_{M}]_{\kappa}.$$

Let χ be a character modulo N, and M a divisor of N such that (M, N/M)= 1. Then χ can be expressed as $\chi = \chi_M \chi_{N/M}$, where χ_M (resp. $\chi_{N/M}$) is a character modulo M (resp. N/M). For a positive divisor M' of N, we put $\chi_{M'} = \chi_{\tilde{M}'}$. In this notation, it is known that $f|W_M$ is contained in $S_{\epsilon}(N, M)$ $\bar{\psi}_{\scriptscriptstyle M}\psi_{\scriptscriptstyle N/M}$). These operators $T_{\scriptscriptstyle n}$, $R_{\scriptscriptstyle \chi}$, and $W_{\scriptscriptstyle M}$ satisfy the following properties.

LEMMA 1.1. Let χ be a primitive character, and M a positive divisor of N such that (M, N/M) = 1. Then for $f \in S_{\epsilon}(N, \psi)$, one has

(1) If n is a positive integer prime to $N\mathfrak{f}_x$, then

$$f | T_n R_{\chi} = \bar{\chi}(n) f | R_{\chi} T_n$$

$$f | T_n W_M = \psi_M(n) f | W_M T_n .$$

.

(2) Suppose $(M, f_{\chi}) = 1$. Then

$$f|R_{\chi}W_{M} = \bar{\chi}(M)f|W_{M}R_{\chi}.$$

(3) Let M' be a positive divisor of N such that (M', N/M') = 1 and (M, M') = 1. Then

$$f \mid W_{\scriptscriptstyle M} W_{\scriptscriptstyle M'} = ar{\psi}_{\scriptscriptstyle M'}(M) f \mid W_{\scriptscriptstyle MM'}$$

 $f \mid W_{\scriptscriptstyle M} W_{\scriptscriptstyle M} = \psi_{\scriptscriptstyle M}(-1) ar{\psi}_{\scriptscriptstyle N/M}(M) f$.

These properties of T_n , R_1 , and W_M are given in Atkin-Li [1] and can be verified easily by straightforward computations.

Now we give a definition of the operator U_r , which is essential to our decomposition of $S_{\epsilon}(N, \psi)$. Let χ be a primitive character with the conductor $f_{z} = M$. We assume

(1.1)
$$\int_{x}^{2} |N \text{ and } f_{x}f_{\psi}|N.$$

For such a character χ , we define the operator U_{χ} by

$$U_{\chi} = R_{\chi} W_{M} R_{\chi} W_{M} .$$

For the trivial character χ_1 , we define U_{χ_1} = the identity map. Then U_{χ} induces a map

$$U_{\mathfrak{x}} \colon S_{\mathfrak{s}}(N, \psi) \longrightarrow S_{\mathfrak{s}}(N, \psi)$$
 .

Furthermore, U_{χ} satisfies the following properties.

PROPOSITION 1.2. The notation being as above, let $f \in S_{*}(N, \psi)$.

(1) If n is a positive integer prime to N, then

$$f | T_n U_{\chi} = f | U_{\chi} T_n$$
.

(2) Let χ' be a primitive character which satisfies the condition (1.1). Suppose $(f_{\chi}, f_{\chi'}) = 1$. Then

$$f | U_{\mathfrak{x}} U_{\mathfrak{x}'} = ar{\psi}_{\scriptscriptstyle M} ar{\mathfrak{x}}(M') ar{\psi}_{\scriptscriptstyle M'} ar{\mathfrak{x}}'(M) f | U_{\mathfrak{x}\mathfrak{x}'} ,$$

where $M = f_{\chi}$ and $M' = f_{\chi'}$.

(3) If ψ is the trivial character, then for a positive divisor L of N prime to f_x , it holds

$$f|U_{\chi}W_{L}=f|W_{L}U_{\chi}.$$

Proof. Let $M = f_{x}$, then by (1) of Lemma 1.1, we see

$$f | T_n U_{\chi} = f | T_n R_{\chi} W_M R_{\chi} W_M$$

= $\bar{\chi}(n) f | R_{\chi} T_n W_M R_{\chi} W_M$
= $\chi(n) \psi_M(n) f | R_{\chi} W_M T_n R_{\chi} W_M$
= $f | R_{\chi} W_M R_{\chi} W_M T_n$.

The assertions (3) and (3) can be proved in a similar way by using Lemma 1.1, and we omit the proof.

For $M = f_x$, let \tilde{M} be as above, and put

$$ilde U_{\chi} = \psi_{ ilde M}(-1) \psi_{\scriptscriptstyle N/ ilde M}(ilde M) \chi(N/ ilde M) U_{\chi} \;.$$

Then the assertion (2) of the above proposition is equivalent to the following.

COROLLARY 1.3. If f_x is prime to $f_{x'}$, then

$$\tilde{U}_{\chi}\tilde{U}_{\chi'}=\tilde{U}_{\chi\chi'}.$$

PROPOSITION 1.4. The notation being as above, then the following assertions hold.

(1) If f is a primitive form in $S^0_*(N, \psi)$, then f is an eigen-function for U_{χ} . In particular, U_{χ} induces a map

$$U_{\mathfrak{x}} \colon S^{\scriptscriptstyle 0}_{\mathfrak{s}}(N,\psi) \longrightarrow S^{\scriptscriptstyle 0}_{\mathfrak{s}}(N,\psi) \;.$$

(2) Suppose $v_p(\mathfrak{f}_{\chi}\mathfrak{f}_{\psi}) < v_p(N)$ and $v_p(\mathfrak{f}_{\chi}^2) < v_p(N)$ for a prime divisor p of \mathfrak{f}_{χ} . If g belong to $S_{\epsilon}(N/p, \psi)$, then

$$g|U_{i}=0$$

(3) Let f be a primitive form in $S^{0}_{\epsilon}(N, \psi)$. If $f|U_{\chi} = 0$ for a character χ with $f_{\chi} = p^{\mu}$, where p is a prime divisor of N, then it holds $v_{p}(f_{\chi}f_{\psi}) = v_{p}(N)$ or $v_{p}(f_{\chi}^{2}) = v_{p}(N)$, and there exists $g \in S_{\epsilon}(N|p, \psi\chi^{2})$ such that $f = g|R_{\chi}$.

(4) If ψ is the trivial character ψ_1 and $f \in S^0_{\epsilon}(N, \psi_1)$, then for any divisor L of N, it holds

$$f|U_{\chi}W_{L}=f|W_{L}U_{\chi}.$$

The assertions (1) and (4) easily follows from Prop. 1.2. We Proof. shall prove (2) and (3). To prove (2), we may assume g is a primitive form. From the assumption, it follows $g|R_{\chi} \in S_{\epsilon}(N/p, \psi\chi^2)$. Put $\eta'_{M} = \gamma_{M} \begin{pmatrix} M/p & 0 \\ 0 & 1 \end{pmatrix}$, then $g|R_{\chi}[\eta'_{M}]_{\epsilon}$ belongs to $S_{\epsilon}(N/p, \bar{\psi}_{M}\psi_{N/M}\chi^{2})$. Hence $g|R_{\chi}W_{M} = g'(pz)$ for $g' \in$ $S_{\epsilon}(N|p, \bar{\psi}_{M}\psi_{N/M}\chi^{2})$, and $g|R_{\chi}W_{M}R_{\chi} = 0$. This proves the assertion (2). Now we prove (3). By the assumption on χ , we have $v_p(N) \ge 2$ and $v_p(\mathfrak{f}_{\psi}) < 1$ $v_p(N)$. Hence the p-th Fourier coefficient a_p of f vanishes, and $f|R_xR_{\bar{x}} =$ f. If $f|R_{\chi}$ is a primitive form in $S^0_{\ell}(N, \psi \chi^2)$, then $f|R_{\chi}W_M$ is also a non-zero constant multiple of a primitive form, and $f|R_x W_M R_x W_M \neq 0$. Hence if $f|U_x$ = 0, then $f|U_{\chi}$ is not a primitive form in $S_{s}^{0}(N, \psi\chi^{2})$, and there exist g, h $\in S_{\epsilon}(N|p, \psi\chi^2)$ such that $(f|R_{\chi})(z) = g(z) + h(pz)$. Then we have $f = f|R_{\chi}R_{\chi}$ $= g | R_{\overline{\chi}}$. Now we show that $f | R_{\chi}$ is a primitive form in $S_{\epsilon}^{0}(N, \psi \chi^{2})$ if $v_{p}(\mathfrak{f}_{\psi}\mathfrak{f}_{\chi})$ $< v_p(N)$ and $v_p(f_x^2) < v_p(N)$. Otherwise $f|R_x$ can be written as $f|R_x = g'(z)$ + h'(pz) with g', $h' \in S_{\epsilon}(N/p, \psi\chi^2)$. Then $f = f | R_{\chi}R_{\chi} \in S_{\epsilon}(N/p, \psi)$, because $v_p(N/p) \ge v_p(\mathfrak{f}_{\psi}\mathfrak{f}_{\chi})$ and $v_p(N/p) \ge v_p(\mathfrak{f}_{\chi}^2)$. This contradicts to our assumption that $f \in S^0_{\kappa}(N, \psi)$.

§2. Formula for tr $U_{\chi}T_{n}$ and tr $U_{\chi}W_{L}T_{n}$

Let N and ψ be as in § 1. For a primitive character χ which satisfies the condition (1.1), we defined an operator $U_{\chi}: S_{\epsilon}(N, \psi) \longrightarrow S_{\epsilon}(N, \psi)$ in § 1. We shall give a formula for tr $U_{\chi}T_{n}|S_{\epsilon}(N, \psi)$. For $M = f_{\chi}$, we write $N = N_{1}N_{2}$, where $N_{1} = \tilde{M}$ and $N_{2} = N/\tilde{M}$. We put

$$R(N) = \begin{pmatrix} Z & Z \\ NZ & Z \end{pmatrix}$$

and for each prime p

$$U_p = (R(N) \otimes Z_p)^{ imes}$$
 .

For the archimedean prime ∞ , we put $U_{\infty} = GL_2(\mathbf{R})^+$. We denote by U the subgroup $\prod_v U_v$ of $GL_2(\mathbf{Q}_A)$, where v runs through all places of \mathbf{Q} . Let p be a prime divisor of N and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U_p$. We define

$$ilde{\psi}_p(\gamma) = \psi_p(d)$$
 ,

and for $\gamma \in \prod_{p \mid N} U_p \times \prod_{p \nmid N} GL_2(\boldsymbol{Q}_p) \times U_{\infty}$

$$ilde{\psi}(\gamma) = \prod_{p \mid N} ilde{\psi}_p(\gamma_p)$$
 ,

where γ_p is the p-th component of γ . For a prime which divides N_1 , we define a subset $\mathcal{Z}_p(U_2)$ of $M_2(\mathbb{Z}_p)$ by

$${\mathcal Z}_p(U_\chi)=\left\{g\in \begin{pmatrix}p^{
u+\mu}Z_p&p^{
u+\mu}Z_p^{\times}\ p^{
u+\mu}Z_p^{\times}\end{pmatrix}\Big|\,v_p(\det g)=2
u+4\,\mu
ight\},$$

where $\nu = v_p(N)$ and $\mu = v_p(\mathfrak{f}_{\mathfrak{z}})$. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Xi_p(U_{\mathfrak{z}})$, we put

(2.1)
$$\tilde{\chi}_p(g) = \bar{\chi}_p(-bc/p^{3\nu+2\mu})\bar{\psi}_p(-d/p^{\nu+2\mu}) \,.$$

Then for γ , $\gamma' \in U_p$ and $g \in \mathcal{Z}_p(U_z)$, we see

(2.2)
$$\tilde{\chi}_p(\gamma g \gamma') = \tilde{\psi}_p(\gamma \gamma')^{-1} \chi_p(\det(\gamma \gamma')) \tilde{\chi}_p(g) ,$$

and in particular for $\gamma' = \gamma^{-1}$,

(2.3)
$$\tilde{\chi}_p(\gamma g \gamma^{-1}) = \tilde{\chi}_p(g) .$$

For $g \in \prod_{p \mid N_1} \mathcal{Z}_p(U_{\chi}) \times \prod_{p \mid N_2} U_p \times \prod_{p \nmid N} GL_2(\boldsymbol{Q}_p) \times U_{\infty}$, put $\tilde{\chi}(g) = \prod_{p \mid N_1} \tilde{\chi}_p(\boldsymbol{g}_p) \prod_{p \mid N_2} \tilde{\psi}_p(\boldsymbol{g}_p)^{-1}$,

where g_p denotes the *p*-th component of *g*. Then by (2.2), we see for γ , $\gamma' \in \prod_{p \mid N} U_p \times \prod_{p \nmid N} GL_2(Q) \times U_{\infty}$,

(2.4)
$$\tilde{\chi}(\gamma g \gamma') = \tilde{\psi}(\gamma \gamma')^{-1} \prod_{p \mid N_1} \chi_p(\det{(\gamma_p \gamma'_p)}) \tilde{\chi}(g) ,$$

and in particular, if γ , $\gamma' \in \Gamma_0(N)$, then

(2.5)
$$\tilde{\chi}(\gamma g \gamma') = \tilde{\psi}(\gamma \gamma')^{-1} \tilde{\chi}(g) .$$

For rational integers i, j, put

$$lpha_{ij} = igg(egin{array}{cc} M & i \ 0 & M \end{pmatrix} \eta_{\,\scriptscriptstyle M} igg(egin{array}{cc} M & j \ 0 & M \end{pmatrix} \eta_{\,\scriptscriptstyle M}$$
 ,

where $M = f_x$. For a positive integer *n* prime to *N*, let $\Xi(T_n) = \prod_p \Xi_p(T_n) \times U_{\infty}$, where

$${\boldsymbol Z}_p({\boldsymbol T}_n) = \{ g \in R(N) \otimes {\boldsymbol Z}_p | \, v_p(\det g) = v_p(n) \} \; ,$$

and let $\Xi(T_n) \cap GL_2(Q) = \bigcup_{k=1}^d \Gamma_0(N)\beta_k$ be a disjoint union.

LEMMA 2.1. The notation being as above, let p be a prime divisor of f_{χ} and $\nu = v_p(N)$, $\mu = v_p(\tilde{f}_{\chi})$. Then for $g = \begin{pmatrix} p^{\nu+2\mu}a & p^{\nu+\mu}b \\ p^{2\nu+\mu}c & p^{\nu+2\mu}d \end{pmatrix}$ and $g' = \begin{pmatrix} p^{\nu+2\mu}a' & p^{\nu+\mu}b' \\ p^{2\nu+\mu}c' & p^{\nu+2\mu}d' \end{pmatrix}$ in $\Xi_p(U_{\chi})$, $U_pg = U_pg'$ if and only if $a/b \equiv a'/b'$ modulo p^{μ} and $c/d \equiv c'/d'$ modulo p^{μ} . If this is the case, $\tilde{\psi}_p(gg'^{-1}) = \psi_p(a'd-p^{\nu-2\mu}b'c)$.

This can be verified easily by a direct calculation, and we omit the proof.

LEMMA 2.2. The notation being as above, let $\mathcal{Z}(U_{\chi}T_n) = \prod_{p \mid N_1} \mathcal{Z}_p(U_{\chi})$ $\times \prod_{p \mid N_1} \mathcal{Z}_p(T_n) \times U_{\infty}$. Then the union

$$E(U_{\mathtt{x}}T_{\mathtt{n}}) \bigcap GL_{\mathtt{z}}(oldsymbol{Q}) = igcup_{ij} igcup_{k=1}^d arGamma_{\mathtt{0}}(N) lpha_{ij}eta_k$$

is disjoint, where i and j runs through a complete system of representatives of $(Z/\tilde{1}_{z}Z)^{\times}$.

