ON REAL IRREDUCIBLE REPRESENTATIONS
OF LIE ALGEBRAS

NAGAYOSHI IWAHORI

§ 1. Introduction

Let us consider the following two problems:

Problem A. Let § be a given Lie algebra over the real number field R.
Then find all real, irreducible representations of 4.

Problem B. Let n be a given positive integer. Then find all irreducible
subalgebras of the Lie algebra 8l(n, R) of all real matrices of degree n.

In a beautiful and fundamental paper [1], E. Cartan solved completely the
Problem B, in the sense that he gave a method to determine all the subalgebras
of 8l(n, R) by a finite process, and determined them actually for the case
n =12 for which he gave a table. As we shall see in §6, 7, the Problem A is
reduced to the one to find all complex irreducible representations and to
distinguish among them those representations which are of the first class, and
then the Problem A is easily reduced to the reductive case, i.e. to the case
where 8 is reductive. As a reductive Lie algebra is a direct sum of simple
Lie algebras, the Problem A can be further reduced to the case where 8 is
simple, as we shall see later. Now if the Problem A could be solved for every
Lie algebra 8, then one has only to look at the table to solve B. In analysing
[1] closely, we notice that E. Cartan solved the Problem B by this principle.
In several places of [1], E. Cartan has recourse to verifications for each type
of simple Lie algebras A, B, C, D and the results of verifications for exceptional
cases are stated without proof.

In the present paper, we shall solve the Problem A by the above mentioned
principle and reestablish the results of [1]. The knowledge of [1] is not
presupposed for the reader. Where E. Cartan had recourse to verifications for
each type of simple algebras, we shall be able to obtain the corresponding

results by general considerations.
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§ 2. Complex conjugates of complex vector spaces

For later use, we state here some facts about “complex conjugates” of
complex vector spases. Let V, U be finite dimensional vector spaces over the

complex number field C. A mapping f: V- U is called anti-linear if
flax + By) =af(x) + 3f(y)

for every a, SEC and x, yE V. In particular an anti-linear mapping from V
into C is called an anti-linear form on V. Let us denote by V* the set of

all anti-linear forms on V. Then by the operations
(fi+/2) (%) =f1(x) + fo(x), (af) () =a+f(x)

for fi, fo, FEV™, x€V, acC, V™ becomes a complex vector space and dis
V™ = dim V.

Now let us denote by V the dual vector space of the complex vector space
V™, ie. the vector space consisting of all linear forms on V*. Then every

€ V determines an element ¥ V as follows:
% 1) =(x 1 =f(x) for every f& V¥

and the mapping x— ¥ is a one-to-one, anti-linear mapping from V onto V.
Moreover, if A is a linear endomorphism of the vector space V, then A de-
termines a linear endomorphism A of V as follows: A% = Ax for every x in V.
Then the mapping A - A is a one-to-one anti-linear mapping from the vector
space 8{( V) of all linear endomorphisms of the complex vector space V onto
8((V).

We note that if (e;) is a base of V, then (e) is a base of V and the
matrix of A€8((V) with respect to (e;) is the complex conjugate of the matrix
of Aegl(V) with respect to (g;). We shall call V, %, A the complex conjugates
of V, x, A respectively.

§ 3. Scalar restrictions and scalar extentions

Let V be a vector space over C. Then V can be regarded in a natural
way also a vector space over R. We denote this real vector space bg} Vg and
call it the scalar restriction of V to the real qumber field R. Note that V and
Vr coincide as a set. Now if A is a linear endomorphism of the complex

vector space V, then A induces naturally a linear endomorphism Az of the real
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vector space Vxz.

If (p, V) is a complex representation of a real Lie algebra ¢, then (pg, Vi)
is a real representation of 4, where px(X) = (p(X))x for every Xe4d. We shall
call the real representation (pz, Vz) the scalar restriction of the complex
representation (p, V).

Now let E be a vector space over R. Then we denote by E” the complex
vector space which is obtained from E by extending the ground field R to C.
If A is a linear endomorphism of E, then A is extended uniquely to a linear
endomorphism A® of E°.

If (d, E) is a real representation of a real Lie algebra g, then (d°, E°) is
a complex representation of ¢, where d"(X) = (d(X))" for every X&g. We
shall call the complex representation (d°, E”) the scalar extension of the real

representation (d, E).

§ 4. Conjugate representations

Let (p, V) be a complex representation of a real Lie algebra 9. Then we
can form another complex representation (p, V) of 4, where V is the complex
conjugate of the complex vector space V, and p is defined by p(X) = p(X) for
every X 4. Since § is real Lie algebra, (5, V) becomes a complex represen-
tation of 8. We note that the scalar restrictions pr, 0r are equivalent real
representation of 8. In fact the mapping x X% from V onto V gives the
equivalence of Vz and Vz. Now let (p, V), (s, U) be two complex represen-
tations of . If (p, V) is equivalent to (s, U), then we shall say that (p, V)
is comjugate to (s, U) and denote it by g ~o. In particular, if 5 ~p, then we
say p self-conjugate. If p ~ o, then we have easily p ~ 5, so the relation of
“conjugate” is symmetric. Let us note that a complex representation (p, V) is
conjugate to (o, U) if and only if there exists a one-to-one anti-linear mapping
f from V onto U such that

foo(X) =a(X)of

for every Xe&9. In fact, if 5 ~o, then there is a linear isomorphism ¢: VU
such that ¢ » (X)) = a(X) c ¢ for every X 9. Define the mapping f by f(x)
= ¢(X), then f has all the desired properties. The converse is shown analo-

gously.
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In particular a complex representation (p, V) is self-conjugate if and only
if there is a one-to-one anti-linear mapping J from V onto itself (we shall call

such a mapping J anti-linear automorphism of V) such that
Jopo(X)=p(X)o]

for every X &g, i.e. J is commutative with every p(X) (X & 9). In this case
we say also that J is invariant by p or that p leaves J invariant.

Now let us remark that our notion of conjugate or self-conjugate represen-
tation coincides with the notion of “correlatif” or “auto-correlatif” of E. Cartan
[1] respectively, if 4 is a semi-simple Lie algebra over R. To this purpose we
shall prove the following

LemMa 1.  Let 8 be a semi-simple Lie algebra over R and (o, V), (o, U)
be two complex representations of 8. Then (p, V) is equivalent to (o, U) if and

only if the characteristic polynomials of both representations coincide, i.e.
(1) det (#7 — p(X)) = det (¢ — o( X))

for every X &8, where t is an indeterminate and I is the identity operator on
V or U.

