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Abstract

Recursively presented topological spaces are topological spaces with a recursive system of basic
neighbourhoods. A recursively enumerable (r.e.) open set is a r.e. union of basic neighbourhoods. A set
is everywhere r.e. open if its intersection with each basic neighbourhood is r.e. Similarly we define
everywhere creative, everywhere simple, everywhere r.e. non-recursive sets and show that there exist
sets both with and without these everywhere properties.

1980 Mathematics subject classification (Amer. Math. Soc): 03 D 45, 54 A 05

Kalantari and Retzlaffs [7] saw the first introduction of recursion theoretic
methods, in particular priority arguments, to the study of effectiveness in topol-
ogy. Subsequently Kalantari and others have extended this work (see, for exam-
ple, [4]-[10]).

Topology is just one branch of mathematics to be studied in an effective setting
in the spirit of the programme begun by Metakides and Nerode [11]. Earlier work,
in particular Frohlich and Shepherdson [1] and Rabin [12], considered the
application of recursion theory to algebra (basically field theory) and did not use
priority arguments but was restricted to diagonalization arguments. Of course
these arguments are used for negative results; for a long time positive results have
been achieved by the explicit construction of algorithms.

In the present paper we treat recursively presented topological spaces which
have also been considered by Hingston [2, 3]. They are related to Kalantari et
al.'s fully effective topological spaces but here we only consider countable spaces.
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106 Li Xiang [2] 

An extension to uncountable ones may be possible (see below). Our main 
contribution is the introduction of the notion of "everywhere" properties. Thus a 
set is everywhere r.e. open if it is r.e. open in every neighbourhood. (R.e. open is 
defined formally below, but roughly speaking means an r.e. union of neighbour
hoods (basic open sets).) We consider everywhere creative, everywhere simple, 
everywhere hypersimple, everywhere hyperimmune, everywhere incomparable and 
everywhere r.e. non-recursive sets. Our methods are standard recursion-theoretic 
ones put into a topological setting. The principal technique is the finite injury 
priority method. 

1. Recursively presented topological spaces 

First we introduce Kalantari and Retzlaff s definition of an effective topologi
cal space. 

DEFINITION 1.1 (KALANTARI & RETZLAFF [7]). Let A" be a topological Haus-
dorff space and A be a countable base for the topology on X. We say (A', A) is 
an effective topological space if the following properties hold. 

TOPOLOGICAL PROPERTIES. 
(1) A is closed under finite intersections. 
(2) 0 , X e A. (The elements of A are called basic open sets.) 
(3) No basic open set can be written as a disjoint union of two or more 

nonempty basic open sets. 
(4) Every nonempty basic open set contains two disjoint nonempty basic open 

subsets. 
We assume a one-to-one Godel numbering of the A. For S e A, \ 8] denotes 

the Godel number of 8 and for x e u , [x\ denotes the basic open set with 
Godel number x. We assume that [ ] and I J are inverses. 

RECURSION-THEORETIC PROPERTIES. 
(1) There is a partial recursive binary function \p such that for all x, y e <o, 

[x\ N [y\ e A implies \p(x, y) converges and [\p(x, y)\ = [x\ N [^J. 
(2) There exists a uniform effective procedure which determines whether or not 

S C E J U • • • Ue„, where 8, ev..., e„ e A. 
Now we introduce the definition of a recursively presented topological space. 

DEFINITION 1.2. Let (A', A) be an effective topological space. We say (A', A) is 
recursively presented if (A", A) satisfies the following axiom (*): 

(*) X e 5 is a binary recursive relation in A" X A. 
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It follows at once that a recursively presented topological space is countable.
However, we conjecture that many of our results will also hold for uncountable
spaces if instead of using (*) in our constructions, we use the fact (see Lemma 1.3
below) that {(/', j): 8, c Sj} is recursive and instead of using a point x with
x G 8 use a basic neighbourhood Sx with 8X c 8 in those constructions. How-
ever, we have not had the opportunity to check this.

The following basic lemmas are simple but useful fundamental results on
recursively presented topological spaces.