Proof. Since $U \cap GL_2(Q) = \Gamma_0(N)$ and $\alpha_{ij}\beta_k \in GL_2(Q)$, it is enough to prove the union $\mathcal{E}(U_{\chi}T_n) = \bigcup_{ij} \bigcup_k U\alpha_{ij}\beta_k$ is disjoint. We note the union $\prod_{p \nmid N_1} \mathcal{E}_p(T_n) = \bigcup_k \prod_{p \nmid N_1} U_p \beta_k$ is disjoint and $\alpha_{ij} \in \prod_{p \mid N_1} U_p$, $\beta_k \in \prod_{p \mid N_1} U_p$. Hence the proof can be reduced to showing the union $\prod_{p \mid N_1} \mathcal{E}_p(U_{\chi}) = \bigcup_{ij} \prod_{p \mid N_1} U_p \alpha_{ij}$ is disjoint. Let $M = f_{\chi}$ and $\tilde{M} = N_1$, then

$$lpha_{ij} \equiv egin{cases} \left(egin{array}{ccc} (ij ilde{M}^2 - ilde{M}M^2 & -i ilde{M}M \ j ilde{M}^2M & - ilde{M}M^2 \end{array}
ight) & ({
m mod}\ ilde{M}^4) \ \left(egin{array}{ccc} (ilde{M}^2M^2 & j ilde{M}M + iM \ 0 & M^2 \end{array}
ight) & ({
m mod}\ (N/ ilde{M})^4) \end{cases}$$

and by the definition of $\mathcal{Z}_p(U_z)$, $\alpha_{ij} \in \prod_{p \mid N_1} \mathcal{Z}_p(U_z)$. By Lemma 2.1, for integers *i*, *j*, *i'*, *j'* prime to N_1 , we see

$$U_p lpha_{ij} = U_p lpha_{i'j'} \Longleftrightarrow i \equiv i', \ j \equiv j' \pmod{p^\mu} \ .$$

Hence the right side of the union is disjoint. We show $\prod_{p|N_1} Z_p(U_z) \subset \bigcup_{ij} \prod_{p|N_1} U_p \alpha_{ij}$. For a prime p which divides N_i , let $g = \begin{pmatrix} p^{\nu+2\mu}a & p^{\nu+\mu}b \\ p^{2\nu+\mu}c & p^{\nu+2\mu}d \end{pmatrix}$

 $\in \mathbb{Z}_p(U_i)$. If we put $\tilde{M} = p^* \tilde{M}'$, $M = p^* M'$ and take two integers *i*, *j* which satisfy

then by Lemma 2.1, we have $U_pg = U_p\alpha_{ij}$. Such *i* and *j* are determined uniquely modulo p^{μ} , because $ad - bc \not\equiv 0 \pmod{p}$. Our assertion follows from this.

As a corollary of this Lemma, we obtain

COROLLARY 2.3. The notation being as above, let $f \in S_{*}(N, \psi)$. Then it holds

$$egin{aligned} f &| U_{\chi} T_n = C \sum\limits_{g \,\in\, arGamma \, 0(N) \setminus \overline{\mathcal{S}}(U_{\chi} T_n) \,\cap\, GL_2(Q)} \widetilde{\chi}(g) f |[g]_{\star} \ C &= rac{\chi \psi(n)}{\mathfrak{g}(ar{\chi})^2} \prod\limits_{p \mid N_1} \chi_p(A_p) \psi_p(B_p) \prod\limits_{p \mid N_2} \psi_p(M^2) \ , \end{aligned}$$

where g runs through a complete system of representatives of the left cosets of $\Xi(U_{\chi}T_{n}) \cap GL_{2}(Q)$ by $\Gamma_{0}(N)$ and for a prime divisor p of N_{1} , $A_{p} = \tilde{M}^{3}M^{2}/p^{3\nu+2\mu}$ and $B_{p} = \tilde{M}M^{2}/p^{\nu+2\mu}$ with $\nu = v_{p}(N)$ and $\mu = v_{p}(\mathfrak{f}_{\chi})$.

Proof. We note the right hand side is independent of the choice of the representatives because of (2.5). We may assume β_k is of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$. Since we have

$$lpha_{ij}eta_k\equiv egin{cases} \left(egin{array}{ccc} a(ij ilde{M}^2- ilde{M}M^2) & b(ij ilde{M}^2- ilde{M}M^2) & -id ilde{M}M \ aj ilde{M}^2M & bj ilde{M}^2M - d ilde{M}M^2 \ \left(egin{array}{ccc} ad ilde{M}^2M^2 & b ilde{M}^2M^2 + d(j ilde{M}M + iM) \ 0 & dM^2 \end{array}
ight) & (\mathrm{mod}\,(N/ ilde{M})^*) \end{cases}$$

we see $\tilde{\chi}(\alpha_{ij}\beta_k) = \bar{\chi}(ij)\psi(a)C^{-1}$. By the definition of U_{χ} and T_n , we obtain our corollary.

By means of Eichler-Selberg's trace formula (c.f. [6], [8], [10], [12]) and a result of Hijikata [8], we can express trace of $U_{\chi}T_n$ on $S_{\epsilon}(N, \psi)$ in an explicit way. Let us introduce some notations. For two rational integers $s, n, \text{ put } \Phi(X) = X^2 - sX + n, K(\Phi) = \mathbf{Q}[X]/(\Phi(X))$, and denote by \tilde{X} the class containing X. For a prime p, let $\nu = v_p(N)$ and $K(\Phi)_p = K(\Phi) \otimes \mathbf{Q}_p$. If we define $R_p(\nu) = \begin{pmatrix} Z_p & Z_p \\ p^{\nu}Z_p & Z_p \end{pmatrix}$, then $R(N) \otimes \mathbf{Z}_p = R_p(\nu)$. For α in $GL_2(\mathbf{Q}_p)$ or $GL_2(\mathbf{R})$, we denote by $f_{\alpha}(X)$ the minimal polynomial of α . For a \mathbf{Z}_p order Λ_p of $K(\Phi)_p$, we define

$$C_p(\nu, \Phi, \Lambda_p) = \{ \alpha \in R_p(\nu) | f_\alpha = \Phi, \varphi_\alpha(\Lambda_p) = Q_p[\alpha] \cap R_p(\nu) \},\$$

where φ_{α} denotes the isomorphism from $K(\Phi)_p$ to $Q_p[\alpha]$ such that $\varphi_{\alpha}(X) = \alpha$. For Λ_p which contains $\mathbb{Z}_p[\tilde{X}]$, we define also the following sets;

$$egin{aligned} & arDelta_p(
u, arPsi, \Lambda_p) = \{ \xi \in oldsymbol{Z}_p | arPsi(\xi) \equiv 0 \pmod{P^{
u+2
ho}}) \} \ & \mathcal{Q}_p'(
u, arPsi, \Lambda_p) = egin{cases} & \{\eta \in oldsymbol{Z}_p | arPsi(\eta) \equiv 0 \pmod{p^{
u+2
ho+1}} \} \ , \ & ext{if } p^{-2
ho}(s^2 - 4n) \equiv 0 \pmod{p} \ ext{and }
u > 0 \ & \phi \ , & ext{otherwise} \ , \end{aligned}$$

where ρ is the non-negative integer such that $[\Lambda_p: \mathbb{Z}_p[\tilde{X}]] = p^{\rho}$. We denote by $\tilde{\Omega}_p(\nu, \Phi, \Lambda_p)$ (resp. $\tilde{\Omega}'_p(\nu, \Phi, \Lambda_p)$) a complete system of representatives of $\Omega_p(\nu, \Phi, \Lambda_p)$ (resp. $\Omega'_p(\nu, \Phi, \Lambda_p)$) modulo $p^{\nu+2\rho}$. For $\xi \in \Omega_p(\nu, \Phi, \Lambda_p)$ and $\eta \in$ $\Omega_p(\nu, \Phi, \Lambda_p)$ we define elements $\varphi_{\xi}(\tilde{X})$ and $\varphi'_{\eta}(\tilde{X})$ in $C_p(\nu, \Phi, \Lambda_p)$ by

$$\begin{split} \varphi_{\xi}(\tilde{X}) &= \begin{pmatrix} \xi & p^{\rho} \\ -p^{-\rho} \Phi(\xi) & s - \xi \end{pmatrix} \\ \varphi_{\eta}'(\tilde{X}) &= \begin{pmatrix} s - \eta & -p^{-\nu - \rho} \Phi(\eta) \\ p^{\nu + \rho} & \eta \end{pmatrix}. \end{split}$$

We define a map

 $\varphi \colon \mathcal{Q}_p(\nu, \Phi, \Lambda_p) \, \cup \, \mathcal{Q}'_p(\nu, \Phi, \Lambda_p) \longrightarrow C_p(\nu, \Phi, \Lambda_p)$

by $\varphi(\xi) = \varphi_{\xi}(\tilde{X})$ for $\xi \in \Omega_p(\nu, \Phi, \Lambda_p)$ and $\varphi(\eta) = \varphi'_{\eta}(\tilde{X})$ for $\eta \in \Omega'_p(\nu, \Phi, \Lambda_p)$. In these notations, we have

LEMMA 2.4. The notation being as above, let $\Phi(X) = X^2 - sX + N^2 \tilde{f}_{\lambda}^4 n$ and for a prime p, let Λ_p a Z_p -order of $K(\Phi)_p$ such that $\Lambda_p \supset Z_p[\tilde{X}]$. Then the followings hold.

(1) If p does not divide N, then φ induces a bijective map

$$\varphi\colon \Omega_p(0, \Phi, \Lambda_p) \longrightarrow C_p(0, \Phi, \Lambda_p) \cap \mathbb{Z}_p(T_n)/_{\widetilde{U}_p},$$

and $|\tilde{\Omega}_p(0, \Phi, \Lambda_p)| = 1.$

(2) If p divides N_2 , then φ induces a bijective map

$$\varphi\colon \Omega_p(\nu, \varPhi, \Lambda_p) \,\cup\, \Omega'_p(\nu, \varPhi, \Lambda_p) \longrightarrow C_p(\nu, \varPhi, \Lambda_p) \,\cap\, U_p/_{\widetilde{U}_n},$$

where $\nu = v_p(N)$.

(3) If p divides N_1 , then $C_p(\nu, \Phi, \Lambda_p) \cap \mathbb{Z}_p(U_z) \neq \phi$ only if $s \equiv 0 \pmod{p^{\nu+2\mu}}$ and $\rho = \nu + \mu$, and for Φ with $s \equiv 0 \pmod{p^{\nu+2\mu}}$ and Λ_p with $\rho = \nu + \mu$, φ induces a bijective map

$$\varphi\colon \tilde{\mathcal{Q}}_p \longrightarrow C_p(\nu, \Phi, \Lambda_p) \cap \left. \mathcal{Z}_p(U_{\mathfrak{x}}) \right|_{\widetilde{U}_p},$$

where $\nu = v_p(N)$, $\mu = v_p(f_x)$ and

$$ilde{\Omega}_p = egin{cases} \{\xi \in ilde{\Omega}_p(
u, arPhi, \Lambda_p) | arPhi(\xi) \not\equiv 0 \pmod{p^{3
u+2\mu+1}} \} & ext{if }
u
eq 2\mu \ \{\xi \in ilde{\Omega}_p(
u, arPhi, \Lambda_p) | arPhi(\xi) \not\equiv 0 \pmod{p^{3
u+2\mu+1}} \ , \ & s \not\equiv \xi \pmod{p^{
u+2\mu+1}} \} & ext{if }
u = 2\mu \,. \end{cases}$$

Proof. The assertions (1) and (2) are contained in Hijikata [8]. We prove (3). The theorem of Hijikata quoted in [11] as Th. 2.4 says that for Λ_p containing $\mathbb{Z}_p[\tilde{X}]$, φ gives a bijective map

$$\varphi\colon \, \mathcal{Q}_p(\nu, \Phi, \Lambda_p) \, \cap \, \mathcal{Q}'_p(\nu, \Phi, \Lambda_p) \longrightarrow C_p(\nu, \Phi, \Lambda_p)/\tilde{U}_p \, .$$

By the definition of $\mathcal{Z}_p(U_{\mathfrak{z}})$, we see $s \equiv 0 \pmod{p^{\nu+2\mu}}$ if $C_p(\nu, \Phi, \Lambda_p) \cap \mathcal{Z}_p(U_{\mathfrak{z}})$ is not empty. If $\varphi'_{\eta}(\tilde{X}) \in \mathcal{Z}_p(U_{\mathfrak{z}})$ for $\eta \in \Omega'_p(\nu, \Phi, \Lambda_p)$, it must hold $\nu + \rho = 2\nu + \mu$ and $\nu + \mu = \nu_p(\Phi(\eta)) - \nu - \rho$, hence $\rho = \nu + \mu$ and $\nu_p(\Phi(\eta)) = 3\nu + 2\mu$. But if $\rho = \nu + \mu$, then η satisfies $\Phi(\eta) \equiv 0 \pmod{p^{3\nu+2\mu+1}}$ hence $\varphi'_{\eta}(X) \notin \mathcal{Z}_p(U_{\mathfrak{z}})$. Assume $\varphi_{\mathfrak{e}}(\tilde{X}) \in \mathcal{Z}_p(U_{\mathfrak{z}})$ for $\xi \in \Omega_p(\nu, \Phi, \Lambda_p)$. Then as above, we have $\rho = \nu + \mu$ and $\nu_p(\Phi(\xi)) = 3\nu + 2\mu$. When these conditions are satisfied, $\varphi_{\mathfrak{e}}(\tilde{X}) \in \mathcal{Z}_p(U_{\mathfrak{z}})$ if and only if $\xi \not\equiv s \pmod{p^{\nu+2\mu+1}}$. We note the last condition is always satisfied if $\nu \neq 2\mu$. For otherwise, put $s = p^{\nu+2\mu}s'$ and $\xi = p^{\nu+2\mu}(s' + p\xi')$, then we have

$$p^{2\nu+4\mu}(s'p\xi'+p^2\xi'^2+n)\equiv 0 \pmod{p^{3\nu+2\mu}}$$
.

Since n is prime to p, this condition is satisfied only if $\nu = 2\mu$. This proves the assertion (3).

By means of this Lemma, in the same way as in §2 of [11], we obtain the following formula for tr $U_x T_x$.

THEOREM 2.5. The notation being as above, let n be a positive integer prime to N, $\kappa \geq 2$, and C the constant in Cor. 2.2. Then it holds

$$\operatorname{tr} U_{x}T_{n}|S_{x}(N,\psi)=C(t_{e}+t_{h}+t_{p}),$$

where t_e , t_h and t_p are given as follows.

(1)
$$t_e = -\frac{1}{2} \sum_{s} \frac{\alpha^{\epsilon-1} - \beta^{\epsilon-1}}{\alpha - \beta} \sum_{f} \prod_{p \mid N} c_p(s, f) h(\mathfrak{f}_{\chi}^2(s^2 - 4n)/f^2).$$

Here s runs through all integers such that $s^2 - 4n < 0$, and f runs through all positive integers which satisfy the condition $f^2|(s^2 - 4n)$, $(f, f_z) = 1$, and $f_z^2(s^2 - 4n)/f^2 \equiv 0$ or 1 (mod 4). For a negative integer D such that $D \equiv 0$

or 1 (mod 4), h(D) denotes the class number of the order of $Q(\sqrt{D})$ with the discriminant D. α and β are the two roots of $F_s(X) = X^2 - sX + n = 0$. The number $c_p(s, f)$ is given by

$$(2.6) c_p(s,f) = \begin{cases} C_p \sum_{\substack{\substack{\xi \mod p^{\nu-\mu} \\ F_s(\xi) \equiv 0 \mod p^{\nu-2\mu} \\ (resp. \ \xi \equiv s \mod p) \end{cases}} \overline{\chi}_p(F_s(\xi)|p^{\nu-2\mu})\overline{\psi}_p(\xi-s) & \text{if } p \mid f_{\chi} \text{ and } \nu \neq 2\mu \\ (resp. \ \xi \equiv s \mod p) & (resp. \ \nu = 2\mu) \end{cases} \\ \psi_p(N_1f^2)(\sum_{\xi \in \tilde{\mathcal{D}}_p(\nu,F_s,A_p)} \overline{\psi}_p(s-\xi) + \sum_{\eta \in \tilde{\mathcal{D}}_p'(\mu,F_s,A_p)} \overline{\psi}_p(\eta)) & \text{if } p \mid f_{\chi} \end{cases}$$

where Λ_p is the order of $K(F_s)$ such that $[\Lambda_p: \mathbb{Z}_p[\tilde{X}]] = p^{\rho}$ for $\rho = v_p(f)$, and $C_p = \bar{\chi}_p(N_1^{\sharp \sharp_q}/p^{\nu_s+4\mu}) \bar{\psi}_p(N_1^{\sharp \sharp_q}/p^{\nu_s+2\mu})$ for $\nu = v_p(N)$ and $\mu = v_p(\mathfrak{f}_q)$.