Proof. Assume that (1) hold for every X & ¢ and let us prove that p~ag.
Let 8° be the complex form of ¢ and %) be a Cartan subalgebra of 8. Then }"
is a Cartan subalgebra of 9°. Now every complex representation (p, V) of @
can be extended uniquely to the complex representation of ¢° which we also
denote by (p, V). Then as is easily seen, (1) holds for every X& g, Now
let Ay, ....4, and 43, ..., 45 be the system of weights of representation
(0, V), (o, U) respectively with respect to the Cartan subalgebra §°. Then by
(1) we have

T (t — A(H))™ = IT (+ — A} H))"
j=1

i=1

for every HE Y, where m;, n; are the multiplicities of i, A} respectively.
Then we have » = s and .i;, . .., 4, coincide with Aj, . .., 4. together with
their multiplicities up to their order. Then, the highest weights of every
irreducible component of (p, V) and (s, U) must coincide together with their
multiplicities. Thus we have p ~ ¢ as representations of 8°. Then we have

o~ g as representations of 4.
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The converse assertion is trivial. So we have completed the proof.

CoroLLARY. Let § be a semi-simple Lie algebra over R, and (p, V), (s, U)
be two complex representation of 8. Then p ~ o if and only if the coefficients
of the characteristic polynomials of o(X), ¢(X) are complex conjugate of each
other for every Xe&4. In particular, p is self-conjugate if and only if the

coefficients of the characteristic polynomial of p(X) are all real numbers.

In [1], E. Cartan has defined the notion of “correlatif” or “auto-correlatif”
using the characteristic polynomials of representations. The relation of this
notion to our notion of conjugateness or self-conjugateness is shown in the

above corollary.

§ 5. Fundamental theorem of E. Cartan

We are now in an appropriate position to explain the fundamental theorem
of E. Cartan connecting real, irreducible representations with complex, irre-
ducible representations. Now let g be a Lie algebra over R. Let us denote
by R.(8) the set of all real, irreducible representation classes of 4 of degree #,
and by C.(8) the set of all complex, irreducible representation classes of 4 of
degree n. We also denote by R:(8), R%(8), the following subsets of R,(8):

RL(@) ={[d]e R,(@); d° is irreducible}
R%(®) ={[dleR.(2); d° is reducible}

where [d] means the representation class containing d. If [d]le& Rx(8) or
€ Ry (8), then [d] and d are called of first class or second class respectively.
We also denote by C(8), C#(8) the following subsets of C,(8):

Cr(8) =4{[p1=CA(8); px is reducible}
Ch(8) ={[p]ECn(8); pr is irreducible}

If [ole Ch(8) or & CH(9), then [p] and p are called of first class or second
class respectively. Then we have obviously

Ra(9) = Ry URN(), Ru(8)NR/(8) = empty set,
Ca(8) = CH(8)UCH(®), CH (@) NCH () = empty set.

Now let us associate to an irreducible real representation (d, E) of first class,

an irreducible complex representation (d°, E). Since from di ~ d», we have
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d{ ~dj, we have a mapping
¥.: [dl~[d"]

from R,(8) into Cn(8).

If (d, E) is an irreducible real representation of second class, then (d°, E“)
is reducible. Let V be any invariant subspace of £° such that V= E®, V= (0).
Then, denoting by x —» % the anti-linear automorphism of E° determined by E
(ie.if x=v+v—1 2, yEE, z€ E, then ¥=y—+ —1 z) and by V the image of

V under this mapping x — %, we have
(2) E°=V4+7V, VNV =(0).

In fact, since V+V =V+V, we have V+V = F+ y—1 F where F=(V+V)
NE" Then F= (0) is an invariant subspace of E. Hence we have F= E
and V+ V =E° Similarly we have VNV = (0). Thus (2) is proved. Now
V is irreducible. In fact, if V contains an invariant complex subspace U such
that U=V, U= (0), then U+ U= E° which contradicts to (2). Similarly V is
irreducible. The irreducible representations induced by d" on V, V are, as is
seen easily, conjugate to each other. Thus, we have dimzE =2 dim.V, ie. if
[d1e R%(8), then » must be an even integer.

Let us associate to [dl1e Ry (g) the irreducible complex representation
class [p] & Cnp2(8), where p is the representation induced by d° on V or on V
as above. [p] is determined up to conjugate representation class. Let us

introduce an equivalence relation = in the set Cn2(8) by
[oid = [o2] if [p] = [o2] or [p] = [p2]

and denote by Cn;2(8) the set of all equivalence class in Cn;(d) with respect

to the equivalence relation =. Then by the above mapping
R7(9) 3[d]-[p]ECnp(9)
there is introduced a mapping

¥,: [dl- (=)-equivalence class of []

from R;/(9) into Cup(8).

U In general, a complex subspace W of EC has a form W=F+~—1 F (where Fis a

real subspace of E), if and only if W=W. Moreover, if W=W, then F is given by F
=WneE.
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Now let us explain other mappings %3, #:.  Let (p, V) be an irreducible
complex representation of first class. Then (pp, Vi) is reducible. Let £ be
an invariant (real) subspace of Vz such that Ex Vz, Ex(0). Then E4+vV-1FE
and ENvy—1 E are invariant (complex) subspaces of V and we have F +
V=1 Ex(0), ENV—1 Ex V. Hence we have

(3) VR-':E+\/—1 E, Eﬂ\/—liE:’O.

Now FE is irreducible. In fact if E contains an invariant (real) subspace F
such that F= E, Fx(0), then we have VxF+ y—1 F which contradicts to (3).
Similarly v~1 E is irreducible. Moreover the irreducible real representations
induced by pz on E and V-1 E are equivalent to each other. In fact, the
one-to-one linear mapping x>y —1 x from E onto ¥ —1 E gives the equivalence
of E and V-1 E. Let d be the irreducible real representation induced by px

on E or on v—1 E, then we have a mapping

¥ [el-1d]
from Cn(8) into R.(9).
Now let (p, V) be an irreducible complex representation of second class.
Then (pr, V) is an irreducible real representation of degree 2n. Moreover,
as is remarked in §4, p and » give equivalent real representations pg, Ox.

Hence there is induced a mapping
¥.: (=)-equivalence class of [p]-[oz]

from C.(8) into R:x(8). We denote by C4(a) the subset of C»(8) consisting
of (=)-equivalenct classes containing an irreducible complex representation of

second class.