BASIC LEMMA 1.3. Let (X, A) be a recursively presented topological space. Then
for all 8 e A, either 8 = 0 or 8 is an infinite recursive set.

PROOF. By the axiom (*), {x: x e 8} = 8 is recursive. By Definition 1.1,
topological property (4), it follows that if 8 + 0 then 8 is infinite.

Note 1.4. It follows from the Basic Lemma 1.3 and the recursion theoretic
properties in Definition 1.1 that, without loss of generality, we can assume that
X = (0,1,2,. . .}, A = {8,-},-<=„, and 80 = 0. Moreover, we can assume / = 0 <->
S, = 0 . Throughout the remainder of this article we take (A', A) to be a
recursively presented topological space, X = w, A = (8,},e a ) and we shall write
A* for A - {0} .

BASIC LEMMA 1.5. The following sets are recursive

(l){<i,7>: '6«>}.
(2) {/:«,.= 0 } ,
(3) {</,./>: «,. = «,.},
(4){<U>:S,c8,} ,
(5) « U > : S, n 8, = 0} ,
(6){(i,j,l): 8,^8^8,}, and
(7) {</, 7, 0:8,-U «,. = «,}.

PROOF. The proofs are immediate from the axiom (*) and the recursion
theoretic properties in Definition 1.1.

The next basic lemma shows that there is a uniform effective procedure which,
given a non-empty basic neighbourhood, produces an infinite set of disjoint
subneighbourhoods of the given neighbourhood.

We use a standard recursive pairing function ( , ): to X cc —» u with recursive
inverses /, r such that
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BASIC LEMMA 1.6. There exists a recursive function f(i, j) such that for all) e w,
// Sj is non-empty then

Vi(&/(IJ)* 0)& U « / ( / , J , ) e« ,&Vi l , i 2 ( i 1 ^ i 2 =»8 / { l W ) n8 / ( l W ) = 0 ) .
/'<

PROOF. Let y e «.

Case (i). if Sj = 0, define / ( / , j) = 0 for all i e <O.

Case (ii). if Sy =£ 0 , define JC/, ê ', and e'J as follows.

0.

J0 = tix{Slix) n 5r(x) = 0 & «,(J() U 5r(x) c Sj & «/(JC) ^ 0 & 6,(x) # 0 ) ,

eo =

£ =

Stage t = s + 1.

x/ = /**(«,(*) n 5r(x) = 0 & fi/(je) u Sr(x) c £y & 8I(X) # 0 & «r(Jl)

By the Basic Lemmas 1.3 and 1.5, the construction is effective, so there exists a
recursive function / such that for all /', j

(0, iffi,.= 0 ,

Then, by the construction, / satisfies the condition of Lemma 1.6.

2. R.e. dense sets

In this section we consider the notion of denseness in the context of a
recursively presented topological space.

DEFINITION 2.1. Let A c X be an open set in the space X. We say A is an r.e.
open set if there exists a recursive function / such that A = U, < w6y(0.
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[5] Nonrecursive r.e. sets 109

Note 2.2. 0 , X are r.e. open sets.

PROPOSITION 2.3. If A and B are r.e. open sets, then A U B and A D B are r.e.
open sets.

PROOF. Suppose / and g are recursive functions such that A =U( < wfy( , ) ,
B = Ui<u8g(i). Define a recursive function h by h(2i) = / ( / ) , h(2i + 1) = g(i).

By recursion-theoretic property (1), [<//(/(/), g(y))J = Sf(i) n 5 g 0 ) . Hence the
function £ is recursive where k(z) = \p(fl(z), gr(z)), and A D B = Ui<u8kii) by
the infinite distributive law for sets.

DEFINITION 2.4. Let K c X be an open set and A c X a r.e. set. 4̂ is said to
be r.e. dense in K if A is dense in .K, that is, for all i e w,

S, c /s:&5/. # 0 imply 5, n A # 0 .

PROPOSITION 2.5. Let K be an r.e. open set. Then there exists a recursive set
A c K such that A is dense in K.