(2)
$$t_{h} = -\sum_{d} \frac{d^{k-1}}{n/d-d} \sum_{f} \prod_{p \mid N} c_{p}(d+n/d,f) \varphi(\mathfrak{f}_{\chi}(n/d-d)/f)$$

Here d runs through all positive integers such that $0 < d < \sqrt{n}$, d|n, and f runs through all positive integers satisfying f|(n/d - d) and $(f, f_x) = 1$. $c_p(d + n/d, f)$ is given by (2.6) for s = d + n/d, and φ is the Euler function.

(3) If there exists a prime divisor p of f_x such that $v_p(N)$ is odd, then $t_p = 0$. Otherwise we have

$$t_p = - \; rac{n^{(x-1)/2}}{2} rac{{\mathrm{t}}_x}{N} \delta(n) \sum_{\substack{m \; \mathrm{mod} \; N \ (m, f_X) = 1}} \prod_{p \mid N} \; c_p(m) \; ,$$

where $c_p(m) = c_p(2\sqrt{n}, m)$ for p which divides N, and $\delta(n) = 1$ or 0 according as n is a square or not.

In the rest of this section, we assume ψ is the trivial character. Then for a divisor L of N such that (L, N/L) = 1, $U_x W_L$ acts on $S_{\epsilon}(N)$, and we can give a formula for tr $U_x W_L T_n$. We write $N = M_1 M_2 M_3 M_4$ in such a way $N_1 = M_1 M_2$ and $L = M_2 M_3$. For a prime p which divides M_2 , we define a subset $\mathcal{E}_p(U_x W_L)$ of $R(N) \otimes Z_p$ by

$${\mathcal Z}_p(U_\chi W_L)= iggl\{ g\in iggl({p^{2
u+\mu}Z_p^ imes} & p^{
u+2\mu}Z_p \ p^{2
u+\mu}Z_p^ imes & p^{2
u+\mu}Z_p^ imes \end{pmatrix} iggr| v_p(\det g)=3
u+4\mu iggr\}\,,$$

and for a prime divisor p of M_3 , put

$$egin{array}{ll} egin{array}{ll} {\mathcal Z}_p & {\mathcal Z}_p^ imes \ p^
u {\mathcal Z}_p^ imes & p^
u {\mathcal Z}_p^ imes \ p^
u {\mathcal Z}_p^ imes \ p^
u {\mathcal Z}_p \end{array}
ight). \end{array}$$

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{Z}_p(U_\chi W_L)$, we put (2.7) $\tilde{\chi}'_p(g) = \bar{\chi}_p(ad/p^{4\nu+2\mu})$, where $\nu = v_p(N)$, $\mu = v_p(\mathfrak{f}_{\mathfrak{c}})$. Then for $\gamma, \gamma' \in U_p$, we see

(2.8)
$$\chi'_p(\gamma g \gamma') = \chi_p(\det(\gamma \gamma'))\chi'_p(g) .$$

We define a union of U-double cosets $\Xi(U_{x}W_{L}T_{n})$ by

$$E(U_{\chi}W_LT_n) = \prod_{p \mid M_1} \overline{Z}_p(U_{\chi}) \prod_{p \mid M_2} \overline{Z}_p(U_{\chi}W_L) \prod_{p \mid M_3} \overline{Z}_p(W_L) \prod_{p \mid M_1M_2M_3} \overline{Z}_p(T_n) imes U_{\infty} ,$$

and for $g \in \Xi(U_{\chi}W_{L}T_{n})$, put

$$\tilde{\chi}'(g) = \prod_{p \mid M_1} \tilde{\chi}_p(g_p) \prod_{p \mid M_2} \tilde{\chi}'_p(g_p) ,$$

where g_p is the *p*-th component of *g*. Corresponding to Lemma 2.2, we have

LEMMA 2.6. The notation being as in Lemma 2.2, for a divisor L of N with (L, N|L) = 1, the union

$$E(U_{z}W_{L}T_{n})\cap \ GL_{2}(\boldsymbol{Q})=\bigcup_{ij}\bigcup_{k=1}^{d}\Gamma_{0}(N)lpha_{ij}\eta_{L}eta_{k}$$

is disjoint, where i and j runs through a complete system of representatives of $(Z/[_{\tau}Z)^{\times})$.

Proof. As in the proof of Lemma 2.2, it is enough to prove the union $\prod_{p|M_1} \mathcal{Z}_p(U_{\chi}) \prod_{p|M_2} \mathcal{Z}_p(U_{\chi}W_L) \prod_{p|M_3} \mathcal{Z}_p(W_L) = \bigcup_{ij} \prod_{p|M_1M_2M_3} U_p \alpha_{ij} \eta_L$ is disjoint. But this follows easily from the proof of Lemma 2.2 and the fact that $\mathcal{Z}_p(U_{\chi}W_L) = \mathcal{Z}_p(U_{\chi})\eta_L$ and $\mathcal{Z}_p(W_L) = U_p\eta_L$.

COROLLARY 2.7. The notation being as above, then for $f \in S_{s}(N)$, it holds

$$f|U_{\chi}W_{L}T_{n} = C' \sum_{g \in \Gamma_{0}(N) \setminus S(U_{\chi}W_{L}T_{n}) \cap GL_{2}(Q)} \chi'(g)f|[g]_{\varepsilon}$$
$$C' = \chi(n) \prod_{p|M_{1}} \chi_{p}(A'_{p}) \prod_{p|M_{2}} \chi_{p}(B'_{p})/\mathfrak{g}(\bar{\chi})^{2}$$

where $A'_{p} = LN_{1}^{3} \mathfrak{f}_{\chi}^{3} / p^{_{3\nu+2\mu}}$ and $B'_{p} = LN_{1}^{3} \mathfrak{f}_{\chi}^{2} / p^{_{4\nu+2\mu}}$ for $\nu = v_{p}(N)$ and $\mu = v_{p}(\mathfrak{f}_{\chi})$.

Proof. The right hand side of the above equality is independent of the choice of the representatives because of (2.2) and (2.8). If β_k is of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, then we see

$$\alpha_{ij}\beta_{k} = \begin{cases} \begin{pmatrix} a(ij\tilde{M}^{2} - \tilde{M}M^{2})L & b(ij\tilde{M}^{2} - \tilde{M}M^{2}) - id\tilde{M}M \\ aj\tilde{M}^{2}ML & b\tilde{M}^{2}M - d\tilde{M}M^{2} \end{pmatrix} & (\text{mod } M_{1}^{4}) \\ \begin{pmatrix} L(b(ij\tilde{M}^{2} - \tilde{M}M^{2}) - id\tilde{M}M & a(ij\tilde{M}^{2} - \tilde{M}M^{2}) \\ L(b\tilde{M}^{2}M - d\tilde{M}M^{2}) & aj\tilde{M}^{2}M \end{pmatrix} & (\text{mod } M_{2}^{4}), \end{cases}$$

where $\tilde{M} = N_1$ and $M = f_r$. Hence we have

$$\tilde{\chi}'(\alpha_{ij}\beta_k) = \bar{\chi}(ij)C'^{-1}$$
.

Our assertion follows from this and Lemma 2.6.

To express tr $U_{r}W_{L}T_{n}$ in an explicit way, we prove

LEMMA 2.8. Let $\Phi(X) = X^2 - sX + M_1^2 M_2^2 L f_{\chi}^4 n$, and for a prime divisor p of N, let $\nu = v_p(N)$ and $\mu = v_p(\mathfrak{f}_{\chi})$. Then for an order Λ_p of $K(\Phi)_p$ containint $\mathbb{Z}_p[\tilde{X}]$, the followings hold.

(1) For p dividing M_s , $C_p(\nu, \Phi, \Lambda_p) \cap E_p(W_L) \neq \phi$ only if $s \equiv 0 \pmod{p^{\nu}}$ and $\Lambda_p = \mathbb{Z}_p[\tilde{X}]$. When this condition is satisfied, one has

$$|C_p(
u, arPhi, \Lambda_p) \cap \Xi_p(W_L)/_{\widetilde{U_n}}| = 1$$
.

(2) For p dividing M_2 , $C_p(\nu, \Phi, \Lambda_p) \cap \mathcal{Z}_p(U_{\chi}W_L) \neq \phi$ only if $s \equiv 0 \pmod{p^{2\nu+\mu}}$ and $[\Lambda_p: \mathbb{Z}_p[\tilde{X}]] = p^{\rho}$, where $\rho = \nu + 2\mu$. When this condition is satisfied, φ induces a bijective map

$$arphi \colon \widetilde{\Omega}'_p \longrightarrow C_p(
u, \varPhi, \Lambda_p) \cap \left. E_p(U_{\chi}W_L) \right|_{\widetilde{U}_n},$$

where $\tilde{\Omega}_p$ is a complete system of representatives modulo $p^{2\nu+2\mu}$ of the set $\{p^{2\nu+\mu}\xi|\xi\in Z_p^{\times}, \xi\not\equiv s|p^{2\nu+\mu} \pmod{p}\} \ (\subset \Omega_p(\nu, \Phi, \Lambda_p)) \ (resp. \{p^{2\nu+\mu}\xi|\xi\in Z_p^{\times}, \xi\not\equiv s|p^{2\nu+\mu} \pmod{p}\}, \ \Phi(p^{2\nu+\mu}\xi)\not\equiv 0 \ (\mod p^{3\nu+4\mu+1})\} \ (\subset \Omega_p(\nu, \Phi, \Lambda_p)) \ \cup \ \{p^{2\nu+\mu}\eta|\eta\in Z_p^{\times}, \eta\not\equiv s|p^{2\nu+\mu} \pmod{p}\}, \ \Phi(p^{2\nu+\mu}\eta)\equiv 0 \ (\mod p^{3\nu+4\mu+1})\} \ (\subset \Omega'_p(\nu, \Phi, \Lambda_p))) \ if \ \nu > 2\mu \ (resp. if \ \nu = 2\mu).$

Proof. The assertion (1) is contained in Yamauchi [18]. If $C_p(\nu, \Phi, \Lambda_p) \cap \mathcal{Z}_p(U_{\chi}W_L) \neq \phi$, then we see that $s \equiv 0 \pmod{p^{2\nu+\mu}}$ and $[\Lambda_p: \mathbb{Z}_p[\tilde{X}]] = p^{\rho}$, where $\rho = \nu + 2\mu$. Assume this condition is satisfied. First we treat the case where $\nu > 2\mu$. In this case, we note $v_p(b) = \nu + 2\mu$ for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{Z}_p(U_{\chi}W_L)$, hence $\varphi'_\eta(\tilde{X}) \notin \mathcal{Z}_p(U_{\chi}W_L)$. If $\varphi_{\xi}(\tilde{X}) \in \mathcal{Z}_p(U_{\chi}W_L)$ for $\xi \in \Omega_p(\nu, \Phi, \Lambda_p)$, then ξ is of the form $p^{2\nu+\mu}\xi'$ with $\xi' \in \mathbb{Z}_p$. We note $v_p(\Phi(p^{2\nu+\mu}\xi')) = 3\nu + 4\mu$ for $\xi' \in \mathbb{Z}_p$. Hence $\xi = p^{2\nu+\mu}\xi' \in \Omega_p(\nu, \Phi, \Lambda_p)$ for $\xi' \in \mathbb{Z}_p$, and $\varphi_{\xi}(\tilde{X}) \in \mathcal{Z}_p(U_{\chi}W_L)$ if and only if $\xi \not\equiv 0 \pmod{p^{2\nu+\mu+1}}$ and $s - \xi \not\equiv 0 \pmod{p^{2\nu+\mu+1}}$. This prove the case $\nu > 2\mu$. Next assume $\nu = 2\mu$. Also in this case, if $\varphi_{\xi}(\tilde{X}) \in \mathcal{Z}_p(U_{\chi}W_L)$ (resp. $\varphi'_\eta(\tilde{X}) \in \mathcal{Z}_p(U_{\chi}W_L)$), then $\xi = p^{2\nu+\mu}\xi'$ with $\xi' \in \mathbb{Z}_p$ (resp. $\eta = p^{2\nu+\mu}\eta'$ with $\eta' \in \mathbb{Z}_p$). For $\xi' \in \mathbb{Z}_p$, put $\xi = p^{2\nu+\mu}\xi'$, then $v_p(\Phi(\xi)) \ge 3\nu + 4\mu$. Hence $\xi \in \Omega_p(\nu, \Phi, \Lambda_p)$, and $\varphi_{\xi}(\tilde{X}) \in \mathcal{Z}_p(U_{\chi}W_L)$ if and only if $\xi \not\equiv 0 \pmod{p^{2\nu+\mu+1}}$, $s - \xi \not\equiv 0 \pmod{p^{2\nu+\mu+1}}$ and $\Phi(\xi) \not\equiv 0 \pmod{p^{3\nu+4\mu+1}}$. For $\eta = p^{2\nu+\mu}\eta'$ with $\eta' \in \mathbb{Z}_p$.

 $\eta \in \Omega'_p(\nu, \Phi, \Lambda_p)$ if and only if $\Phi(\eta) \equiv 0 \pmod{p^{3\nu+4\mu+1}}$, and for such $\eta' \in \mathbb{Z}_p \varphi'_{\eta}(\tilde{X})$ $\in \mathbb{Z}_p(U_{\chi}W_L)$ if and only if $\eta \not\equiv 0 \pmod{p^{2\nu+\mu+1}}$ and $s - \eta \not\equiv 0 \pmod{p^{2\nu+\mu+1}}$. Our assertion follows from this.

By means of this Lemma, in the similar way as in §3 of [11], we obtain the following.

THEOREM 2.9. The notation being as above, let L be a divisor of N such that (L, N/L) = 1. We write $f_{\chi} = F_1F_2$, where $F_1 = (f_{\chi}, M_1)$ and $F_2 = (f_{\chi}, M_2)$. Then we have

$$\operatorname{tr} U_{\mathfrak{x}} W_{\mathfrak{L}} T_{\mathfrak{n}} | S_{\mathfrak{s}}(N) = C'(t_{\mathfrak{s}} + t_{\mathfrak{n}} + t_{\mathfrak{p}}) ,$$

where C' is the constant in Cor. 2.7, and t_e , t_h and t_p are given as follows.

(1)
$$t_e = -\frac{1}{2} \sum_s \frac{\alpha^{\epsilon-1} - \beta^{\epsilon-1}}{\alpha - \beta} (LF_2^4)^{1-\epsilon/2} \sum_f \prod_{p \mid M_1 M_2 M_4} c'_p(s, f) \times h(F_1^2(L^2F_2^{-2}s^2 - 4Ln)/f^2).$$

Here s runs through all integers such that $L^2F_2^{-2}s^2 - 4Ln < 0$, and f runs through all positive integers which satisfy the condition $f^2|(L^2F_2^{-2}s^2 - 4Ln)$, $(f, f_{\chi}L) = 1$ and $F_1^2(L^2F_2^{-2}s^2 - 4Ln)/f^2 \equiv 0$ or 1 (mod 4). For s, put $G_s(X) = X^2 - LF_2sX + LF_2n$, then α and β are the two roots of $G_s(X) = 0$. The number $c'_p(s, f)$ is given by

$$c_p'(s,f) = egin{cases} & ar{\chi}_p(M_1^2F_1^4M_2^2/p^{2
u+4\mu}) & \sum\limits_{\substack{\xi \ mod \ p
u-\mu} \ G_s(\xi) \equiv 0 \ mod \ p
u-2\mu} ar{\chi}_p(G_s(\xi)/p^{
u-2\mu}) & if \ p \mid M_1 \ and \
u > 2\mu \ (resp. \
u = 2\mu) \ ar{\chi}_p(M_1^2F_1^4M_2^2/p^{2
u}) & \sum\limits_{\substack{\xi \ mod \ p
u-2\mu} \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_2 \ ar{\chi}_p(M_1^2F_1^4M_2^2/p^{2
u}) & \sum\limits_{\substack{\xi \ mod \ p
u-\mu} \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_2 \ ar{\chi}_p(M_1^2F_1^4M_2^2/p^{2
u}) & \sum\limits_{\substack{\xi \ mod \ p
u-\mu} \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_2 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}_p(M_1^2F_1^4M_2^2/p^{2
u}) & \sum\limits_{\substack{\xi \ mod \ p
u-\mu} \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)) & if \ p \mid M_4 \ ar{\chi}(\xi(LF_2s/p^{
u+\mu}-\xi)$$

where $\nu = v_p(N)$, $\mu = v_p(\mathfrak{f}_z)$, and Λ_p is the order of $K(G_s)_p$ such that $[\Lambda_p: \mathbb{Z}_p[\tilde{X}]] = p^{\rho}$ for $\rho = v_p(f)$.