Now under these preparations, we can state the fundamental theorem of

E. Cartan as follows:

TrHEOREM 1. (i) ¥\ is @ one-to-one mapping from Ru(8) onto Cn(8). ¥,
is a one-to-one mapping from Cu(8) onto RL(8). W, and W are the inverse
mappings of each other. (1) ¥ is a one-to-one mapping from Rin(3) onto
CH®). ¥.is a one-to-one mapping from CH(8) onto RIX®). W, and ¥, are the

inverse mappings of each other.

Proof. (i) Let [d1€Ry(8). Then ¥:([d]) =[d']). Let E be the represen-

tation space of the representation d. Then E" is the representation space of
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d'. Then, putting d" =p, E' = V, let us show that pz is reducible. In fact,
we have Vi=E++vV—=1 E, ENY—=1 E = (0), and E is an invariant subspace of
V. Thus d" belongs to Cr(g) and ¥:(R%(8)) C Cn(g). Moreover, since pr
induces an irreducible real representation d on E, we have

7 (Ld]) = [d]

for every [d]€ Ru(9).

Next let [pJeCr(8). Let V be the representation space of p. Since Vz is
reducible, there is an invariant subspace E of Vi such that E x Vi, E = (0).
Then -we have Ve = E+ y—1 E, ENyYy—=1 E= (0) by (3). Then V can be
regarded as E'. Denoting by d the irreducible real representation induced by
or on E, we have then d° = p. Then we have [d] € R%(8). Thus we have
shown that ¥:(C7%(8)) CR,(8) and

7 ¥:(Lo]) = o]

for every [pleC#(a). Thus (i) is proved. (ii) Let [d1E Rix(8). Let E be
the representation space of the representation d. Then E® = V contains an
irreducible, invariant subspace U such that V=U+U, UNU = (0) (U is the
complex conjugate of U with respect to the complex conjugation of E° with
respect to E). Let p be the irreducible representation induced by d° on U.
Let us show that (pr, Ug) is an irreducible real representation. In fact, if Uz
contains an invariant subspace F such that Fx Uz, Fx (0), we have F+ F = F,
+vV—1 F, where Fo= (F+F)NE. Then F, is an invariant subspace of E such
that Fox E, Fo=(0). This contradicts to the fact that E is irreducible. Thus
we have [p]J€ C;/(8). Let us show moreover that pr~d. In fact, let us
associate to a vector #€ U a vector ¢(u) =u+#€E°. Then ¢(u)EE. The
mapping ¢: U - E thus defined induces a linear mapping ¢: Uz - E. Since
every element x €E is expressible uniquely as ¥ = # + #(u € U), ¢ is a linear
isomorphism from Ug onto E. Now let X be any element of the Lie algebra 4.
Then we have

Copp(X) =d(X) o ¢

since U and U are invariant subspaces and d(X) commute with the mapping
x-% Thus we have pr~d, and we have proved that ¥:(R;4(8))CC% (8) and

y/ﬂfz([d]) = [d]
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17

for every [d1e R:n(9).

Next, let [p1=C)/(8). Let V be the representation space of the represen-
tation b. Put £ = Vi and d= pr, then (d, E) is an irreducible real representation
of 8. Let us denote the linear automorphism x-+ —1 x of the real vector
space E by @®. Then &= — I (I means the identity operator of E). Let U.,
U- be the eigen space of the linear automorphism @  of the complex vector

space E‘ associated to eigen values y—1, —+ —1 respectively:
U.={xeE; 0 (x)=vy-1 x}, U.={x€E"; 0 (x) = —y-1 x}.

Then we have E' =U. +U-, U.NU-=(0). Let us denote by x- % the com-

plex conjugation of E” with respect to E. Then since 0 (¥) = @°(x) we have
lj¢ = U—..

Moreover U;, U- are invariant subspaces because ® commutes with every d(X)
= px(X), X€4. Thus we have [d]€ R1,(g), and then U.: and U- are irreducible
invariant subspaces of E'. Let us denote by p; the irreducible representation
induced by d“ on Us. Then p~p.. In fact, an element u=x+v--1 y€ E*
(%, yEE) is in U- if and only if x = @(y). Let us associate to an element y
of V (we note that as a set V = Vi = E) the element ®#(y) + V-1 v of U..
Then we have a mapping ¢: y - ®(y)+v—1 y from Vonto U.. Obviously
¢ is linear over R. Moreover ¢ is linear over C, becuase we have ¢(y—1 y)
=0(0y) =Py +V=1 0(y) = —y+ V=1 0(y) =y-1 ¢(y).

M(%reover, ¢ is an isomorphism. In fact, if ¢(») = 0 we have @(y) =0,
y=0, Thus ¢ is a complex linear isomorphism from V onto U;. Now let X
be any element of 8. Then, since d = pz, we have ¢op(X) = p,(X)o¢. Thus
we have shown that #,(C7(9)) C Ri4(8) and that

v, (= )-equivalence class of [p]) = (= )-equivalence class of [o]
for every [pleCi(g). Thus (ii) is proved.
Remark. Theorem 1 is also valid for associative algebras and Jordan
algebras etc. over R.
§ 6. Reduction of the Problem (A) to the complex
irreducible representations

By theorem 1 we have to consider only complex irreducible representations
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exclusively. In the following we treat only complex representation, so we say
simply representation instead of complex representation.

Now Problem A is thus reduced to the following problems:

Problem (A)): Find all irreducible (complex) representations of a given
real Lie algebra 9.

Problem (A,): Let (p, V) be an irreducible (complex) representation of 8.
Decide whether o is of first class or of second class.

Now among these problems, Problem (A,) is equivalent to find all irre-
ducible representations of the complex form §" of g. It is well-known that the
problem of finding all irreducible representation of a given complex Lie algebra
is reduced to the case of simple Lie algebras (cf. §7, 8 below). We shall
explain in the following that Problem (A.) is also reduced to the case of simple
Lie algebras.

§ 7. Reduction of the Problem (A) to the reductive case

Let ¢ be a Lie algebra over R and t the radical of 8. If (d, E) is a com-
pletely reducible real representation of 4 over the finite dimensional real
vector space E, then, as is well-known,” every element of the ideal [r, ¢] is
mapped by d to zero. Thus every completely reducible representation of ¢ is
that of ¢/[t, 1. Now ¢ = g/[t, 8] is a reductive Lie algebra, i.e. the radical ¥
=t/[t, 4] of § coincides with the center of 8. Hence we may assume without
loss of generality, in dealing with the Problem A, that g is a reductive Lie
algebra. Let 3 be the center of 8. Then a representation (d, E) Sf gis a
completely reducible representation of ¢, if and only if for every element Z&3,
d(Z) is a semi-simple linear operator of E.”