PROOF. Case (i). If K = 0 , then A = 0 satisfies the proposition.
Case (ii). If K =t 0 , we give a construction for enumerating 4̂ in successive

stages. Let A(n) be the members of A which have been enumerated by the end of
stage n. By Definition 2.1 and Basic Lemma 1.5, there is a one-to-one recursive
function / such that K = U, < u 8 / ( / ) .

Stage 0. Set A(0) = 0, £ 0 = 0 .

Stage / = s + 1.

(i). If 3/ < i(5, n (U 7 < ( 5 / 0 ) ) ) # 0 and / £ £ „ define

i, = M/ < j U . n ( U «/(») * 0 & i e E s \ ,

, s { , } ,

a, = naia > MaxA(s) &a e 8^ C\l \J 8fU)\ ,
\ ' \j*zt 'I
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110 Li Xiang 16) 

Case (ii). Otherwise, AU) = A<s\ E, = Es (end of construction). 
Clearly the construction is recursive, so A =UJ<U1A<-J) is an r.e. set and 

A c K. It is clear from the fact that the open set K ¥= 0 and Basic Lemma 1.6 
that A is infinite. Observe that for all slt s2 

s2> sx&a' e A^ & a" e A^ - A^ imply a" > a', 

and hence A is recursive. It remains to show that A is dense in K. 
We first show that it is sufficient to prove that if 8, c K and 8( # 0 then there 

exists t such that / e £,. 
Since £ 0 = 0 we then have t = s + 1 for some 5 . In this case i = ;', and for 

the corresponding a,, we have a, e 8 , n U 7 5 ! ( 8 / ( 7 ) and also n , e i Therefore 
8,• n # 0 . 

Suppose then, for a contradiction, that for some /, 8, c A-, S, # 0 and yet 
/ £ £^ for all ^. Let /' be minimum with this property. Now 8: c K and 8, =̂ 0 
imply 8j (~) K =t 0 so for some s and all r > s 

8,n U S / o ) ^ 0 -

Now if y < ;', the assumption that / is minimum implies j e £ K for some Uj. Let 
/ be the least number such that t ^ s, t > i and t > Max{w7: j < / '}. Then 
? = 5 1 ' + 1 for some and / is the least number such that / < s, 8, n U y < / 8 / 0 ) 

# 0 and /' £ But then, by the construction, i = /, and / e £,, which gives 
the required contradiction. 

By Lemma 1.6, given any r.e. open set K we can find two disjoint basic open 
sets within K. Therefore if we apply the construction in Proposition 2.5 to one of 
these basic open sets, we obtain the following corollary. 

COROLLARY 2.6. / / K is an r.e. open set, then there exists a recursive set A not 
dense in K. 

Corollary 2.6 shows that Proposition 2.5 is not trivial. We shall use this 
technique several times to establish non-triviality. We can establish a stronger 
result as follows. 

THEOREM 2.7. Let 0 be a r.e. open set, and A a recursive set. If A is dense 
in K, then there exist recursive sets Ax andA2 both dense in K such that 

AlUA2 = A and Ax n A2 = 0 . 

PROOF. Stage 0. Set B[0) = 0 , B(

2

0) = 0, E0 = 0 . 
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[ 71 Nonrecursive r.e. sets 111

Stage t = s + 1. Case (i). If 3/ < s[(A n 8,. n (U7<,8/O))) # 0 and i € £,)],
define

i, = ni < 5 L n 5,. n f U 8

a> Max(B{j)U5^)and a e I A nS^ni \J SfU)\

b, = \ib b> Max(B[l) U B^) and b e I 4 n 8, n ( U «/o)) I

(ii). Otherwise, define

D(0 _ D(s)
°\ ~ "\ •>

Then 4̂j = fix and A2 = A — Bl satisfy the theorem for the following reasons.
Observe that in the construction, if t < t' then a, < bt < a,, < bt, and that b, can
be found since if A n 8, n U y < , 8/(y) is non-empty then it is infinite (by Basic
Lemma 1.6). The fact that Bx, B2 are infinite, recursive and dense in K follows,
as in the proof of Proposition 2.5. It then follows that A — Bx which contains B2

is infinite, recursive and dense in K.
As in Corollary 2.6 above, part (b) of the following theorem shows part (a) is

non-trivial. As usual We is the eth r.e. set in an acceptable enumeration.