(2) If L is not a square, then $t_h = 0$. If L is a square, then one has

$$egin{aligned} t_h &= -\sum\limits_{d} rac{d^{\kappa-1}}{n/d-d} (LF_2^4)^{1-\kappa/2} \sum\limits_{f \ p \mid M_1M_2M_4} \prod\limits_{d'} c'_p (\sqrt{L} \ F_2^2(d+n/d), f) \ & imes arphi(\sqrt{L} \ F_1(n/d-d)/f) \ , \end{aligned}$$

where d runs through all positive integers such that $0 < d < \sqrt{n}$, $d \mid n$, and $d + n/d \equiv 0 \pmod{\sqrt{L}F_2^{-1}}$, and f runs through all positive integers which satisfy $f \mid (n/d - d)$ and $(f, f_x L) = 1$. $c'_p(\sqrt{L}F_2^2(d + n/d), f)$ is the same as in (1) for $s = \sqrt{L}F_2^2(d + n/d)$.

(3) t_p does not vanish only if $M_2 = F_2^2$, $M_3 = 1$ or 4, and M_1 and n are squares. When this condition is satisfied,

$$t_p = - \, rac{n^{(s-1)/2}}{2} {{
m f}_{{
m z}}} \prod\limits_{p \mid M_1 M_2} \left(1 - rac{1}{p}
ight) \prod\limits_{p \mid M_1 M_2 M_4} c'_p \, ,$$

where $c_p'=c_p'(2\sqrt{L}F_2^2\sqrt{n},\,1).$

§3. A decomposition of $S_k(N, \psi)$

Let χ be a character modulo N, and χ_0 the primitive character associated with χ . For χ , we define

$$U_{\chi} = U_{\chi_0}, \ \mathfrak{g}(\chi) = \mathfrak{g}(\chi_0) \ .$$

For characters χ and χ' with prime power conductors, we have

THEOREM 3.1. For positive integers N and κ , let ψ be a character modulo N such that $\psi(-1) = (-1)^{\epsilon}$. Let p be a prime divisor of N, and χ , χ' characters with $f_{\chi} = p^{\mu}$, $f_{\chi'} = p^{\mu'}$ which satisfy the condition (1.1). Suppose $\mu \leq [v_p(N)/3]$, $\mu' \leq [v_p(N)/3]$, and $v_p(f_{\psi}) \leq [v_p(N)/3]$. Then for $f \in S^0_{\epsilon}(N, \psi)$, it holds

where $P = p^{\nu}$ for $\nu = v_p(N)$.

Proof. We may assume χ and χ' are primitive. For integers *i*, *j*, *i'*, and *j'*, put

$$lpha_{ij} = egin{pmatrix} \mathfrak{f}_{\mathfrak{x}} & i \ 0 & \mathfrak{f}_{\mathfrak{x}} \end{pmatrix} \eta_P egin{pmatrix} \mathfrak{f}_{\mathfrak{x}} & j \ 0 & \mathfrak{f}_{\mathfrak{x}} \end{pmatrix} \eta_P \ , \qquad lpha'_{i'j'} = egin{pmatrix} \mathfrak{f}_{\mathfrak{x}'} & i' \ 0 & \mathfrak{f}_{\mathfrak{x}'} \end{pmatrix} \eta_P egin{pmatrix} \mathfrak{f}_{\mathfrak{x}'} & j' \ 0 & \mathfrak{f}_{\mathfrak{x}'} \end{pmatrix} \eta_P \ .$$

Then by the definition of U_{χ} and $U_{\chi'}$, we have

$$f|U_{\mathtt{x}}U_{\mathtt{x}'} = rac{1}{\mathfrak{g}(ar{\chi})^2\mathfrak{g}(ar{\chi}')^2} \sum_{\substack{i',j' \in \langle Z/p^\mu Z \rangle imes \\ (Z/p^\mu Z) imes}} ar{\chi}(ij)ar{\chi}'(i'j')f|[lpha_{ij}lpha_{i'j'}]_{s} \ .$$

Since $f|U_{\chi}U_{\chi'} = f|U_{\chi'}U_{\chi}$ for $f \in S^0_{\kappa}(N, \psi)$ by (1) of Prop. 1.4, we may assume $\mu \ge \mu'$.

Case I. First we assume $\mu > \mu'$. Let $\alpha_{ij}\alpha'_{i'j'} = -p^{\nu+2\mu'} \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, then by the assumption on f_{x} , $f_{x'}$ and f_{ψ} , we have

$$A \equiv -p^{\nu+2\mu} + i_0 j_0 p^{2\nu} \pmod{p^{\nu+3\mu}}$$

$$egin{array}{ll} B \equiv -i_0 p^{
u+\mu} \; ({
m mod}\; p^{
u+2\mu}) \ C \equiv j_0 p^{2
u+\mu} \; ({
m mod}\; p^{2
u+2\mu}) \ D \equiv -p^{
u+2\mu} \; ({
m mod}\; p^{
u+3\mu}), \end{array}$$

where $i_0 = i + p^{\mu-\mu'}i'$ and $j_0 = j + p^{\mu-\mu'}j'$. Since det $\alpha_{ij}\alpha'_{i'j'}$ and det $\alpha_{i_0j_0}$ are powers of p, by Lemma 2.1 we see $\beta = -p^{-\nu-2\mu'}\alpha_{ij}\alpha'_{i'j'}\alpha^{-1}_{i_0j_0} \in \Gamma_0(N)$ and $\psi_P(\beta)$ = 1, where $\alpha_{i_0j_0} = \begin{pmatrix} p^{\mu} & i_0 \\ 0 & p^{\mu} \end{pmatrix} \eta_P \begin{pmatrix} p^{\mu} & j_0 \\ 0 & p^{\mu} \end{pmatrix} \eta_P$. For the other prime divisors of N, we have

$$eta \equiv egin{pmatrix} -P & * \ 0 & -P^{-1} \end{pmatrix} \mod (N\!/P)^{\!\!\!4} \ .$$

Hence we obtain

$$f|[lpha_{ij}lpha_{i'j'}]_{\epsilon}=(-1)^{\epsilon}\overline{\psi}_{\scriptscriptstyle N/P}(-P)f|[lpha_{i_0j_0}]_{\epsilon}$$
 .

Since $\psi(-1) = (-1)^{\epsilon}$, we see

$$\begin{split} f|\,U_{\chi}U_{\chi'} &= \frac{\psi_{P}(-1)\bar{\psi}_{N/P}(P)}{\mathfrak{g}(\bar{\chi})^{2}\mathfrak{g}(\bar{\chi}')^{2}} \sum_{i_{0},j_{0} \mod p^{\mu} \atop i',j' \mod p^{\mu'}} \bar{\chi}((i_{0}-p^{\mu-\mu'}i')(j_{0}-p^{\mu-\mu'}j')) \\ &\times \bar{\chi}'(i'j')f|[\alpha_{i_{0}j_{0}}]_{\epsilon} \\ &= \frac{\psi_{P}(-1)\bar{\psi}_{N/P}(P)}{\mathfrak{g}(\bar{\chi})^{2}\mathfrak{g}(\bar{\chi}')^{2}} \sum_{i',j' \mod p^{\mu'}} \bar{\chi}((1-p^{\mu-\mu'}i')(1-p^{\mu-\mu'}j'))\bar{\chi}'(i'j') \\ &\times \sum_{i_{0},j_{0} \mod p^{\mu}} \bar{\chi}\bar{\chi}'(i_{0}j_{0})f|[\alpha_{i_{0}j_{0}}]_{\epsilon} \,. \end{split}$$

We note (c.f. Shimura [16, Lemma 8])

$$\frac{1}{\mathfrak{g}(\bar{\chi})\mathfrak{g}(\bar{\chi}')}\sum_{i' \mod p^{\mu'}} \bar{\chi}(1-p^{\mu-\mu'}i')\bar{\chi}'(i') = \frac{1}{\mathfrak{g}(\bar{\chi}\bar{\chi}')}$$

Thus we obtain

$$f | U_{\chi} U_{\chi'} = \psi_P(-1) \overline{\psi}_{N/P}(P) f | U_{\chi\chi'}.$$

Case II. Next we assume $\mathfrak{f}_{z}=\mathfrak{f}_{zz'}=\mathfrak{f}_{zz'}.$ In the same way as above, we obtain

$$f|[\alpha_{ij}\alpha_{i'j'}]_{\epsilon} = \psi_P(-1)\overline{\psi}_{N/P}(P)f|[\alpha_{i_0j_0}]_{\epsilon},$$

where $i_0 = i + i'$ and $j_0 = j + j'$. We note $\alpha_{i_0 j_0} \in \mathcal{Z}(U_{\chi}T_1) \cap GL_2(Q)$ if and only if i_0 and j_0 are prime to p. Taking notice of (c.f. ibid.)

$$rac{1}{\mathfrak{g}(ar{\chi})\mathfrak{g}(ar{\chi}')}\sum\limits_{i' \mod p^{\mu}}ar{\chi}(1-i')ar{\chi}'(i') = rac{1}{\mathfrak{g}(ar{\chi}ar{\chi}')} \ ;$$

we have

$$f | \, U_{\chi} U_{\chi'} = \psi_P(-1) \overline{\psi}_{N/P}(P) f | \, U_{\chi\chi'} + \, S_1 + \, S_2 + \, S_3$$
 ,

where

$$S_k = rac{\psi_P(-1)ar{\psi}_{N/P}(P)}{rak{g}(ar{\chi})^2 rak{g}(ar{\chi}')^2} \sum ar{\chi}((i_0-i')(j_0-j'))ar{\chi}'(i')ar{\chi}'(j')f|[lpha_{i_0j_0}]_{s} \; .$$

Here the summation is extended over $i_0, j_0, i', j' \mod p^{\mu}$ which satisfy the condition (1) $i_0 \not\equiv 0 \pmod{p}$, $j_0 \equiv 0 \pmod{p}$, (2) $i_0 \equiv 0 \pmod{p}$, $j_0 \not\equiv 0 \pmod{p}$, $j_0 \not\equiv 0 \pmod{p}$, $j_0 \not\equiv 0 \pmod{p}$, $j_0 \equiv 0 \pmod{p}$, $j_0 \equiv 0 \pmod{p}$, $j_0 \equiv (\mod p) \pmod{p}$, $a_0 \equiv 0 \pmod{p}$, $j_0 \equiv 0 \pmod{p}$, j

$$\sum_{\substack{i' \mod p^{\mu} \\ u \mod p^{\mu-1}}} \bar{\chi}(pu-i')\bar{\chi}'(i')f \left| \begin{bmatrix} \begin{pmatrix} P & pu \\ 0 & P \end{bmatrix} \end{bmatrix}_{\epsilon} \right|$$

$$= \sum_{m} a_{m} \sum_{u,i'} \bar{\chi}(pu-i')\bar{\chi}'(i')e^{2\pi i p u m/p^{\mu}}e^{2\pi i m z}$$

$$= \sum_{m} a_{m} \sum_{u} \bar{\chi}(pu-1) \sum_{(i',p)=1} \bar{\chi}\bar{\chi}'(i')e^{2\pi i p u m/p^{\mu}}e^{2\pi i m z}$$

$$= 0,$$

since the conductor of $\chi\chi'$ is p^{μ} . This shows $S_1 = 0$. We can treat the cases of S_2 and S_3 in the same way, and we omit the proof.

Case III. Finally we assume $f_{\chi} = f_{\chi'} > f_{\chi\chi'}$. Put $\chi'' = \chi\chi'$, then $\chi' = \bar{\chi}\chi''$. By Case I, we have $U_{\chi'} = \psi_P(-1)\psi_{N/P}(P)U_{\bar{\chi}}U_{\chi''}$. If we prove $U_{\chi}U_{\bar{\chi}}$ $= (\psi_P(-1)\bar{\psi}_{N/P}(P))^2$, we obtain $U_{\chi}U_{\chi'} = \psi_P(-1)\psi_{N/P}(P)U_{\chi}U_{\bar{\chi}}U_{\chi''} = \psi_P(-1)\bar{\psi}_{N/P}(P)U_{\chi''}$. Hence it is enough to show $U_{\chi}U_{\bar{\chi}} = (\psi_P(-1)\bar{\psi}_{N/P}(P))^2$, and we may assume $\chi' = \bar{\chi}$. As in the case II, we have

$$f | \, U_{\chi} U_{ar{\chi}} = rac{\psi_P(-1) ar{\psi}_{N/P}(P)}{(\mathfrak{g}(ar{\chi}) \mathfrak{g}(\chi))^2} (T_1 + T_2 + T_3 + T_4) \; ,$$

where

$$T_{k} = \sum \chi((i_{0} - i')(j_{0} - j'))\chi(i'j')f|[lpha_{i_{0}j_{0}}]_{s}$$
 .

Here the summation is extended over $i_0, j_0, i', j' \mod p^{\mu}$ which satisfy the condition (1) $i_0 \not\equiv 0 \pmod{p}$, $j_0 \not\equiv 0 \pmod{p}$ (2) $i_0 \not\equiv 0 \pmod{p}$, $j_0 \equiv 0 \pmod{p}$, $j_0 \equiv 0 \pmod{p}$, $(3) i_0 \equiv 0 \pmod{p}$, $j_0 \not\equiv 0 \pmod{p}$, or (4) $i_0 \equiv 0 \pmod{p}$, $j_0 \equiv 0 \pmod{p$

$$T_{1} = (\sum_{i'} \chi(1 - i')\chi(i'))^{2} \sum_{\substack{(i_{0}, p) = 1 \ (j_{0}, p) = 1}} f|[\alpha_{i_{0}j_{0}}]_{e}$$

and

$$\sum_{i_0 \in \langle Z/p^{\mu}Z \rangle \times} f \left| \begin{bmatrix} \begin{pmatrix} p^{\mu} & i_0 \\ 0 & p^{\mu} \end{bmatrix} \right|_{\epsilon} = \begin{cases} -f & \text{if } \mu = 1 \\ 0 & \text{otherwise} \end{cases},$$
$$\sum_{i' \mod p^{\mu}} \chi(1 - i') \bar{\chi}(i') = -\chi(-1) & \text{if } \mu = 1 \end{cases}$$

From this we obtain

$$T_{\scriptscriptstyle 1} = egin{cases} f \mid [\eta_P^2]_{\scriptscriptstyle s} & ext{ if } \mu = 1 \ 0 & ext{ otherwise }. \end{cases}$$

In the similar way, we can verify

$$egin{aligned} T_2 &= T_3 = egin{cases} (p-1)f|[\eta_P^2]_{\epsilon} & ext{if } \mu = 1 \ 0 & ext{otherwise} \ T_4 &= egin{cases} (p-1)^2f|[\eta_P^2]_{\epsilon} & ext{if } \mu = 1 \ p^{2\mu}f|[\eta_P^2]_{\epsilon} & ext{otherwise} \ \end{aligned}$$

Our assertion follows from this and Lemma 1.1. This completes the proof.