Now let a be any ideal of a reductive Lie algebra 9. Then since there is
an ideal b of g such that § =a + b, aNb = (0), the center of a is contained in
the center 3 of 4. Hence every completely reducible representation of 8 induces

also a completely reducible representation of a.

§ 8. Induced irreducible representations on ideals

Let ¢ be a reductive Lie algebra over R and a be an ideal of 8. Then there

2

cf. for example, C. Chevalley, Algebraic Lie Algebras, Ann. of Math. vol. 48 (1946).
4 cf. C. Chevalley, Théorie des groupes de Lie, III (1955), Chap. 1V, §4, #°1,
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is an ideal b of @ such that

g=a+b anNb=1(0).

Now let (p, V) be a completely reducible representation of 9. Then (p, V)
induces a representation of a over V which is also completely reducible (cf. §7).

Hence V can be decomposed into a direct sum of a-invariant subspaces:
(4) V=Vi+ Vet ...+ 7V,

where every V; is a minimal a-invariant subspace, i.e. the representation of a
induced by p on V; is irreducible. Let B be any element in b. Let us consider
a linear mapping ¢p from V; into V; defined as follows: For x& Vi, let ¢5(x)
be the Vj-component of o(B)x ie. if we write

o(B)x=vi+4 ...+, mEVrlk=1, ... ,7)

then ¢x(x) = y;. Since every Vi is a-invariant, we have ¢zo o(x) = o(X) o ¢y
for every X&=a. Then, if V; and V; are not equivalent as the representation
spaces of a we have ¢z =0 by Schur’s lemma. In other words, let Vi, ..., Vi,
be the system of all subspaces Vi in (4) which is equivalent to V; as represen-
tation spaces of a, then U = Vi, + ... + Vk, is b-invariant. Hence U is also
g-invariant. If (p, V) is irreducible with respect to ¢, then U= V. Thus we

have the following lemma by means of Jordan-Hélder’s theorem.

LemMma 2. Let (p, V) be an irreducible representation of a reductive Lie
algebra § and a be an ideal of 8. Then every minimal a-invariant subspaces of
V are equivalent to each other as representation spaces of a with respect to the

representation of a induced by o.

In this case we shall denote by V; one of the minimal a-invariant
subspaces of V, and by p, the irreducible representation of a induced by p on
Va. The representation (ps, Va) is determined up to an equivalence. We
shall call this irreducible representation (pa, Va) of a the induced irreducible
representation of a by the irreducible representation (p, V) of 8.

Now let (p, V) be an irreducible representation of ¢ and (4) be a decom-
position of V into a direct sum of irreducible a-invariant subspaces Vi, . .., V.
We may take Vi as Vi  Since V; and V; are equivalent, we can choose
equivalence mappings ¢i: V- V; with ¢ = identity. We put 50‘{ ° (<f]1')"= 90},

A

then ¢j: V;-V;is an equivalence mapping as representation spaces of a,
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Let us fix the system (90}:> of equivalence mappings. Note that 55}090]},
= ¢}. Now let C” be the Cartesian space with » complex components. Let us
construct a representation of b on C’. Let Beb. Denoting by #; the projection
from V onto V; with respect to the decomposition (4), we have a linear
endomorphism chonjop(B) of V which is commutative with every o(X), X&€a.
Then, by Schur’s lemma, ¢jomj°p(B) is a scalar operator on V;. Denote
this scalar by ¢5(B), then we obtain p(B)¢i(x) = Sei(B)eigi(x) for x& V.
Denote by s(B) the 7 X 7 matrix o(B) = (s5(B)). a(B; is a linear endomorphism
of C". Now B - 4(B) is a representation of b on C". To show this, let us
consider a bilinear mapping from Vax C” into V defined as follows: let x& V,
(=1V)), 2&C". Then we write [x, 1] =<;1./1i¢§(x) where A=(4;, ..., EC".
Then (x, 1) - [x, A1 is a bilinear map;ing Va x C" > V and obviously any
element of V can be expressed as a finite sum of elements of a form [x, ],
x& Vs, A€C". Then we obtain an onto linear mapping Va® C" > V such that
x® A-[x, 1. Since dim V = dim (V; ® C"), this linear mapping is a linear
isomorphism of V with Vo ® C". So we identify V with Vqa ® C” and write

x &1 instead of [x, A]. Now we have

(5) 0(4) (x®2) = Sip(A)¢i(x) = Si¢i(pa(A)x) = pa(A)x &2

for every A € a, and by p(B)¢i(x) = 3 (B)¢ici(x) = S165(B)¢i(x), we have
7 J

for any Beb

(6) o(B) (x®21) = S 1ip(B)¢i(x) =§Aw§-(3)so{'(x) =x®a(BN1

Then for B, B:€b we obtain by

o([By, B.]) (xR2) = p(By)p(B:) (x®1) — p(B2)p(By) (xR 1)
=x®a(B1)a(B:)A — x & 6(B:)a(By)A
=x®[o(By), o(B:)1A

that o([B:, B:]) =[o(B,), ¢(B:)] i.e.,, B->o(B) is a representation of b on C’.
Now let 7y and =y, be the projections from 4§ onto a and b respectively with

respect to the decomposition § =a+b. Then paona and oo ny are representations

of . From (5), (6) we also see that the représentation (p, V) of § is equiva-

lent to the tensor product of two representation (paoma, Va), (somy, C7):.
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p=pa>maoomy V= V,®C". -The representation (s, C") of b is irreducible.
In fact if C” contains a non-trivial ¢-invariant subspace U, then V. & (Jis
obviously a non-trivial g-invariant subspace of V= VaRC" by (5), (6).

Now let us show that (s, C") is equivalent to the induced irreducible
representation of b by the irreducible representation (p, V) of 8. In fact, let
e, ..., es beabase of Vo. Then V=2le,&C" is a direct sum of b-invariant
subspaces e; % C”, and since every e; & C'l is b-irreducible, ¢; & C” is a minimal

b-invariant subspace of V. Hence p.~0¢ by (6). Thus we have the following

LemMma 3. Let 9 be a reductive Lie algebra over R and 8 =a+ b be a
decomposition of § into ideals a, b of 8. Then every irreducible representation
(o, V) of 8 is equivalent to the tensor product of two irreducible representations
(paoma, Va) and (pgory, Vi), where o and my are projections of § onto a and

b respectively.