THEOREM 2.8. (a) There exists a non-recursive r.e. set A which is dense.
(b) There exists a non-recursive r.e. set A which is not dense.
(c) If A is a non-recursive r.e. dense set, then there exist non-recursive r.e. sets

Ax and A 2 such that both Ax andA2 are dense and

AXUA2=A &.AX nA2= 0 .

PROOF. Take a simple set A. Then A is a non-recursive r.e. set and A intersects
every infinite r.e. set, and hence A is dense and therefore A satisfies (a).

To show (b), let A = {/(/): i G. Wt), where / is a one-to-one recursive
function such that

3 /, j : 8t* 0 &8j* 0 & 8, n 8j = 0 & 8, = { / ( / ) : / < a }.

Then A satisfies (b).
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PROOF OF (C). Using the Sn
m-theorem define a recursive function / such that

Wf(j) = A n 8,. Since A is dense, by Lemma 1.6, for all /,

8, =£ 0 implies Wf(i^ is an infinite set.

We construct an r.e. set B as follows, where W/, denotes the finite subset of the
/th r.e. set enumerated at stage t.

Stage 0. fi(0)= 0 , Eo= 0.

Stage t = s + 1.

(i). If 3 / < 5(/ £ Es & Wf(i)y, # 0) define

/ , = /x/ < s(i••€ Es & Wf(i) j * 0),

b, = nb(b G Wf0)&b>

Case (ii). Otherwise, define B(l) = fi(j), E, = ES. Then 5 = U J < u 5 w c ^
and fi is r.e.. Since, for all /', 8, =£ 0 implies W (̂() is infinite, the same technique
as in the proof of Proposition 2.5 shows that B is infinite, recursive and dense.
Hence A — B is a non-recursive r.e. set. By Friedberg's theorem [3] there exist
sets B{ and B'2 such that B[ and B'2 are r.e. but not recursive and

B[ U B'2 = A - B & B[ n B'2 = 0 .

Then define ^ = Bx U J5{, y42 = 5 2 U 5 2 , where B1U B2 = B and B[ n B 2 =

0 and 2?1? 2?2 are each dense by Theorem 2.7, so Av A2 satisfy Theorem 2.8(c).

3. Everywhere properties

In this section we introduce the notion of everywhere properties. Intuitively a
property is an everywhere property if it holds in every basic neighbourhood. The
following definition covers many cases.

DEFINITION 3.1. Let & be a property of sets. A set A c X is said to be
everywhere @ if, for all /,

8, =* 0 implies A n 8, has property @.

Thus y* C X is everywhere r.e. non-recursive if, for all i, A n 8, is a r.e.
non-recursive set.
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[9] Nonrecursive r.e. sets 113

PROPOSITION 3.2. A is everywhere non-recursive implies
(a) A is dense,
(b) X - A is dense.

The next theorem shows that some r.e. non-recursive sets are everywhere r.e.
non-recursive and some are not. However, we shall defer the proof of part (b) as
it is a corollary of a later result.

THEOREM 3.3. (a) There exists an r.e. non-recursive set A which is not everywhere
r.e. non-recursive.

(b) There exists an r.e. non-recursive set A which is everywhere r.e. non-recur-
sive.

PROOF. Part (la) follows from Theorem 2.8(b) and Proposition 3.2(a). Part (b)
follows from Proposition 4.2(d) and Theorem 4.4(a) below.

In order to introduce an appropriate definition of everywhere creative, we have
to depart slightly from Definition 3.1.

DEFINITION 3.4. A c X is said to be everywhere creative if (i) A is r.e. and (ii)
for all / e «, 8, =*= 0 implies 5, — A is productive.

Note that A is r.e. implies that A is everywhere r.e. and similarly for recursive.
The next theorem shows the existence of sets which are and are not everywhere

creative. For part (a) we use a simple technique related to that for establishing
Corollary 2.6.