By the above theorem and Cor. 1.3, we obtain

COROLLARY 3.2. Let χ and χ' be the characters which satisfy (1.1). Suppose $v_p(\mathfrak{f}_{\chi}) \leq v_p(N)/3$, $v_p(\mathfrak{f}_{\chi'}) \leq v_p(N)/3$, and $v_p(\mathfrak{f}_{\chi}) \leq v_p(N)/3$ for each prime divisor p of $\mathfrak{f}_{\chi}\mathfrak{f}_{\chi'}$. Then for $f \in S^0_{\epsilon}(N, \psi)$, it holds

$$f|\tilde{U}_{\mathfrak{x}}\tilde{U}_{\mathfrak{x}'}=f|\tilde{U}_{\mathfrak{x}\mathfrak{x}'}.$$

Let M be a divisor of N such that $M^{\mathfrak{s}}|N$, and assume $3v_p(\mathfrak{f}_{\psi}) \leq v_p(N)$ for any pirme divisor p of M. Let X(M) be the group of all characters defined modulo M, and \tilde{U} the group consisting of operators \tilde{U}_{χ} acting on $S_{\epsilon}^{\mathfrak{o}}(N,\psi)$ for X(M). Then Cor. 3.2 says that the map $\mathfrak{ll}: \chi \to \tilde{U}_{\chi}$ gives a homomorphism from X(M) to \tilde{U} . By means of this homomorphism, we can decompose $S_{\epsilon}^{\mathfrak{o}}(N,\psi)$ as follows;

$$S^{\scriptscriptstyle 0}_{\scriptscriptstyle {\it a}}(N,\psi) = \bigoplus_{a \,\in\, \langle {\it Z} / M {\it Z}
angle imes} S^{\scriptscriptstyle 0}_{\scriptscriptstyle {\it a}}(N,\psi,a) \;,$$

where

$$S^{\scriptscriptstyle 0}_{\scriptscriptstyle {arepsilon}}(N,\psi,a) = \{f \in S^{\scriptscriptstyle 0}_{\scriptscriptstyle {arepsilon}}(N,\psi) | f | \tilde{U}_{\chi} = \chi(a) f \qquad ext{for} \ \chi \in X(M) \} \;.$$

On these subspace, the Hecke operator T_n acts and the trace of T_n on them are given by

$$\operatorname{tr} \, T_{\scriptscriptstyle n} | \, S^{\scriptscriptstyle 0}_{\scriptscriptstyle {\mathfrak{c}}}(N, \, \psi, \, a) = rac{1}{|(Z/MZ)^{ imes}|} \, \sum_{\scriptscriptstyle \chi \, \in \, {\mathfrak X}(M)} ar{\chi}(a) \, \operatorname{tr} \, ilde{U}_{\scriptscriptstyle \chi} T_{\scriptscriptstyle n} | \, S^{\scriptscriptstyle 0}_{\scriptscriptstyle {\mathfrak{c}}}(N, \, \psi) \; .$$

the trace tr $\tilde{U}_{\chi}T_n|S^o_{\epsilon}(N,\psi)$ are given by Hijikata [8] for the trivial χ and by Th. 2.5 in this paper for general χ . In the case where ψ is the trivial character, we can consider also the action of W_L to decompose $S_{\epsilon}(N)$. Let \tilde{W} denote the group of all W_L for L|N, and E(W) the character group of \tilde{W} . We define $S^o_{\epsilon}(N, a, e)$ for $a \in (Z/MZ)^{\times}$ and $e \in E(W)$ by

$$S^o_{\epsilon}(N, a, e) = \{f \in S^o_{\epsilon}(N) | f | \tilde{U}_{\chi} = \chi(a) f \quad \text{for } \chi \in X(M) , \ f | W_L = e(W_L) f \quad \text{for } W_L \in E(W) \} .$$

Then we have

$$S^{\scriptscriptstyle 0}_{\scriptscriptstyle {\tt L}}(N) = \bigoplus_{a \,\in\, ({f Z}/M{f Z})^{ imes}} \bigoplus_{e \,\in\, E(W)} S^{\scriptscriptstyle 0}_{\scriptscriptstyle {\tt L}}(N,\,a,\,e) \;,$$

and the trace of T_n on $S^0_{\epsilon}(N, a, e)$ is expressed as follows;

$$\mathrm{tr}\; T_{\scriptscriptstyle n}|S^{\scriptscriptstyle 0}_{\scriptscriptstyle {
m {\scriptsize {
m {\scriptsize {
m {\scriptsize {\rm s}}}}}}}(N,\,a,\,e) = rac{1}{|(Z/MZ)^{ imes}||E(W)|}\sum\limits_{{}^{\chi} \in \mathfrak{X}(M)\atop W \in \mathfrak{W}} ar{\chi}(a)ar{e}(W) \,\mathrm{tr}\; ilde{U}_{\scriptstyle \chi} W_{\scriptscriptstyle L} T_{\scriptscriptstyle n}|\,S^{\scriptscriptstyle 0}_{\scriptscriptstyle {
m {\scriptsize {
m {\scriptsize {\rm s}}}}}(N)} \,.$$

a formula for tr $U_{\chi}WT_n$ is given by Yamauchi [18] for the trivial χ and by Th. 2.9 for the general χ .

Now we take $N = p^{\nu}$ with a prime p and a positive integer $\nu \geq 3$ and ψ the trivial character. Under such a condition, we have given in [9] a decomposition of $S_{\epsilon}^{0}(p^{\nu})$ into four subspaces $S_{I}, S_{II}, S_{II}, S_{III}$. We compare this decomposition with that given above. Put $M = p^{[\nu/3]}$. Then for example, the subspace S_{I} is defined by

$$S_{I} = \{f \in S^{0}_{s}(N) | f | U_{s} = f, f | W_{N} = f\},\$$

where ε is the quadratic residue symbol modulo p. This space is expressed by our spaces $S_{\varepsilon}^{0}(N, a, e)$ as follows;

$$S_{ extsf{I}} = \displaystyle{\displaystyle \bigoplus_{\substack{a \in (\mathbf{Z}/M\mathbf{Z}) imes \ s(a) = 1}}} S^{\scriptscriptstyle 0}(N, a, 1)$$
 ,

where 1 denotes the trivial character of \tilde{W} . This shows that even in the case where $\nu = 3$ our decomposition of $S^{0}_{\epsilon}(N)$ gives a finer one that in [11]. In the next section, we give a numerical example in the case where p = 11, $\kappa = 2$, and $\nu = 3$.

We prove two more properties of U_{χ} .

PROPOSITION 3.3. The notation being as above, let f be a primitive form in $S^o_{\epsilon}(N, \psi)$. For a character χ with $f_{\chi} = p^{\mu}$ which satisfies (1.1), let $f | \tilde{U}_{\chi} = c_{\chi} f$. For $\sigma \in \text{Gal}(\bar{Q}/Q)$ and $\zeta = e^{2\pi i / p^{\mu}}$, let $\zeta^{\sigma} = \zeta^n$ with $n \in \mathbb{Z}$, and for $f = \sum_{m \geq 1} a_m e^{2\pi i m z}$, put $f^{\sigma} = \sum_{m \geq 1} a_m^{\sigma} e^{2\pi i m z}$. Then it holds

$$f^{\sigma}|\, ilde{U}_{\chi}\sigma=\chi(n^2)^{\sigma}(\sqrt{\,p\,}\,^{\sigma}/\sqrt{\,p\,})^{\epsilon}c_{\chi}^{\sigma}f^{\sigma}$$

Proof. Let $G_+ = \{x \in GL_2(Q_A) | \det x_{\infty} > 0\}$, and Q_{ab} the maximal abelian extension of Q. Let ρ be a homomorphism of G_+ onto Gal (Q_{ab}/Q) obtained by defining $\rho(x)$ to be the action of $(\det x)^{-1}$ on Q_{ab} . Let G be a subgroup of $G_+ \times \text{Gal}(\overline{Q}/Q)$ given by

$$G = \{(x, \sigma) \in G_+ \times \operatorname{Gal}(\overline{Q}/Q) | \rho(x) = \sigma \text{ on } Q_{ab}\}.$$

Then Shimura [17, Th. 1.5] defined an action of G on modular forms. We denote the action of (x, σ) by $f^{(x,\sigma)}$. Let t be an element of $\prod_{p} \mathbb{Z}_{p}^{\times}$ such that $\rho(x) = \sigma$ on \mathbb{Q}_{ab} for $x = \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix}$. Let α_{ij} and $\tilde{\chi}$ be the same as in the proof of Th. 3.1, and consider the action of (x, σ) on the both sides of

$$rac{\psi_P(-1)ar{\psi}_{N/P}(P)\chi(N/P)}{\mathfrak{g}(ar{\chi})^2}\sum_{i,j} \widetilde{\chi}(lpha_{ij})f|[lpha_{ij}]_{\epsilon}=c_{\chi}f \ ,$$

where $P = p^{*}$. Then the right hand side becomes $c_{\chi}^{\sigma} f^{\sigma}$. Observe that $(g(\bar{\chi})^{2})^{\sigma} = \chi(n^{2})^{\sigma}g(\bar{\chi}^{\sigma})^{2}$ and $f^{(\alpha_{ij},1)(\chi,\sigma)} = (f^{\sigma})^{(\chi^{-1}\alpha_{ij}\chi,1)}$. Choose $t_{0} \in \mathbb{Z}$ such that $t_{0} \equiv t_{q} \pmod{q^{4}}$ for each prime $q \mid N$. Let i' and j' be integers such that $i' \equiv t_{0}i$ (mod P^{4}) and $t_{0}j' \equiv j \pmod{P^{4}}$, and let A be an integer such that $A \equiv p^{\nu-\mu}(-t_{0}j+j') \pmod{N/P^{4}}$ and $A \equiv 0 \pmod{P^{4}}$. Then we see

$$x^{-1}lpha_{ij}x\equivinom{1}{0} A \ 0 \ 1 lpha_{i'j'} \pmod{N^4} \;.$$

Hence $f^{(\alpha_{ij},1)(x,\sigma)} = (f^{\sigma})^{(\alpha_{i'j'},1)}$, and we obtain

$$(f|[lpha_{ij}]_{\epsilon})^{(x,\sigma)} = (\sqrt{p}^{\sigma}/\sqrt{p})^{\epsilon} f^{\sigma}|[lpha_{i'j'}]_{\epsilon} \ .$$

Noting $\chi(\alpha_{ij}) = \chi(\alpha_{i'j'})$, we obtain

$$\frac{\psi_{P}^{\sigma}(-1)\bar{\psi}_{N/P}^{\sigma}(P)\chi^{\sigma}(N/P)}{\mathfrak{g}(\bar{\chi}^{\sigma})^{2}}\sum_{i,j}\tilde{\chi}^{\sigma}(\alpha_{ij})f^{\sigma}\,|\,[\alpha_{ij}]_{\epsilon}=\chi(n^{2})^{\sigma}(\sqrt{p}\,{}^{\sigma}/\sqrt{p}\,)^{\epsilon}c_{\chi}^{\sigma}f^{\sigma}\;.$$

Since $f \in S^0_{*}(N, \psi^{\sigma})$, this prove our proposition.

COROLLARY 3.4. Let f be a primitive form in $S^0_{\epsilon}(N, \psi)$, and K_f the field generated by all the Fourier coefficients a_m of f over Q. Suppose $v_p(\mathfrak{f}_{\psi}) \leq v_p(N)/3$ and $\mu = [v_p(N)/3] \geq 1$ for a prime divisor p of N. Then K_f contains $F_{p\mu} = Q(e^{2\pi i/p\mu} + e^{-2\pi i/p\mu})$ (resp. $F_{p\mu-1}$) if κ is even and p is odd (resp. p = 2), and $K_f(\sqrt{p})$ contains $F_{p\mu}$ (resp. $F_{p\mu-1}$) if κ is odd and p is odd (resp. p = 2).

Proof. We prove only the case where κ is even and p is odd. The other case can be treated in a similar way. In this case, it is enough to

prove that for $\sigma \in \text{Gal}(\overline{Q}/Q)$ $\sigma | F_{p}\mu = \text{the identity if } \sigma | K_{f} = \text{the identity.}$ Assume $\sigma | K_{f}$ is the identity, then $f^{\sigma} = f$ and $\psi^{\sigma} = \psi$. In the above notation, we may assume $f \in S^{0}_{\epsilon}(N, \psi, a)$ for some a. Then $c_{\chi} = \chi(a)$ for $\chi \in X(p^{\mu})$. From this and the above proposition, it follows

$$\chi(a)^{\sigma} = \chi(n^2)^{\sigma} \chi(a)^{\sigma} (\sqrt{p}^{\sigma}/\sqrt{p})^{\epsilon}$$
,

for all $\chi \in X(p^{\mu})$, where *n* is an integer such that $(e^{2\pi i/p^{\mu}})^{\sigma} = e^{2\pi i n/p^{\mu}}$. Since κ is even, $\chi(n^2) = 1$ for all $\chi \in X(p^{\mu})$, and $n^2 \equiv 1 \pmod{p^{\mu}}$. If *p* is odd, this implies $n = \pm 1 \pmod{p^{\mu}}$ hence $\sigma | F_{p^{\mu}} =$ the identity. This proves our corollary.

PROPOSITION 3.5. The notation being as in Prop. 3.3, assume $\nu - 2\mu$ > 0 and $v_p(f_{\psi}) < \nu - 2\mu$ for $\nu = v_p(N)$ and $\mu = v_p(f_{\chi})$. Then it holds

$$f | U_{\chi} W_P = f | W_P U_{\chi}$$

where $P = p^{\nu}$.

Proof. First we note η_P normalizes the set $\mathcal{Z}(U_{z}T_{1}) \cap GL_{2}(Q)$. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{Z}(U_{z}T_{1}) \cap GL_{2}(Q)$, we note

$$\eta_P^{-1}g\eta_P = egin{cases} \left(egin{array}{cc} d & -c/p^{
u} \ -bp^{
u} & a \end{array}
ight) \pmod{P^3} \ \left(egin{array}{cc} a & b/p^{
u} \ cp^{
u} & d \end{array}
ight) \pmod{(N/P)^4},$$

and $\bar{\psi}_p(-d/p^{\nu+2\mu}) = \psi_p(-a/p^{\nu+2\mu})$ by the assumption on ψ . Our assertion follows from this and Cor. 2.3.

§4. Numerical examples and a congruence between cusp forms

We shall gives examples of characteristic polynomials of Hecke operators taking $N = 11^3$, $\kappa = 2$ and $\psi =$ the trivial character and discuss a congruence property between cusp forms. We use the notation in § 3. Let $S_{\rm III}$ be the subspace of $S_{\epsilon}^{0}(p^{\nu})$ given by

$$S_{\text{III}} = \{f \in S^{\scriptscriptstyle 0}_{\scriptscriptstyle m{\kappa}}(N) \, | \, f \, | \, U_{\scriptscriptstyle m{\kappa}} = f, \, f \, | \, W_{\scriptscriptstyle P} = -f \}$$
 ,

where ε is the quadratic residue symbol modulo p and $P = p^{\nu}$. In our case, we find dim $S_{I} = 15$ and dim $S_{III} = 35$. By means of the decomposition introduced in § 3, these subspaces can be written as follows;

$$S_{\mathrm{I}} = \bigoplus_{\substack{a \mod 11 \\ \mathfrak{e}(a) = 1}} S_2(11^3, a, 1) , \quad S_{\mathrm{III}} = \bigoplus_{\substack{a \mod 11 \\ \mathfrak{e}(a) = 1}} S_2(11^3, a, -1) ,$$

where -1 denotes the non-trivial homomorphism from $\{W_P, 1\}$ to $\{\pm 1\}$. For a such that $\varepsilon(a) = 1$, we find dim $S_2(11^3, a, 1) = 3$ and dim $S_2(11^3, a, -1) = 7$. Taking a = 4, we give characteristic polynomial of Hecke operator T_n acting on these subspace for some n.

n	$\varepsilon(n)$	<i>a</i> _n	$f_{T_n}(X)$	$N(f_{T_n}(a_n))$
2	-1	0	$X^2 + lpha^3 - 3lpha - 3$	199
3	1	$-\alpha^4 - 2\alpha^3 + 3\alpha^2 + 5\alpha - 2$	$(X-\alpha^3+3\alpha)^2$	199²
5	1	$-\alpha^4+5\alpha^2-\alpha-5$	$(X - \alpha + 1)^2$	199²
199	1	$-6\alpha^4 - 13\alpha^3 + 30\alpha^2$	$(X - 4\alpha^4 + 8\alpha^3 + 13\alpha^2)$	$(11 \cdot 23 \cdot 43 \cdot 199)^2$
		$+39\alpha - 18$	$-16\alpha + 11)^{2}$	

Here $\alpha = e^{2\pi i/11} + e^{-2\pi i/11}$ and N denotes the norm from $F_{11} = Q(\alpha)$ to Q. For an explanation of the table, we remark that $S_2(11^3, 4, 1)$ contains a primitive form θ_I associated with a Grössencharacter of $Q(\sqrt{-11})$. a_n denotes the n-th Fourier coefficient of θ_I , that is, the eigenvalue for T_n . $f_{T_n}(X)$ denotes the characteristic polynomial for T_n on the orthogonal complement S_I^0 of the one dimensional subspace spanned by θ_I . We note $N(f_{T_n}(a_n))$ is divided by the prime 199 in our table and this suggest a congruence between θ_I and a primitive form $f \in S_I^0$ modulo a prime ideal \mathfrak{p} in K_f which divides 199. In fact, Prop. 4.2 in [11] implies such a congruence, and this proposition has been proved as an application of the Shimura's theory on the construction of class fields over real quadratic fields [15].