Conversely, if (p,, Ui) and (p., U,) are arbitrary irreducible representations
of a and b respectively, then (p;°omaT0:°2m,, (h& Us) is an irreducible represen-
tation of . To show this, let e;, ..., e be any base of U: (» = dim U.).
Then we have Ui&U. = D U, &e; (direct sum), and every U; & e; is an a-
invariant subspace of U,@JUg which is a-irreducible. Then by Jordan-Hslder’s
theorem, every minimal a-invariant subspace of [/;& U are equivalent to each
other and are equivalent to U.i. Analogously, every minimal b-invariant
subspace of U; & U, are equivalent to each other and are equivalent to U..
Now let V be any minimal §-invariant subspace of U, & U, and let p be the
irreducible representation of ¢ induced by o0;°mq 0227, on V.  Then, from
what we remarked above, we have pa~p:;, py~p0:. Then dim V=dim U;+dim
U.. Hence V=U,& U, Thus U, & U is irreducible.

Thus in order to find all irreducible representation of ¢, it is sufficient to

find all irreducible representations of a and 0. We note here that for two

4 In general, the tensor product of two representations (p1, V1), (p2, V2) of a Lie
algebra ¢ is defined as the following representation (p, V) of §: the representation space
V is the tensor product of Vi, V3, i.e. V=V1® V3, and for X4, p(X) is an endomorphism
of V given by

MX)=p(X)® L+ ®pAX), ie. p(X) (x@¥) =pt(X)x®@y+ 28 p2( X)y,

where I, I» denote the identical operators of Vi. V2 respectively. This representation
p is denoted by p=pi1c:p2 (p is also called the tensor sum of pi, c2).
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irreducible representations (p, V), (o, U) of 8, we have p~ o if and only if pa~aa
and py~0g. These facts are easily extended to the case of the decomposition
of 8 into many ideals: ¢§=a+b+4+ ... +¢ If we take in particular the decom-

position of g into simple ideals:
A=0+8%+...+8,

then, Problem (A;) is reduced to the case of simple Lie algebras.

§ 9. Criterions of self-conjugateness

Let (p, V) be an irreducible representation of a (reductive) Lie algebra 8
over R. Let us consider the condition for p to be self-conjugate. If p~p, then
there exists an anti-linear automorphism J of V such that Je p(X) = p(X) o J
for every Xe& g (cf. §4). Then J* is a linear automorphism of V which is
commutative with every o(X), X€g. Then by Schur’s lemma, J° is a scalar
operator of V: J*=cI (ceC). Now let us call (after E. Cartan) an anti-linear
automorphism J of a complex vector space V an anti-involution if J* is a scalar
operator of V. If J is an anti-involution of V and J = ¢], then ¢ is a real
number. In fact, let e, . . ., e, be any base of V. Then, putting J&; = >lale;
(a}EC), we have J e = ]Z;,e@‘d:afek. Hence, if we denote by A the cor]nplex
matrix (a?}), we have

AA = cl.

Then by ¢ 0, we have AA =AA and soc=¢. Hence c is real. If ¢>0 (¢ <0)
then J is called an anti-involution of the first (second) kind. We also say that
the index of J is +1 (—1) if J is an anti-involution of the first (second)
kind. We remark that if J is an anti-involution of index ¢ (e= +1), then for
any complex number 7y = 0, 1/ is also an anti-involution of index ¢ (Note that
G =17177).

We have seen in the above that if (p, V) is a self-conjugate, irreducible
representation, then there is an anti-involution J which is invariant by p. Now
let us note that such an anti-involution is unique up to scalar multiples. In
fact, if J and J’ are invariant anti-involutions, then J’J ' is a linear automorphismA
of V which is commutative with every p(X), X 8. Hence J' = 1] for some
7EC by Shur’s lemma. Thus the index of J is independent on the choice of J.

This index is called the index of a self conjugate, irreducible representation
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(p, V).

LEmMA 4. Let (p, V) be an irreducible representation of 8. Then p is of

the first class if and only if p is self-conjugate and of index 1.

Proof. Let (p, V) be of the first class. Then Vr contains a pgr-invariant
(real) subspace E such that

V=E+vV—1E, ENYy—-1 E=(0).

Let J be the complex conjugate operation of V with respect to E: J(x+V~1y)
=x—~+yV—=1y (x, yEE). Then J* =1 and J is invariant by p since E is px-
invariant.

Conversely let p be self-conjugate and of index 1. Then there is an anti-
involution J of V which is invariant by p and J*=17 Let E={x&V; Jx =x).
Then E is a real subspace, i.e. E is a subspace of Vz and moreover E is

invariant by pr. Now every element x& V can be expressed as x = é (x + Jx)

+ ; (x —Jx), where wehave x + Jx€Eand x — JxE{xEV; Jx= —x}=V—-1FE.
Thus we have V=E+vV—1E, ENY—1E = (0). Then E is a non-trivial px-
invariant subspace of Vk. Thus (pr, V&) is reducible and p is of the first
class. Thus lemma 4 is proved.

Thus Problem (A,) is reduced to decide the self-conjugateness and the
index of an irreducible representation. We note here a necessary condition for

a representation (p, V) to be self-conjugate.

LemMma 5. If a representation (p, V) of a real Lie algebra ¢ is self-
conjugate, then o(8) NV —=1 p(g) = (0).

Proof. Let J bz a anti-linear automorphism of V which is invariant by
p. If p(A4) = V=1 p(B)E p(8)NV—-10p(a), (A, BE ), then we have Jp(A)J™
=0(A), JW=10(B))J*=v—-10(B). On the other hand, J(¥=1 o(B))J*
= —v=1Jo(B)]'= — V=1 p(B) Therefore we have p(A) = V=1 p(B) =0
and o(8) NV =1 0(8) = (0), QE.D.

Now let ¢ be a reductive Lie algebra over R and let
3=0+8+...+0

be the decomposition of ¢ into simple ideals 4;, . . . ,8,. We shall denote by

m; the projection of § onto §; with respect to the above decomposition. Let
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(p, V) be an irreducible representation of ¢ and ¢ (7 =1, ..., ) be the
induced irreducible representations of §; by the irreducible representation p of 8.

Under these notations we have the following

LemMMA 6. p~p if and only if pi~pi fori=1, ... ,r. In this case the

index ¢ of p is given by c=r¢jes. . .er where & s the index of oi i=1, ...,7).