THEOREM 3.5. (a) If A is everywhere creative then A is creative.
(b) There exists a creative set A which is not everywhere creative.

PROOF, (a) Trivial.

(b) Let /, j be such that 8, * 0 # 8y and 8, n 5, = 0 . Let / be a one-to-one
recursive function such that 8, = {/(«): n < « } . Let A = {/(«): n e Wn).
Then, for all n e w, n e Wn «-» / ( « ) e A. Hence {n: n e Wn) «£ 1 A and A is
therefore creative. But A n Sj = 0 , and therefore A is a creative set which is not
everywhere creative.

Finally we introduce a definition and two lemmas due to Hingston [2].

LEMMA 3.6. There is an algorithm which, given a basic open set 8 and distinct
elements x, ylt..., ym in S, produces basic open sets ex, e1,...,em such that ex c 8,
e. c 8, x e ex, yt e e. and ex C\ 8,, = 0 for i = \,...,m.
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PROOF. First observe that since X is Hausdorff, 8mP\ 8n=t 0 and x G 8n are
recursive, then given two distinct points x and y we can find numbers kx and ky

such that x G 8k, y ^ 8k and Skxn Sk = 0.
It follows that for / = 1 , . . . , m, we can compute kt, /, such that x G 8A. and

^ G 8, = 0 . Let ex = 8 n 0(8*.: / = 1 , . . . , m} and e,, = 8 n 5,.. Note that the
Godel numbers of ex and the e, can be computed using the \p function of
recursion-theoretic property (1) of Definition 1.1.

In the obvious way we call a collection T = (y,: i G « } , of basic open sets, an
r.e. collection if the set {[•/,•]:/ G u} is r.e.

DEFINITION 3.7. An r.e. collection of basic open sets is said to be a partition of
a set A c X if

(i) y, # 0 for all i e «,
(ii) / ^ y implies y, n y ; . = 0 ,

(iii)U{y,: i ^ u) Q A, and
(iv) U{y,: / G to} is dense in A.

LEMMA 3.8 (HINGSTON). Let X be a recursively presented topological space and

A c X an r.e. open set. Then X contains a partition for A.

PROOF. We shall construct a recursive function / in stages and define y; = 8/(/);
/•* will denote the part of / constructed up to stage s. Since A is r.e. open,
A = \J{8n: n (a We) for some e and we let A(s) = \J{8n: n G Wes) where Wes is
the set of elements of Wt enumerated by stage s.

Construction. Stage 0. / ° = 0 .

Stage s = t + 1. Effectively find the least n such that 8n * 0,8ncAis) and 8n

is disjoint from U{Y,: » ' < / } . Such an « exists since the construction will ensure
U{ Y,- ' < t} is not dense in A. Since 5n # 0 , 8n is infinite and since 8n c ^4(i) we
can compute two elements x, y & 8n.

By Lemma 3.6 we can find basic open sets 8k, 8/ c 8n such that 8k n 8, = 0 ,
x ^ Sk and ^ G 5,. Set /(.s) = A:. Note that U{Y,: / c 5} is not dense in A since
it does not meet 8,.

Finally put / = Ufs, T = {y,: / G W) (end of construction).
By construction, T is an r.e. open set. T is dense in A since if 8n did not meet

U{ y,: i e 01} there would be a stage when 8n did not meet U{ y,: / < t} and n was
least. At that stage a subneighbourhood of 8n would be put into T.
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4. Everywhere simple sets

DEFINITION 4.1. (a) We say A is simple in 8, if

(i) A n 8, is a r.e. set,
(ii) 8, — A is infinite, and

(iii) for all j , Wj c 8, & Wj is infinite imply Wj n A ¥= 0 .
(b) We say that A is a« everywhere simple set if, for all /',

8, =£ 0 implies A is simple in 8,.

PROPOSITION 4.2. (a) ,4 is simple <=> 1̂ w simple in X.
(b) /I is everywhere simple => ̂ 4 w simple.
(c) 4̂ is everywhere simple => V/'(8, =£ 0 => fi(. — v4 « immume).
(d) 4̂ « everywhere simple => y4 w a« everywhere non-recursive r.e. set.