Now we take $S_2(11^3, 4, -1)$. This space also contains a primitive form θ_{III} associated with a Grössencharacter of $Q(\sqrt{-11})$. Let b_n be the *n*-th Fourier coefficients of θ_{III} , and S_{III}^0 the orthogonal complement of the one dimensional subspace spanned by θ_{III} . We denote by $g_{T_n}(X)$ the characteristic polynomial of T_n on S_{III}^0 .

n	$\varepsilon(n)$	$g_{T_n}(X)$
2	-1	$X^6 - (lpha^3 - 3lpha + 12)X^4 + (-2lpha^4 + 7lpha^3 + 8lpha^2 - 21lpha + 35)X^2$
		$-(-14lpha^4+4lpha^3+56lpha^2-18lpha-4)$
3	1	$(X^3 - (-\alpha^4 - \alpha^3 + 3\alpha^2 + 3\alpha)X^2 + (-\alpha^4 - 2\alpha^3 + \alpha^2 + 5\alpha - 2)X$
		$-(2\alpha^4-7\alpha^2-2\alpha+3))^2$
5	1	$(X^3 - (2\alpha^4 - 7\alpha^2 + 4)X^2 + (\alpha^4 - \alpha^3 - 3\alpha^2 - 5)X$
		$-(-8\alpha^4-5\alpha^3+28\alpha^2+11\alpha-15))^2$

n	b_n	$N(g_{I_n}(b_n))$
2	0	2² · 99527
3	$\alpha^4 + 2\alpha^3 - 3\alpha^2 - 6\alpha + 2$	$(11 \cdot 99527)^2$
5	$-2\alpha^4 + 7\alpha^2 + \alpha - 1$	$(1429 \cdot 99527)^2$

Here α and N are as above. This table also suggests a congruence between θ_{III} and a primitive form g in S^0_{III} modulo a prime ideal \mathfrak{p} in K_g which divides 99527. By virtue of the theory of Shimura, we may prove this congruence if we can compute $g_{T_{99527}}$. However, it is difficult. So we proceed in quite another way.

For positive integers N and λ , let ψ be a character modulo N such that $\psi(-1)=(-1)^{\kappa}$. For a prime divisor p of N, put $\nu = v_p(N)$, $\nu_0 = [(\nu-1)/2]$, and $M = N/p^{\nu}$. Let κ' and be κ'' positive integers such that $\kappa = \kappa' + \kappa''$ and ω be a character modulo p such that $\omega(-1) = (-1)^{\kappa''}$. First we prove

LEMMA 4.1. The notation being as above, for a primitive form $f \in S^0_{\epsilon'}(N, \psi \omega)$ and $g \in G_{\epsilon''}(pM, \overline{\omega})$, put $F(z) = g(p^{\nu_0}z)f(z)$. Let χ be a character with $f_{\chi} = p^{\mu}$, and assume $1 \leq \mu \leq \nu_0$, and $v_p(f_{\psi}) \leq v_p(N)/3$. Then F(z) belongs to $S_{\epsilon}(N, \psi)$, and it holds

$$F(oldsymbol{z}) \, | \, ilde{U}_{oldsymbol{z}} = g(p^{
u_0} oldsymbol{z}) (f(oldsymbol{z}) \, | \, ilde{U}_{oldsymbol{z}}) \; .$$

Proof. The first assertion is obvious. We prove the above equality. By the assumption $1 \le \mu \le \nu_0$, we have

$$F(oldsymbol{z}) ig| R_{oldsymbol{z}} = g(p^{
u_0} oldsymbol{z}) (f(oldsymbol{z}) ig| R_{oldsymbol{z}})$$
 .

Let $P = p^{\nu}$, then we see $g(p^{\nu v}z)|W_P = h(p^{\nu v}z)$ for $h \in M_{\epsilon''}(pM, \omega)$, since we have

$$ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} \eta_P \equiv egin{cases} p^{
u_0} ig(egin{array}{ccc} 0 & -1 \ 1 & 0 \end{array} ig(egin{array}{ccc} p & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \ 0 & 1 \end{array} ig(egin{array}{ccc} p^{
u_0} & 0 \end{array} ig(end{array} end{array} ig(end{array}$$

and $\nu - \nu_0 - 1 \ge \nu_0$. Hence we obtain

$$egin{aligned} F(z) &| \, U_{\chi} = (h(p^{v_0}z)(f(z) \,| \, R_{\chi}W_P)) \,| \, R_{\chi}W_P \ &= g(p^{v_0}z) |W^2_P(f(z) | U_{\chi}) \ &= \omega(-1)g(p^{v_0}z)(f(z) | U_{\chi}) \;. \end{aligned}$$

This proves our lemma.

COROLLARY 4.2. The notation being as above, let $N = p^{\nu}$ with an odd prime p and $\nu \geq 3$. Then F(z) is contained in $S^0_{\epsilon}(N, \psi)$.

Proof. This follows from (2), (3) of Prop. 1.4, and the above Lemma 4.1 by taking, for example, $\chi = \varepsilon$.

We apply this Lemma taking as f a primitive form associated with a Grössencharacter of $Q(\sqrt{-11})$ and as g an Eisenstein series. First of all, we study the eigenvalues for \tilde{U}_x of primitive forms associated with Grössencharacters. Let p be a prime congruent to 3 modulo 4, and a Grössencharacter of $Q(\sqrt{-p})$ which satisfies

(4.1)
$$\lambda((a)) = \left(\frac{a}{|a|}\right)^{u}$$

for $a \in Q(\sqrt{-p})$ with $a \equiv 1 \pmod{(\sqrt{-p})^{\alpha}}$, where α is a positive integer. For λ with $u = \kappa - 1$ put

$$heta_{s}(z) = \sum_{a} \lambda(a) N a^{(s-1)/2} e^{2\pi i N a z}$$
 ,

where the summation is extended over all integral ideal of $Q(\sqrt{-p})$ prime to $(\sqrt{-p})$. Then it is known [14] that θ_{λ} belongs to $S_{\epsilon}(P, \psi)$ for $P = p^{\alpha+1}$ and a character ψ modulo P defined by

$$\psi(a) = \lambda((a)) \Big(\frac{-p}{a} \Big) \quad \text{for } 0 \neq a \in \mathbb{Z},$$

and θ_{λ} is a primitive form in $S^{0}_{\epsilon}(P, \psi)$ if λ is of conductor $(\sqrt{-p}^{\alpha})$.

PROPOSITION 4.3. Let λ be a Grössencharacter of $Q(\sqrt{-p})$ of conductor $(\sqrt{-p}^{*})$ for a positive integer α , and χ a character with $f_{\chi} = p^{\mu}$. Assume $\mu \leq \alpha/2$. Then it holds

$$heta_{oldsymbol{arsigma}} | \, ilde{U}_{oldsymbol{\chi}} = (\mathfrak{g}(\lambda\chi \circ N) / \mathfrak{g}(\lambda)) heta_{oldsymbol{\lambda}} \; ,$$

where N is the norm from $Q(\sqrt{-p})$ to Q, and $g(\lambda \chi \circ N)$ and $g(\lambda)$ are the Gauss sum of $\lambda \chi \circ N$ and λ respectively.

Proof. For a Grössencharacter λ' of $Q(\sqrt{-p})$ with the conductor $(\sqrt{-p}^{\alpha})$, by means of the functional equation of the *L*-function of λ' , we obtain

$$heta_{\scriptscriptstyle \lambda\prime}|W_{\scriptscriptstyle P}=(\sqrt{-1})^{_{2lpha+1}} rac{\mathfrak{g}(\lambda')}{p^{_{lpha/2}}} heta_{ar{\imath}'}$$
 ,

where $P = p^{\alpha+1}$. Observe $\theta_{\lambda'} | R_{\chi} = \theta_{\lambda' \chi \circ N}$. From this, it follows $\theta_{\lambda} | U_{\chi} = -(\mathfrak{g}(\lambda \chi \circ N)\mathfrak{g}(\bar{\lambda})/p^{\alpha})\theta_{\lambda}$. Since $\mathfrak{g}(\lambda)\mathfrak{g}(\bar{\lambda}) = (-1)^{\epsilon-1}p^{\alpha}$, we obtain

$$|\theta_{\star}| U_{\chi} = (-1)^{\star} (\mathfrak{g}(\lambda \chi \circ N)/\mathfrak{g}(\lambda)) \theta_{\lambda} .$$

Since $\psi(-1) = (-1)^{\epsilon}$, this proves the proposition.

PROPOSITION 4.4. The notation being as in Prop. 4.3, put $c_{\lambda}(\chi) = g(\lambda\chi \circ N)/g(\lambda)$. If η is a Grössencharacter of $Q(\sqrt{-p})$ of conductor $(\sqrt{-p})$ which satisfies (4.1) for u = k' - 1, then it holds

$$c_{\lambda\eta}(\chi) = c_{\lambda}(\chi)$$
,

for any character χ which satisfies $\mu \leq \alpha/2$.

Proof. To prove this proposition, it is enough to show $g(\lambda\eta\chi\circ N)/g(\lambda\chi\circ N) = g(\lambda\eta)/g(\lambda)$. Let \mathfrak{o} be the ring of integers of $Q(\sqrt{-p})$, and for $a \in \mathfrak{o}$, put

$$\lambda_0(a) = \lambda((a)) \left(\frac{a}{|a|}\right)^{-(\kappa-1)}, \quad \eta_0(a) = \eta((a)) \left(\frac{a}{|a|}\right)^{-(\kappa'-1)}$$

Then we have

$$\mathfrak{g}(\lambda\eta) = (b/|b|)^{\mathfrak{s}+\mathfrak{s}'-2} \sum_{a \in \mathfrak{o} \mod(\sqrt{-p}^{\alpha})} \lambda_0 \eta_0(a) e^{2\pi i \operatorname{tr} (a/b)}$$

where $b = \sqrt{-p}^{\alpha^{+1}}$ and tr denotes the trace from $Q(\sqrt{-p})$ to Q. Since the function $\lambda_0 \eta_0 (1 + \sqrt{-p}^{\alpha^{-1}}x) = \lambda_0 (1 + \sqrt{-p}^{\alpha^{-1}}x)$ is additive in $x \in 0$, we can find an element y in 0 such that

$$R_0(1 + \sqrt{-p}^{\alpha - 1}x) = e^{2\pi i \operatorname{tr} (xy/\sqrt{-p}^2)}$$
 ,

for $x \in \mathfrak{o}$. Then we see

$$\sum_{a \in v \mod (\sqrt{-p}^{\alpha})} \lambda_0 \eta_0(a) e^{2\pi i \operatorname{tr} (a/b)} = \sum_{a \in v \mod (\sqrt{-p}^{\alpha-1})} \lambda_0 \eta_0(a) e^{2\pi i \operatorname{tr} (a/b)} \\ \times \sum_{x \in v \mod (\sqrt{-p})} \lambda_0 (1 + \sqrt{-p}^{\alpha-1} x) e^{2\pi i \operatorname{tr} (a/\sqrt{-p}^2)} \\ = p \sum_{\substack{a \in v \mod (\sqrt{-p}^{\alpha-1}) \\ a + y \equiv 0 \mod (\sqrt{-p})}} \lambda_0 \eta_0(a) e^{2\pi i \operatorname{tr} (a/b)} \\ = \eta_0(-y) \sum_{a \in v \mod (\sqrt{-p}^{\alpha})} \lambda_0(a) e^{2\pi i \operatorname{tr} (a/b)} .$$

Hence we obtain

(4.2)
$$g(\lambda \eta) = (b/|b|)^{\kappa'-1} \eta_0(-y) g(\lambda) .$$

If we note

$$N(1+\sqrt{-p}^{lpha-1}x)\equiv 1 \pmod{p^{\left\lceil lpha/2
ight
ceil}}$$
 ,

we see the above argument also gives

(4.3)
$$g(\lambda\eta\chi\circ N) = (b/|b|)^{k'-1}\eta_0(-y)g(\lambda\chi\circ N) .$$

From (4.2) and (4.3), we obtain $g(\lambda\eta\chi\circ N)/g(\lambda\chi\circ N) = g(\lambda\eta)/g(\eta)$. This completes the proof.

Let $P = p^{\nu}$, and ψ a character modulo P such that $v_p(f_{\psi}) \leq [\nu/2]$. For a primitive form θ_{λ} in $S_{\varepsilon}^{0}(P, \psi)$ associated with Grössencharacter λ of $Q(\sqrt{-p})$, put

$$\mathrm{S}(heta_{\lambda}) = \{f \in S^{0}_{*}(P,\psi) | f | ilde{U}_{\chi} = c_{\lambda}(\chi) f \qquad ext{for } \chi \in X(p^{\lfloor (\nu-1)/2
brack}) \}$$

where $\theta_{\lambda}|\tilde{U}_{\chi} = c_{\lambda}(\chi)\theta_{\lambda}$. Then the above proposition shows that if $\kappa \geq 2$, we can find a Grössencharacter η and a modular form g such that $F(z) = g(p^{\lfloor (\nu-1/2) \rfloor}z)\theta_{\eta}(z)$ belongs to $S(\theta_{\lambda})$.

Now we return to our example. In the above notation we have

$$\mathrm{S}(heta_{ ext{III}}) = S^{\scriptscriptstyle 0}_{\scriptscriptstyle 2}(11,\,4,\,1) \oplus S^{\scriptscriptstyle 0}_{\scriptscriptstyle 2}(11,\,4,\,-1)\;.$$

We can choose primitive forms $f \in S_2^0(11, 4, 1)$ and $g^i \in S^0(11, 4, -1), 1 \le i \le 3$, so that θ_{I} , θ_{III} , f, $f|R_i$, g^i , and $g^i|R_i(1 \le i \le 3)$ form a basis of $S(\theta_{III})$, where ε is the quadratic residue symbol as before. Let ω be a character modulo 11 such that $\omega(-1) = -1$, and $E_{\overline{\omega}}(z)$ the Eisenstein series in $M_i(11, \overline{\omega})$, that is,

$$E_{ar{\omega}}(z) = -rac{L(0,ar{\omega})}{2} + \sum_{n=1}^{\infty}\sum_{d\mid n}ar{\omega}(d)e^{2\pi i n z}$$
 .

Then we can find a uniquely determined Grössencharacter of $Q(\sqrt{-11})$ modulo $(\sqrt{-11}^2)$ which satisfies $\theta_{\eta} \in S_1(11^3, \omega)$ and $F(z) = E_{\overline{\omega}}(pz)\theta_{\eta}(z) \in S(\theta_{III})$. By noting $F(z)|R_{\epsilon} = F(z)$, we see F(z) can be expressed as follows;

(4.4)
$$F(z) = a\theta_{I} + b\theta_{III} + c(f + f|R_{\bullet}) + \sum_{i=1}^{3} d_{i}(g^{i} + g^{i}|R_{\bullet}) .$$

Let K be the field generated by all the Fourier coefficients of F(z), θ_{I} , θ_{III} , f, and g^i , then a, b, c, and d_i are contained in K. Assume $a \neq 0$, and let \mathfrak{p} be a prime ideal of K which divides the denominator of a. If we can verify that b/a, c/a, and d_i/a are \mathfrak{p} -integral and $b/a \equiv 0$, $c/a \equiv 0 \pmod{\mathfrak{p}}$, then by Deligne and Serre [2, Lemma 6.11], we can find a primitive form g in $\{g^i, g^i | R_i\}$ such that

$$\theta_{\text{III}} \equiv g \pmod{\mathfrak{p}}.$$

Let us check this. First we must calculate a. In order to do this, the following Lemma is useful.