Proof. Assume p~p. Then there is an anti-involution J which is invari-
ant by po. Let V) be a minimal ¢,-invariant subspace of V. Then JV; is also
a minimal ¢;-invariant subspace of V as is seen easily. Then V; and JV; are

equivalent as representation spaces of ¢; by lemma 2. Hence we have p; ~ 7.

Analogously pi~p; (=1, ...,7r). Conversely assume that p;~p; (:=1, ...,
r). Let Vi, ..., V, be the representation spaces of gy, . .., o, respectively.
Then we may assume that V=V, ® ... 8 V,andp=piom@® ... D or° 7.

Let J; (i =1, ..., 7) be an anti-involution of V; which is invariant by p; and
Ji=el Then J=Ji®...®]J, is an anti-involution of V and J*'=Ji® ... ®]J;
=¢...eel. Moreover J is invariant by p, since for X=X+ ... + X, €48
(Xi€8,i=1,...,7) we have Jo(X) = (i® ... ) (o(X) ®ID...RI
+...+I®...0I80(X,)) =0(X)]. Thus we have completed the proof.
Thus Problem (A:) is reduced to the case of real simple Lie algebras by

lemmas 4, 6. In the following we shall consider this case.

§ 10. Irreducible representation of real simple Lie algebras

Let g be a real simple Lie algebra. Then the following three cases are
possible :

a) ¢ is 1-dimensional abelian Lie algebra,

b) ¢ is simple, non-abelian Lie algebra and ¢° is not simple,

¢) ¢ is simple, non-abelian Lie algebra and ¢“ is simple.
Let 8 be an abelian Lie algebra of dimension 1. Then an irreducible represen-
tation (p, V) of g is of degree 1. Obviously p is self-conjugate if and only if
every element of p(8) is a real multiple of the identity. Moreover, if p~ 7
then clearly the index of p is equal to 1. Next let us consider the cases b),
¢) simultaneously. For this purpose we consider a real semi-simple Lie
algebra 9. Let f) be a Cartan subalgebra of 9. "We denote by ! the dimension
of §. Then §° is a Cartan subalgebra of 6°. We denote by Z- Z the complex
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conjugate operation of §° with ‘respect to 8. Then we have aX+BY=ax
+BY and [X, Y]=L[X, Y] for every X, YE 2, a, B C. Let 4D «, B,
..., be the root system of §° with respect to the Cartan subalgebra .
Let A4 be a linear form on 0, then we denote by A the linear form on §"
defined by A(H) = A(F) for every HE§". Then the mapping 4 - { is an

anti-linear involution of the dual vector space (§))* of §". We have clearly

A=4

LeMMA 7. 4 = d, i.e. the mapping A— 1 induces a permutation of 4.

Proof. For a€ 4, take a root vector E, =0 in ¢". Then [H, E,]=a(H)E,
for every HE )°. Hence we have [H, E.] = a(H)E,, ie. [H, E.l=a(H)E.,.
Consequently we have a € 4, QED

Let R, be the real subspace of (§')* consisting of all linear combinations
of roots with real coefficients. Then the canonical inner product® (., .fz) on
(§")* is positive definite on R;, and R/ is an Euclidean space with respect to
this inner product (A;, 4;). The anti-linear involution .- leaves R, invari-

ant. Then by lemma 7, we have®
(7) (A1, A2) = L1, A2)

for every .1;, .L.ER;.

Let IT = {ay, ..., a;} be a fundamental root system” in 4. Then by
lemma 7, IT = {1, . . . , @;} is also a fundamental root system in 4. Hence
there is an element S, in the Weyl group W of ¢ with respect to §  such
that Sy(77) = 17°.

Now let (p, V) be a representation of 8. Then p can be uniquely extended
to a representation of 8" on V which we also denote by (p, V). Let 4 be a
weight of " (with respect to §)”) in the representation (p, V). Then 1 is a
weight of 8" in the representation (3, V). In fact, let x+0 a vector in V such
that p(H)x = A(H)x for every HEY . Then o(H)Z = A(H)%. Now we have

5) Let # be the Killing form of §¢. Then for any A= (4)*, there coresponds uniquely
an element Hpx e ¢ such that o(Ha, H) = A(H) for every H in . Then the canonical
inner product of A1, A2 (§0)* is given by ( A1, A2)=2(Hna,, Ha,).

6 cf. [2], Exposé n® 11 et 12, Théoréme 1.

" Le. every «a € 4 is expressible uniquely as 2= Sm;x; with integral coefficients m;
such that m120, ..., >0 or m1<0, ..., m=0.

8 cf. [2], Expos3 n® 16, Théoréme 1.
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+V=1 §(H) = p(Hh) +V~1 o(H) = p(Hi—V—1 H,). Hence ()% = 1(H)%
for every HE ). Consequently 1 is a weight of ¢ in the representation
(7, V).

Thus, if we denote by W(p) the set of all weights in the representation
(p, V) then we have

(8) W(o) = W(p).

A weight 4 in the representation (p, V) is called extreme if we have for
any root a, A+aW(p) or A—acE W(p). Then we have by (8) and lemma 7
the following

LemMa 8. If A is an extreme weight in (o, V), then A is an extreme

weight in (7, V).

Now let us introduce a lexicographical linear order in R; such that IT
becomes the set of all simple roots” in 4 with respect to this linear order.
Then we can speak of the highest weight in the representation (p, V). The

following lemma is well-known.

LeMMa 9.  If Ay is the highest weight in (o, V) and Ay is an extreme
weight in the irreducible representation (p, V). Then there is an element S in
the Weyl group W such that S(A;) = Ao.

Proof. Let 4. be the highest weight among the set of weights {S(4,);
Se w}. Replacing 4; by 4. if necessary, we may assume that A; = 4.. Then

A 2(4y, a)
we have SG(A;) = A1 Tx, a)

positive root « such that (4;, @) = 0, then 4; + « is not a weight in (p, V).

a € 4,. Hence we have A; — a & W(p) for every

In other words, if we denote by E. a root vector belonging to the root «, then
we have p(E.) Vi, = (0) for a > 0, where Vi, ={x &€ V; o(H)x = 41(H)x for
every HE Y}, Then easy induction shows that every subspace of the following

form

9 A simple root is a positive root which not expressible as a sum of two positive
roots. cf. [2], Exposé #* 10. Now, a lexicographical linear order in R; is defined as

follows: let ¢=3ta; 7= T7a; be in K.  Then we define :>7 if &i=m, ..., &ro1=7r-1,
&>qr for some 7, 1=r=I  Then the set of all simple roots in 4 with respect to this
linear order coincides with «y, ..., a1
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Vaw 0Es) . . 0(E)Vay, (Bi€4,i=1,...,1)
coincides with a subspace of the following form

Viap 0(Ew) .o co(Ex )V, (15€4, j=1,...,s, 1;<0).
Then by virtue of the irreducibility of V, we see that

V= VA1+ﬂ§AP(Em) PR ()(Em)I/A1 = VA, + 2 P(ET,) PR p(ET,)VAl.