LEMMA 4.5. Let f, and g_i $(1 \le i \le n)$ be primitive forms, and F(z) a cusp forms such that

$$F(z) = lpha f + \sum_{i=1}^n \beta_i g_i$$
.

Let a_n , b_n^i , and c_n denote the n-th Fourier coefficients of f, g_i , and F respectively. For a polynomial $T(X) = \sum_{j=1}^{i} A_j X^j$ and a prime q, assume $T(b_q^i) = 0$ for $i, 1 \le i \le n$. Then one has

$$T(a_q)\alpha = \sum_{m=0}^{\ell} \sum_{r=0}^{\lfloor m/2 \rfloor} \left(\binom{m}{r} - \binom{m}{r-1} (p^{\epsilon-1})^r c_{p^{m-2r}} A_{\ell-m} \right)$$

where $\binom{m}{r} = m!/r!(m-r)!$.

This is an easy consequence of Exercise 3.27' in [13], and we omit the proof. As T(X), we can take the characteristic polynomial of T_q acting on the space spanned by g_i .

Applying the above Lemma taking $\omega = \varepsilon$, we find a = 0, and we cannot proceed anymore. In stead of F(z) for $\omega = \varepsilon$, we take the following as F;

$$F'(z) = \sum\limits_{\scriptscriptstyle w} E_{ar v}(pz) heta_{\eta}(z) \; ,$$

where ω runs through all characters modulo 11 such that $\omega(-1) = -1$ and η is the Grössencharacter of $Q(\sqrt{-11})$ such that $\theta_{\eta} \in S_1^0(11^3, \omega)$. Put

(4.5)
$$F'(z) = a'\theta_{\rm I} + b'\theta_{\rm III} + c'(f+f|R_{\star}) + \sum_{i=1}^{3} d'_i(g^i + g^i|R_{\star})$$

as before. Then we find

$$\begin{aligned} a' &= (5/22)(200\alpha^4 + 314\alpha^3 - 612\alpha^2 - 856\alpha + 54)/(262\alpha^4 + 368\alpha^3 \\ &- 895\alpha^2 - 1003\alpha + 353) \\ N(200\alpha^4 + 314\alpha^3 - 612\alpha^2 - 856\alpha + 54) &= 2^5 \cdot 11^4 \cdot 23 \cdot 197 \\ N(262\alpha^4 + 368\alpha^3 - 895\alpha^2 - 1003\alpha + 353) &= 11^4 \cdot 23 \cdot 99527 \;. \end{aligned}$$

Let \mathfrak{p} be a prime ideal of K which divides $(262\alpha^4 + 368\alpha^3 - 895\alpha^2 - 1003\alpha + 353)$ and 99527. We note the Fourier coefficients of 22F'(z) are integral. By means of Lemma 4.5 and some calculation, we can check the condition

on a', b', c', and d'_i mentioned before. For example, the assertion that d'_i/a' is p-integral can be verified in the following way. Let a_n , b_n , $f_{T_n}(X)$, and $g_{T_n}(X)$ be as in the table. Let q be a prime such that $\varepsilon(q) = 1$, then $g_{T_q}(X)$ (resp. $f_{T_q}(X)$) is of the form $g_q(X)^2$ (resp. $(X - c_q)^2$), where $g_q(X)$ is a polynomial of degree 3. To prove d'_i/a' is p-integral, it is enough to show $g_q(a_q)$ and $g_q(c_q)$ are prime to \mathfrak{p} and $g_q(X) \equiv 0 \mod \mathfrak{p}$ does not have multiple roots for a prime q with $\varepsilon(q) = 1$. We take q = 3. Then we have

$$egin{aligned} g_3(a_3) &= -6lpha^4 - 2lpha^3 + 24lpha^2 + 6lpha - 18 \;, & N(g_3(a_3)) = 2^5 \cdot 11 \ g_3(c_3) &= 4lpha^4 + 6lpha^3 - 8lpha^2 - 14lpha - 8 \;, & N(g_3(c_3)) = 2^5 \cdot 11^2 \end{aligned}$$

Hence $g_{\mathfrak{z}}(a_{\mathfrak{z}})$ and $g_{\mathfrak{z}}(c_{\mathfrak{z}})$ are prime to \mathfrak{p} . The second condition can be checked easily, since we know one root $b_{\mathfrak{z}}$ of $g_{\mathfrak{z}}(X) \equiv 0 \pmod{p}$. We omit the details. Thus we obtain

PROPOSITION 4.6. Let $\theta_{III} \in S_2(11, 4, -1)$ and $S_{III}^0 (\subset S_2(11, 4, -1))$ be as before. Let K be the field generated by the Fourier coefficients of θ_{III} and the primitive forms in S_{III}^0 , and \mathfrak{p} be a prime ideal of K which divides $262\alpha^4 + 368\alpha^3 - 895\alpha^2 - 1003\alpha + 353$ and 99527. Then there exists a primitive form g in S_{III}^0 which satisfies

$$heta_{\scriptscriptstyle \mathrm{III}} \equiv g \pmod{\mathfrak{p}}$$
 .

Now the coefficient a in (4.4) can be written as follows;

$$a = rac{\langle heta_{ ext{III}}, \ F(m{z})
angle}{\langle heta_{ ext{III}}, \ heta_{ ext{III}}
angle} \,,$$

where \langle , \rangle denotes the Petersson inner product, and the coefficient a' in (4.5) can be expressed as a sum of such numbers. By means of a result of Shimura [16], we can relate the number a to the special values of zeta functions. We introduce some notations. For positive integer N, κ and a Dirichlet character ω modulo N such that $\omega(-1) = (-1)^{\epsilon}$, put

$$E^*_{\epsilon,N}(z,s,\omega) = \sum_{\gamma \in \Gamma_\infty \setminus \Gamma_0(N)} \omega(d) (cz+d)^{-\epsilon} |cz+d|^{-2s} , \qquad \gamma = egin{pmatrix} a & b \ c & d \end{pmatrix},$$

where $\Gamma_{\infty} = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbf{Z} \right\}$, and

$$E_{\epsilon,\,N}(z,\,s,\,\omega)=\sum\limits_{m,\,n}\omega(n)(mNz+\,n)^{-\epsilon}|\,mNz+\,n|^{-2s}$$
 ,

where the summation is taken over all $(m, n) \in \mathbb{Z}^2$, $\neq 0$. These are abso-

lutely convergent for Re $(2s) > 2 - \kappa$, and we have

$$E_{\kappa,N}(z, s, \omega) = 2L_N(2s + \kappa, \omega)E^*_{\kappa,N}(z, s, \omega) ,$$

where $L_N(s, \omega) = \sum_{(N,n)=1} \omega(n) n^{-s}$. For $\kappa > 0$, we put

$$E_{\kappa,N}(z,\omega)=E_{\kappa,N}(z,0,\omega), \quad E^*_{\kappa,N}(z,\omega)=E^*_{\kappa,N}(z,0,\omega) \; .$$

If $\kappa \neq 2$, or ω is not trivial, $E_{\epsilon,N}(z,\omega)$ and $E_{\epsilon,N}(z,\omega)$ belongs to $G_{\epsilon}(N,\overline{\omega})$.

PROPOSITION 4.7. For a prime $p \equiv 3 \pmod{4}$, let ω be a character modulo p and θ_{λ} (resp. θ_{η}) a primitive form associated with a Grössencharacter $\lambda(\text{resp. }\eta)$ of $Q(\sqrt{-p})$ belonging to $S^0_{\epsilon}(P, \psi)$ (resp. $S^0_{\epsilon'}(P, \psi\omega)$) for $P = p^{\epsilon}$ and a character ψ which satisfy $v_p(\mathfrak{f}_{\psi}) \leq \nu/3$. Assume that $\kappa > \kappa'$ and that $\kappa - \kappa' \neq 2$ or ω is not trivial. Put $F(z) = E_{\kappa-\kappa'}$, $(p^{\lfloor (\nu-1)/2 \rfloor}z, \omega)\theta_{\eta}(z)$. If F(z) belongs to $S(\theta_{\lambda})$, then

$$\frac{\langle \theta_{\lambda}, F \rangle}{\langle \theta_{\lambda}, \theta_{\lambda} \rangle} = \frac{4(\kappa - 1)\pi^{2}}{p^{\nu - \lceil (\nu - 1)/2 \rceil}L(1, \varepsilon)} \frac{L((\kappa - \kappa')/2, \lambda'\eta)L((\kappa - \kappa')/2, \lambda'\eta'^{-1})}{L(1, \lambda'\lambda)}$$

where $\lambda'(a) = \overline{\lambda(\overline{a})}, \ \eta'(a) = \overline{\eta(\overline{a})}$ for an ideal a in $Q(\sqrt{-p})$.

Proof. Let Φ denote a fundamental domain of \mathfrak{H} with respect to $\Gamma_0(P)$. Put $\mu = [(\nu - 1)/2]$. Let Γ be a subgroup of $\Gamma_0(P)$ given by

$$\varGamma = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \varGamma_{\mathfrak{o}}(P) \, | \, a \equiv d \equiv 1 \pmod{p^{\mu}}
ight\},$$

and Φ' a fundamental domain for Γ . We note Γ is a normal subgroup of $\Gamma_0(p^{\mu+1})$. Let $\{a_j\}$ be a complete system of representatives of Z modulo p^{μ} , then $\Gamma_0(p^{\mu+1}) = \bigcup_j \Gamma_0(P)\alpha_j$ is a disjoint union, where $\alpha_j = \begin{pmatrix} 1 & 0 \\ p^{\mu+1}\alpha_j & 1 \end{pmatrix}$. For the sake of simplicity, we put

$$E(z,s) = E_{\kappa-\kappa',P}(z,s,\omega), \ E(z,s)^* = E^*_{\kappa-\kappa',P}(z,s,\omega) \ .$$

We note $E_{\epsilon-\epsilon',p^{\mu+1}}(z,s,\omega) = E_{\epsilon-\epsilon',p}(p^{\mu}z,s,\omega)$, and

$$E^*_{\scriptscriptstyle s-s',\,p^{\mu+1}}(z,\,s,\,\omega) = \sum_j E(z,\,s)^* \,|\, [lpha_j] \,\,,$$

where $E(z, s)^* | [\gamma] = \omega(d)(cz + d)^{-(\epsilon - \epsilon')} | cz + d |^{-2s} E(\gamma(z), s)^*$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\in SL_2(Z)$. We have

(4.6)
$$I = \int_{\varphi} \bar{\theta}_{\lambda} \theta_{\gamma} E_{s-s',p}(p^{\mu}z, s, \omega) y^{s+s-2} dx dy$$
$$= c(s) \sum_{j} \int_{\varphi'} \bar{\theta}_{\lambda} \theta_{\gamma}(E(z, s)^{*} | [\alpha_{j}]) y^{s+s-2} dx dy$$

where $c(s) = 2L_P(2s + \kappa - \kappa', \omega)/[\Gamma_0(P):\Gamma]$. If $a_j \equiv 0 \pmod{p^{\mu}}$, then for Re $(2s) > 2 - (\kappa - \kappa')$ as in § 2 of [16]

(4.7)
$$\int_{\phi'} \bar{\theta}_{\lambda} \theta_{\eta} (E(z,s)^* | [\alpha_j]) y^{s+\epsilon-2} dx dy$$
$$= [\Gamma_0(P): \Gamma] \int_{\phi} \bar{\theta}_{\lambda} \theta_{\eta} E(z,s)^* y^{s+\epsilon-2} dx dy$$
$$= [\Gamma_0(P): \Gamma] (4\pi)^{-(s+\epsilon-1)} \Gamma(s+\kappa-1) D(s+\kappa-1, \theta_{\lambda'}, \theta_{\eta}) ,$$

where $D(s, f, g) = \sum_{n=1}^{\infty} a_n b_n n^{-s}$ for $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$ and $g(z) = \sum_{n=1}^{\infty} b_n e^{2\pi i n z}$. λ' is the Grössencharacter given by $\lambda'(a) = \overline{\lambda(\bar{a})}$. If $a_j \not\equiv 0 \pmod{p^{\mu}}$, then put $a_j = v p^{\nu - \mu - 1 - \tau}$ with a positive integer τ and v prime to p. If we define β_v by

$$eta_v = egin{pmatrix} 1 & v/p^r \ 0 & 1 \end{pmatrix}$$
 ,

then $\alpha_j^{-1} = \eta_P^{-1} \beta_v \eta_P$. Since $\alpha_j \in \Gamma_o(p^{\mu+1})$ and Γ is a normal subgroup of $\Gamma_0(p^{\mu+1})$, we see

$$\begin{split} \int_{\theta'} \bar{\theta}_{\lambda} \theta_{\eta}(E(z,s)^{*} | [\alpha_{j}]) y^{s+\epsilon-2} dx dy \\ &= \int_{\theta'} (\overline{\theta_{\lambda} | [\alpha_{j}^{-1}]_{\epsilon}}) (\theta_{\eta} | [\alpha_{j}^{-1}]_{\epsilon'}) E(z,s)^{*} y^{s+\epsilon-2} dx dy \\ &= \int_{\theta'} (\overline{\theta_{\lambda} | W_{P}^{-1}[\beta_{v}]_{\epsilon}}) (\theta_{\eta} | W_{P}^{-1}[\beta_{v}]_{\epsilon'}) E(z,s)^{*} | W_{P}^{-1} y^{s+\epsilon-2} dx dy, \end{split}$$

where $E(z, s)^* | W_P^{-1} = E(\eta_P^{-1}(z), s)^* (-p^{\nu/2}z)^{-(\kappa-\kappa')} | p^{\nu/2}z|^{-2s}$. Now we have

LEMMA 4.8. For a character ψ modulo $p^{\nu-1}$, let f be a primitive form in $S^0_{\mathfrak{c}}(P,\psi)$ for $P = p^{\nu}$. For a character χ , put $f_{\chi} = f|R_{\chi}$. If $\nu \geq 2$, for $\beta_{\nu} = \begin{pmatrix} 1 & \nu/p^{\sigma} \\ 0 & 1 \end{pmatrix}$ with $\tau \geq 1$ and (v, p) = 1, it holds

$$f|\left[\beta_{v}\right]_{s} = \begin{cases} \frac{1}{p-1}\sum_{\chi}\chi(v)\mathfrak{g}(\bar{\chi})f_{\chi} & \text{if } \tau = 1\\ \\ \frac{1}{p^{\tau}(1-1/p)}\sum_{\chi}\chi(v)\mathfrak{g}(\bar{\chi})f_{\chi} & \text{otherwise} \end{cases}$$

where χ runs through all characters modulo p if $\tau = 1$ and all characters with the conductor p^{τ} if $\tau \geq 2$. For the trivial character χ_1 , we put $g(\chi_1)$ =-1.

Proof. By the definition of the twisting operator, we have

$$\mathfrak{g}(\bar{\chi})f_{\chi} = \sum_{\substack{u \mod p^{\sigma} \\ (u,p)=1}} \bar{\chi}(u)f|[\alpha_{u}]_{\star},$$

where $\mathfrak{f}_{\mathfrak{z}}=p^{\sigma}$ and $lpha_u=igg(egin{array}{cc} 1 & u/p^{\sigma} \\ 0 & 1 \end{array}igg).$ If au=1, we see

$$\sum_{\substack{\mathfrak{f}_{\chi} \leq p \\ (u,p)=\mathfrak{1}}} \chi(v) \mathfrak{g}(\bar{\chi}) f_{\chi} = \sum_{\substack{\mathfrak{f}_{\chi} = p \\ (u,p)=\mathfrak{1}}} \chi(v) \sum_{(u,p)=\mathfrak{1}} \bar{\chi}(u) f | [\alpha_{u}]_{\mathfrak{s}} - f$$
$$= \sum_{\substack{\mathfrak{f}_{\chi} \leq p \\ (u,p)=\mathfrak{1}}} \chi(v) \bar{\chi}(u) f | [\alpha_{u}]_{\mathfrak{s}}$$
$$= (p-1) f | [\alpha_{v}]_{\mathfrak{s}} .$$

This prove the case where $\tau = 1$. We can treat the case where $\tau \geq 2$ in the same way, because for χ' with, $f_{\chi'} \leq p^{\sigma-1}$, we have

$$\sum_{\substack{v \mod p^{\sigma} \\ (v,p)=1}} \chi'(v) f | [\alpha_v]_s = 0$$

and we omit the details.

Put $f = \theta_{\lambda} | W_P^{-1}, g = \theta_{\lambda} | W_P^{-1}, \text{ and } E'(z, s) = E(z, s)^* | W_P^{-1}.$

For β_v with $\tau = 1$, we have

$$\begin{split} I_{1} &= \sum_{\substack{v \mod p \\ (v,p)=1}} \int_{\theta'} \overline{(f|[\beta_{v}]_{\epsilon})}(g|[\beta_{v}]_{\epsilon'})E'(z,s)y^{s+\epsilon-2}dxdy \\ &= \frac{1}{(p-1)^{2}} \int_{\theta'} \sum_{v} \sum_{v} \sum_{(\chi v)g(\bar{\chi})f_{\chi}} \sum_{\chi'} \chi'(v)g(\bar{\chi}')g_{\chi'}) \\ &\times E'(z,s)y^{s+\epsilon-2}dxdy \\ &= \frac{1}{(p-1)} \int_{\theta'} \sum_{\chi} \overline{g(\bar{\chi})}g(\bar{\chi})\overline{f}_{\chi}g_{\chi}E'(z,s)y^{s+\epsilon-2}dxdy \;. \end{split}$$

We have by Prop. 3.5

$$\begin{split} \overline{(f_{\chi} \mid W_{P})}(g_{\chi} \mid W_{P}) &= (\overline{\theta_{\lambda} \mid W_{P}^{-1} R_{\chi} W_{P}})(\theta_{\mu} \mid W_{P}^{-1} R_{\chi} W_{P}) \\ &= (\overline{\theta_{\lambda} \mid \tilde{U}_{\chi} R_{\chi}})(\theta_{\mu} \mid \tilde{U}_{\chi} R_{\chi}) \\ &= (\overline{\theta_{\lambda} \mid R_{\chi}})(\theta_{\mu} \mid R_{\chi}) , \end{split}$$

since $F(z) \in S(\theta_{\lambda})$. Hence we obtain

$$(4.8) I_1 = \frac{1}{(p-1)} \sum_{z} \overline{\mathfrak{g}(\overline{\chi})} \mathfrak{g}(\overline{\chi}) \int_{\mathfrak{g}'} (\overline{f_z | W_P}) (g_z | W_P) E(z, s)^* y^{s+\kappa-2} dx dy$$
$$= \frac{1}{(p-1)} \sum_{\overline{\mathfrak{g}(\overline{\chi})}} \overline{\mathfrak{g}(\overline{\chi})} \int_{\mathfrak{g}'} (\overline{\theta_z | R_{\overline{\chi}}}) (\theta_\eta | R_{\overline{\chi}}) E(z, s)^* y^{s+\kappa-2} dx dy$$
$$= (p-1) [\Gamma_0(P) \colon \Gamma] (4\pi)^{-(s+\kappa-1)} \Gamma(s+\kappa-1) D(s+\kappa-1; \theta_{\lambda'}, \theta_\eta)$$

For
$$\beta_v = \begin{pmatrix} 1 & v/p^{\tau} \\ 0 & 1 \end{pmatrix}$$
 with $\tau \ge 2$, we can show in the same way
(4.9) $\sum_{\substack{v \mod p \\ (v,p)=1}} \int_{\theta'} (\overline{f|[\beta_v]_{\epsilon'}})(g|[\beta_v]_{\epsilon'})E'(z,s)y^{s+\kappa-2}dxdy$
 $= \frac{1}{(p-1)}(p^{\tau}-2p^{\tau-1}+p^{\tau-2})(4\pi)^{-(s+\kappa-1)}\Gamma(s+\kappa-1)$
 $D(s+\kappa-1,\theta_{s'},\theta_v)$

By (4.6), (4.7), (4.8), and (4.9), we obtain

 $I = 2L_P(2s + \kappa - \kappa', \omega)p^{\mu}(4\pi)^{-(s+\kappa-1)}\Gamma(s + \kappa - 1)D(s + \kappa - 1, \theta_{\lambda'}, \theta_{\eta}).$

By Lemma 1 of [16], this is equal to

$$2p^{\mu}(4\pi)^{-(s+\kappa-1)}\Gamma(s+\kappa-1)L\left(s+\frac{\kappa-\kappa'}{2},\,\lambda'\eta\right)L\left(s+\frac{\kappa-\kappa'}{2},\,\lambda'\eta'^{-1}\right),$$

where $\eta'(a) = \overline{\eta(\bar{a})}$ for ideals a in $Q(\sqrt{-p})$. Putting s = 0, we obtain

$$\langle \theta_{\lambda}, F(z) \rangle = 2p^{\mu}(4\pi)^{-(s-1)}\Gamma(\kappa-1)L\left(\frac{\kappa-\kappa'}{2}, \lambda'\eta\right)L\left(\frac{\kappa-\kappa'}{2}, \lambda'\eta'^{-1}\right).$$

On the other hand, by (2.5) in [14], we have

$$\langle \theta_{\lambda}, \theta_{\lambda} \rangle = (4\pi)^{-\epsilon} \Gamma(\kappa) \frac{\pi}{3} P(1+1/p) \operatorname{Res}_{s=\epsilon} D(s, \theta_{\lambda'}, \theta_{\lambda}) .$$

As above, we have

$$D(s, heta_{\lambda'}, heta_{\lambda}) = rac{L(s-\kappa+1,\lambda'\lambda)L(s-\kappa+1,\lambda_1)}{L_P(2s-2\kappa+2,\chi_1)} \ ,$$

where χ_1 is the trivial character and $\lambda_1(\alpha) = 1$ if α is prime to p and $\lambda_1(\alpha) = 0$ otherwise. Hence we obtain

$$\langle \theta_{\lambda}, \theta_{\lambda} \rangle = (4\pi)^{-(\kappa-1)} \Gamma(\kappa) (2\pi^2)^{-1} PL(1, \lambda'\lambda) L(1, \varepsilon) ,$$

and thus

$$rac{\langle heta_{\lambda},F
angle}{\langle heta_{\lambda}, heta_{\lambda}
angle} = rac{4(\kappa-1)\pi^2}{p^{
u-\mu}L(1,arepsilon)} rac{L((\kappa-\kappa')/2,\lambda'\eta)L((\kappa-\kappa')/2,\lambda'\eta'^{-1})}{L(1,\lambda'\lambda)}$$

This completes the proof.

Appendix

I. Let $N = 13^3$, $\kappa = 2$, and $\psi =$ the trivial character. Then we find

dim $S_2(13^3, 4, 1) = 6$, and dim $S_2(13^3, 4, -1) = 8$. Let $f_{I_n}(X)$ and $g_{I_n}(X)$ denote the characteristic polynomial of T_n on the spaces $S_2(13^3, 4, 1)$ and $S_2(13^3, 4, -1)$ respectively. Then for n = 2 and 3, $f_{I_n}(X)$ and $g_{I_n}(X)$ are given by

n	$f_{r_n}(X)$
2	$X^6 - (-lpha^3 + 3 lpha + 8) X^4 + (lpha^5 - lpha^4 - 9 lpha^3 + 3 lpha^2 + 17 lpha + 15) X^2$
	$-(-\alpha^{5}-5\alpha^{4}+\alpha^{3}+17\alpha^{2}+6\alpha-1)$
3	$(X^3 - (-2)X^2 + (\alpha^2 - 5)X - (\alpha^3 - \alpha^2 - 4\alpha + 5))^2$
n	$g_{T_n}(X)$
2	$X^{*}-(lpha^{3}-3lpha+13)X^{*}+(-3lpha^{5}-lpha^{4}+24lpha^{3}+3lpha^{2}-42lpha+51)X^{*}$
	$-(-18lpha^5+108lpha^3-8lpha^2-145lpha+80)X^2$
	$+ (-17\alpha^{5} - \alpha^{4} + 91\alpha^{3} - 9\alpha^{2} - 108\alpha + 41)$
3	$(X^4 - 2X^3 + (-\alpha^2 - 5)X^2 - (-2\alpha^5 - 2\alpha^4 + 9\alpha^3 + 5\alpha^2 - 8\alpha - 9)X$
	$+ (-4\alpha^5 - 2\alpha^4 + 16\alpha^3 + 8\alpha^2 - 10\alpha - 2))^2,$

where $\alpha = e^{2\pi i/13} + e^{-\pi i/13}$. We remark the following. Let N denote the norm from $Q(\alpha)$ to Q, then

$$N(f_{T_2}(0)) = 443, \quad N(g_{T_2}(0)) = 53.79.$$

On the other hand, let $\varepsilon_0 = (3 + \sqrt{13})/2$ be a fundamental unit of $Q(\sqrt{13})$, then

$$N_{Q(\sqrt{13})/Q}(\varepsilon_0^{13}-1) = -3.53.79.443$$
.

Such a relation has been noticed in [3, Remark 2.1.] for the case $N = 5^3$.

II. Let $N = 19^{3}$, $\kappa = 2$, and ψ the trivial character. Then we find dim $S_{2}(19^{3}, 4, 1) = 12$ and dim $S_{2}(19^{3}, 4, -1) = 16$. Let $\theta_{I}(z) = \sum a_{n}e^{2\pi i n z} \in S_{2}(19^{3}, 4, 1)$ (resp. $\theta_{III}(z) = \sum b_{n}e^{2\pi i n z} \in S_{2}(19, 4, -1)$) be a primitive form associated with a Grössencharacter of $Q(\sqrt{-19})$ and $S_{I}^{0}(\text{resp. } S_{III}^{0})$ the orthogonal complement of the space spanned by θ_{I} (resp. θ_{III}). We denote by $f_{T_{n}}(X)$ (resp. $g_{T_{n}}(X)$) the characteristic polynomial of T_{n} acting on $S_{I}^{0}(\text{resp. } S_{III}^{0})$. Let α $= e^{2\pi i/19} + e^{-2\pi i/19}$ and let $(x_{1}, x_{2}, \dots, x_{9})$ denote the number $\sum_{i=1}^{9} x_{i} \alpha^{9-i}$ in $Q(\alpha)$. Then we have

In the preparation of the tables in the Appendix, we used FACOM M190 at Data Processing center of Kyoto University.

$$egin{aligned} f_{T_2}(X) &= X^{ ext{12}} - A_{ ext{10}}X^{ ext{10}} + A_{ ext{8}}X^{ ext{8}} - A_{ ext{6}}X^{ ext{6}} + A_4X^4 - A_2X^2 + A_0 \ A_{ ext{10}} &= (0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,18) \ A_{ ext{8}} &= (0,\,3,\,0,\,-21,\,0,\,42,\,0,\,-21,\,120) \ A_{ ext{6}} &= (0,\,30,\,-3,\,-210,\,17,\,419,\,-24,\,-209,\,373) \ A_4 &= (-2,\,94,\,-4,\,-655,\,76,\,1298,\,-136,\,-651,\,558) \ A_2 &= (-18,\,99,\,103,\,-687,\,-124,\,1356,\,-50,\,-711,\,351) \ A_0 &= (-21,\,26,\,145,\,-176,\,-291,\,336,\,163,\,-187,\,44) \end{aligned}$$

$$a_2 = 0, N(f_{T_2}(a_2)) = 37^2 \cdot 56536856647$$

$$\begin{split} f_{T_5}(X) &= (X^6 - A_5'X^5 + A_4'X^4 - A_3'X^3 + A_2'X^2 - A_1'X + A_0')^2 \\ A_5' &= (0,\,0,\,0,\,0,\,1,\,1,\,-4,\,-3,\,-1) \\ A_4' &= (0,\,1,\,0,\,-7,\,-2,\,11,\,9,\,3,\,-15) \\ A_3' &= (-4,\,-4,\,32,\,27,\,-91,\,-61,\,105,\,50,\,-2) \\ A_2' &= (4,\,-5,\,-26,\,32,\,59,\,-31,\,-73,\,-60,\,38) \\ A_1' &= (13,\,2,\,-119,\,-10,\,354,\,18,\,-356,\,-22,\,47) \\ A_0' &= (16,\,18,\,-113,\,-105,\,233,\,141,\,-125,\,19,\,10) \end{split}$$

$$\begin{aligned} a_2 &= 0, \ N(g_{T_2}(a_2)) = 2^9 \cdot 19^2 \cdot 5736557 \cdot 6463381 \\ g_{T_5}(X) &= (X^8 - B_7'X^7 + B_6'X^6 - B_5'X^5 + B_4'X^4 - B_3'X^3 + B_2'X^2 - B_1'X + B_0')^2 \\ B_7' &= (0, 1, 0, -7, 0, 14, 1, -6, 2) \\ B_6' &= (0, 3, 0, -21, -2, 42, 8, -17, -19) \\ B_5' &= (4, -10, -29, 67, 54, -127, -29, 49, -30) \end{aligned}$$

~

37/

 $B'_4 = (7, -27, -51, 175, 126, -335, -143, 145, 112)$ $B'_3 = (-35, 21, 254, -143, -492, 246, 243, -35, 121)$ $B'_2 = (-56, 43, 395, -236, -857, 383, 664, -133, -196)$ $B'_1 = (44, -13, -313, 109, 574, -189, -264, 0, -98)$ $B'_0 = (43, -4, -281, 6, 505, 13, -248, -32, 13)$

 $b_5 = (0, -1, 0, 7, 1, -13, -5, 3, 5)$

$$N(g_{T_5}(a_5)) = 571 \cdot 3457 \cdot 51679 \cdot 28579723 \cdot 5736557 \cdot 6463381.$$

Here N denotes the norm from $Q(\alpha)$ to Q. We remark $N(f_{r_2}(a_2))$ and $N(f_{r_5}(a_5))$ (resp. $N(g_{r_2}(a_2))$ and $N(g_{r_5}(a_5))$) have a common factor 56536856647 (resp. 5736557.6463381).

References

- A. O. L. Atkin and W. Li, Twists of newforms and pseudo-eigenvalues of Woperators, Inv. math. 48 (1978), 221-243.
- [2] P. Deligne and J. P. Serre, Formes modulaires de poids 1, Ann. scient. Ec. Norm. Sup. 4° serie 7 (1974), 507-530.
- [3] K. Doi and M. Yamauchi, On the Hecke operators for $\Gamma_0(N)$ and class fields over quadratic fields, J. Math. Soc. Japan 25 (1973), 629-643.
- [4] K. Doi and M. Ohta, On some congruence between cusp forms for $\Gamma_0(N)$, Modular functions of one variable V, Lecture Notes in Math., vol. 601, Springer, 1977.
- [5] K. Doi and H. Hida, On a congruence of cusp forms and the special values of their Dirichlet series (to appear).
- [6] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267-298.
- [7] ----, Quadratische Formen und Modulfunktionen, Acta Arith. 4 (1958), 217-239.
- [8] H. Hijikata, Explicit formula of the traces of Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan 26 (1974), 56-82.
- [9] H. Ishikawa, On the trace formula for Hecke operators, J. Fac. Sci. Univ. Tokyo **21** (1974), 357-376.
- [10] H. Saito, On Eichler's trace formula, J. Math. Soc. Japan 24 (1972), 333-340.
- [11] H. Saito and M. Yamauchi, Trace formula of certain Hecke operators for $\Gamma_0(q^{\nu})$ Nagoya Math. J. **76** (1979), 1-33.
- [12] H. Shimizu, On traces of Hecke operators, J. Fac. Sci. Univ. Tokyo 10 (1963), 1-19.
- [13] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, No. 11, Iwanami Shoten and Princeton University press, 1971.
- [14] —, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199-208.
- [15] —, Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1972), 130-190.
- [16] —, The special values of the zeta functions associated with cusp forms ,Comm. pure appl. Math. 29 (1978), 333-340.
- [17] —, The special values of the zeta functions associated with Hilbert modular

forms, Duke Math. J. 45 (1978), 637-679.

[18] M. Yamauchi, On the traces of Hecke operators for a normalizer of $\Gamma_0(N)$, J. Math. Kyoto Univ. 13 (1973), 403-411.

Department of Mathematics College of General Education Kyoto University