TiEL, Ti<0
Thus, 4; is the highest weight in (p, V), Q.E.D.
Now let Ay, ..., A; be the fundamental weight system of 9" determined

by I, ie. Ay, ..., A be the elements in R; such that

2a; . ..
(Ai, '_((_X—i,—;—i_)_)zai]’ (lél, ]él).

Then, by (7), 41, . . . , A; are the fundamental weight system of §° determined

by 77. On the other hand, since So(I7) = 77, we have So{ 41, . . ., Ay ={A1, . . . ,
Air. ie. So(Ai) =Aaqy (=1, ... ,1) for some permutation ¢ of {1, ..., I}
Now let (p;, Vi) (i =1, ...,1) be the irreducible representation which

has 4, as the highest weight. p;, ..., o are called the fundamental represen-
tations determined by II. Then the highest weight .1} of the irreducible
representation p; is expressible in the form J4; = S(If;), where S is an element

in the Weyl group by lemmas 8, 9. Then we have

A: = SS‘)(AG"(I'))-

! . . .
Then we have .1 = A,-14, since A; and As-1;, are both dominant weights."”

Consequently, we have

(9) p_i“’()c"(i) (1= 1, .« ey 1)
Now we see that ¢° =1 by (9). Then arranging the order ay, . . ., a; if
necessary, we may and shall assume that ¢(1) =2, 0(3) =4, ...,02k-1)

=2k o(2E+1)=2k+1,...,0D)=1
Let (o, V) be an irreducible representation and A be the highest weight
of p. Then we have

d=my 414+ ...+ oyl

where mu, ..., my are non-negative integers. Then we have | = Sm;.f;

19 A weight .l is called dominant if S.{«.] for any element S in the Weyl group ¥".
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= So(Zm;ds-1i)). Consequently Zm;do-yi) is conjugate to the highest weight .1'
of 7 under the Weyl group. On the other hand, since Sm;.1,-1, is a dominant
weight, Zm;As-1;, must coincide with A': A'= Zmids-15) = EMioyAi.

Then we have p~ p.if and only if 4 = A4', in other words, we have p~7p

if and only if
(10) mMy= Mz, Ma= M4y, « « « , Mak1= Maf.

Now let us consider the index ¢ of p when p~p. Let er+; be the index of
oo+i (7=1,...,1—2Fk). We assert that

(11) e = ek, ..

To prove (11), we shall recall the definition of the Cartan composite :

Let (o, V), (6, U) be two irreducible representations of 4. Let 4, A’ be
the highest weight of p, ¢ respectively. Let W be the minimal invariant
subspace of V® U generated by Vi ® U™ and ¢ be the induced irreducible
representation by p®¢ on W. Then the irreducible representation (r, W) is
called the Cartan composite of p and s, which we denote by ¢ = p*g, W= VxU.
Then the highest weight of v is 4 + 4'. The operation * is associative and

p¥o~o*p. By the criterion (10), if p~p and o~ then we have r~7. Now

Lemma 10. Let (p, V) (0, U) be irreducible, self-conjugate represen-
tations of indices e, ¢ respectively. Then the index of v = p*o is ec'.

Proof. Let J, J' be the anti-involutions on V, U which are invariant by
o, o respectively and J®*=¢l, J®=¢I. Then J®J is an anti-involution on V& U
invariant by p®¢. We have (J®J')’ =e'-1. Now put W= V*U and decom-
pose V&®U into the direct sum of irreducible subspaces :

V@U: W1+ PORPR +Wr, (W1=W).

Let us denote by #; the projection from V&® U onto W; with respect to the
above decomposition. Then ¢;=r;°(J®J') is an anti-linear mapping from W;

into W;, and we have
¢iot(X) = r(X)o¢; for every Xea.

Since every W; is irreducible, we have then, Wi~ W; if ¢; 0. However we

) V¥V and Uar mean the eigen-spaces of A4, A’ respectively.
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have Wi~ W+ W, for every i> 1, hence we must have ¢; = 0 for every > 1.
In other words, (J®J') (Wy) = Wi. Thus, J®J induces an anti-involution on
Wi of index e'. J®J is clearly invariant by 7, Q.E.D.

Lemma 11.  Let (p, V) be any irreducible representation of 8. Then p+p

is self-conjugate and of index 1.

Proof. Let J: V®V->V®V be a mapping defined by

Jx®y) =y®X%, (x, yE V).

Then J is an anti-involution of index 1. [ is invariant by p$p:

(p@p) (X)oJ(x85) =p(X)yR®F+y (X)X =J(xR(X)y+ p(X)x )

=Jo(p®p) (X) (x®7).

Now let A= Im; A; be the highest weight of p. Then the highest weight of p+p
is given by (my+ m) A+ (mu+m2) Ao+ . .o F (Mag-1+ M2k) op + 200k 1 Aop vy +
... +2md;. Hence p*p is self-conjugate by the criterion (10). Then analo-
gously as in the proof of lemma 10, we have J( V+V) = V+V. Thus p+j is of

index 1, QE.D.
Now let us prove (11). Let us express the highest .1 of the irreducible

representation (p, V) as follows: A=my i+ ...+ mA. Then, we have
) -times ny-times
e eee——
D=P1% « o % P1%k e oo %P0k o ok pL

Consequently, by lemmas 10, 11, we have (11). (Note that 7~ 02, ps~ oy,

., Pek-1~p2k). Thus we have the following

THEOREM 2. Let § be a real semi-simple Lie algebra and Y) be a Cartan

subalgebra of 8. Let ay, . .., a1 be any fundamental root system of 0" with
respect to the Catyan subalgebra 0 of 8. Let .y, ..., A be the fundamental
weights of 8 determined by ay, . ..,ar. Let v, ..., o be the irreducible
representations of 8 whose highest weights are .1y, . . . , A respectively. (The
linear order between weights is determined by «i, . . ., aj).

(i) Then there is a permutation o of 1, . .., 1 such that

Doy ~ Ui (i=1,...,D,

and & = 1.

(27) Let us arrange the order of ay, . . . , a1 S0 that p1~ s, Po~ 04 « « « » Prh-1
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~ Uok, D2ke1™~P2k+1, - - - , pi~p 0 (2). Let exrvj be the index of pwe+; (=1,
...,1—=2Fk). Let (p, V) be an irreducible representation of & with the highest
weight

A=mli+mede+ ... +mud,

then the highest weight of o is given by

ma A1+ mi s+ maids+ma A+ - . o+ Map Asp-y + Mzp-142

+ Mok dokrr+ o o+ A,
and o is self-conjugate if and only if
My =My, Mz =My, . .., Mak—1= Mk,
and then the index ¢ of o is given by

Mzk+1 my
€= €Eht+1 o+ « + &

§11. A Criterion in Case ()

As an application of Theorem 2, let us consider the case where g is a
real simple Lie algebra such that g¢° is not simple. In this case 4" is a direct

sum of two (complex) simple ideals™ :

0

g =a+a

where bar means the complex conjugate operation of ¢" with respect to 4.
Then the scalar restriction ag is isomorphic with § under the mapping x> X
+ X(X€ag). Let b be any Cartan subalgebra of a. Then h={X+X; Xe&b}
is a Cartan subalgebra of g as is seen easily. Further b is a Cartan subalgebra
of @, and we have §' =9+ 5. Let 4, be the root system of a with respect to b.
Then every a € 4; is extended to a linear form on §)* (which we also denote
by «) putting «(X) =0 for every Xeb. Then a becomes a root of 4¢“. Thus
we can regard that 4, is a subset of the root system 4 of 8" with respect to
the Cartan subalgebra If. Then, 4; is the root system of & with respect to b.
Let

Hl:{“l) Y )ak>) ﬁlz(aly .. y&k}y

be fundamental root systems of a, i respectively. Then

12) This is seen analogously as in the formula (2).
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H={ay, ..., ar, @1, ..., aTk).

is a fundamental root system of § .
Now let {.1;, ..., .I} be the fundamental weight system of a determined by
{as, ..., ar}. Then {{y, ..., 1} is the fundamental weight system of @
determined by {@;, . .. ,@r}. Then{d;, ..., .dx, A1, ..., dxr the fundamental
weight system of ¢° determined by {ai, ..., @k, @, ..., &) Now let p,

., o be the fundamental irreducible representations of a with highest
weights .1y, ..., Ax respectively. Then 5, ..., p. are the fundamental
irreducible representations of @ with highest weight .1, . .., .1 respectively.
Let us regard py, . . . , Pk, 61, - - . , Pk as representation of 8. Then oy, . . . , ok
71, - .., ok are the fundamental irreducible representation of ¢ determined by
Aty ooy Qky &y oo o, Tk

Now let (p, V) be an irreducible representation of § with highest weight .1.
Put .1= i:"“‘“ - i_‘{ midi. Then, by Theorem 2 we see that o is self-conjugate
if ane onlldy if m; =’7_nf- (=1, ..., k). Moreover, if ¢ is self-conjugate, then the
index of p is necessarily equal to 1. Now let us extend the representation (p, V)
to the representation of ¢ (this representation is also denoted by (p, V)).
Let o,, 0; be the induced irreducible representation of a, @ respectively by p.
Then the highest weight of i, 02 are Sm;.1;, Im;.[; respectively. In fact, let
XE Va, x%0. Then we have p(H)x= A(H)x, (HEY ). If we put H= B, + B-,
(B,, B:€V), then

o(HDx = (Zmi A:{(By) + Smi1i(B2))x.
If Heb, then B: =0, and we have

o(H)x = (Zm; A4;(H))x

Thus Sm;.1;, Smid; are weights of a1, .. If o, has a weight .1 higher than
Sm;.1;, then .I'+ Smi A is a weight of p higher than .f. This is a contradiction.
Hence Xm;.l;, Im; A; are highest weights.

Now ap=~az by the canonical isomorphism X- X (X€a,). If we identify
ag and ax under this isomorphism, then ¢;, ¢ can be regarded as the represen-
tations of ax. Then we have m; = m; (i=1, ..., k) if and only if ,~¢: as

the representation of ax. Thus we have the following
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TueoreM 3. Let & be a simple Lie algebra over R such that 9 is not
simple. Let 8" =a+a be the decomposition of 8 into simple ideals. Let p be
an irreducible representation of 9, and o1, o2 be the induced irreducible represen-
tation of a, T by the extension of v to 8. If we identify ar, Tr under the
isomorphism X— X (XEa), we can regard o, o as representations of ar. Then
p~ 0 1f and only if G, ~ a2 as representations of ar. If p ~ 9, then the index
of vis 1

§12. An application to self-contragradient representations

Let § be a semi-simple Lie algebra over C. Let (p, V) be a representation
of 4. Let us denote by (p*, V*) the contragradient representation of (g, V),
ie. V*is the dual vector space of V and o* is given by p*(X) = —‘u(X) for
any Xe43. (p, V) is called self-contragradient if p~ ™.

Now let § be a compact real form of 4. Let us denote by |8 the re-
striction of a representation p to 8. Then, since any continuous representation
of a compact group is equivalent to a representation by unitary matrices, we
have (p|8)*~ (p[g) for any representation p of g. Moreover, two represen-
tations of § are equivalent if and only if their restrictions to 4 are equivalent.
Since we have p*|8~ (p|@)*, the problem of the self-contragradience of a
representation p of § is reduced to that of the self-conjugateness of 0!8, i.e. we
have p~p™ if and only if (o|g) ~p!8. Then we can apply theorem 2. Let §) be
a Cartan subalgebra of 4. Let ai, ..., a; be any fundamental root system
of § with respect to §°, and Ay, ..., A be the fundamental weight system
determined by ai, ..., a;, and p;, ..., pr be the irreducible representations
of § whose highest weights are A, . .., .d; respectively.

Then, by theorem 2, there exists a involutive permutation ¢ of 1, ...,/
such that psiy~pi (i=1,...,10). ‘

Now, let o be an irreducible representation of § with the highest weight
A= g,m[ Adi. Then the highest weight of p* is given byi‘é msiy di.  Hence p

is self-contragradient if and only if mi=mu (i=1, ..., 1.
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