PROPOSITION 4.3. Lef 4̂ fee an r.e. set. Then A is everywhere simple if the
following hold for all i e to:

(a) Wt is infinite => Wt n A ^ 0 and
(b) 8, # 0 =>8, - ^ =jt 0 .

PROOF. ,4 is r.e. implies A n 8, is r.e., so (i) of Definition 4.1 holds for all /.
Condition (a) trivially implies condition (iii) of Definition 4.1 for all i.
We now show (b) implies condition (ii) of Definition 4.1 for all i. Condition (b)

says that every non-empty basic neighbourhood meets the complement of A (in
X). Now by Lemma 1.6, every basic neighbourhood contains two disjoint basic
subneighbourhoods. These in turn contain at least two distinct points not in A.
By induction it follows that every basic neighbourhood contains an infinite
number of points not in A. Hence, for all i, 8, # 0 implies 8, - A is infinite.
That is, condition (ii) of Definition 4.1 holds for all /.

THEOREM 4.4. (a) There exists an everywhere simple set.
(b) There exists a simple set which is not everywhere simple.

PROOF, (a) By Proposition 4.3, it suffices to construct an r.e. set A meeting the
requirements

Pe: We is infinite implies We n A ¥= 0 ,

Ne: Se # 0 implies 8e - A # 0 .

The priority ranking of the requirements is No, Po, Nt, Pv A(s) consists of the
elements enumerated in A by the end of stage s. To aid in meeting Ne, given A(s),
define, for all e, the restraint function
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r(e, s) is a recursive function because {A(s)}s(£a is a recursive sequence of finite
sets.

Recall that We is the eth r.e. set and We s is the finite subset of We enumerated
in s steps.

Construction of A. Stage 0. Let A(0) = 0 .

Stages + 1.

Case (i). 3 / < s[Wis n ^ w = 0 & (3x)(x e H^ & (Ve < /)(r(e,i) < x))].
Define

is+1 = ni^s[wiSnA(s>= 0

and say P, receives attention.

Case (ii). Otherwise, define A^s+l) = yl(i) (end of construction).
We say that x injures Ne at stage s + 1 if x e ,4<i+1> - ^(i> and x < r(e, s).

Define the injury set Ie for JVe as follows: Ie = {x: (3s)[x e ^ ( j + 1 ) - y4w &
x < r(e, s)]}.

LEMMA l.(Ve)[Ie is finite].

PROOF. By construction, each positive requirement Pt contributes at most one
element to A, and Â e can be injured by Pt only if 1 < e. Hence, Ie is a finite set.

LEMMA 2. For every e, requirement Ne is met and r(e) = lim, _oor(e,s) exists.

PROOF. Fix e. By Lemma 1, choose se such that Ne is not injured at any stage
s > se. Then for any s > se, r(e, s) = r(e, se) and r(e) = r(e, se) e Se- A.

LEMMA 3. For every i, requirement P, is met.

PROOF. Fix / such that Wt is infinite. By Lemma 2, choose s such that

Choose s' > s such that no Pj with j < i receives attention after stage s'. Choose
t > s' such that

(3x)[x e Witt &(Ve ^ i)[r(e) < x]].
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Then either Wit O A(t) ¥= 0 or else P, receives attention at stage 5 + 1. In either
case Wi<t n A(t+1) # 0 , so P, is met by the end of stage t + 1.

(b) Let ^ be everywhere simple. Take 5, and 8y such that 8, =£ 0, Sj ¥= 0 , and
8, n 8j. = 0 . Then ,4 U 8, is a simple set which is not an everywhere simple set.

We can now complete the proof of Theorem 3.3(c). By Theorem 4.4{a) there is
an everywhere simple set. By Proposition 4.2(d) this set is everywhere r.e.
non-recursive.

THEOREM 4.5. There is an everywhere simple set A which is low (that is,
A' = T 0' where = T means "Turing equivalent to").

PROOF. It suffices to construct an r.e. set A to meet, for all e, the requirements

Pe: We is infinite implies WeC\A± 0 ,

Ne: 8e± 0 implies Se - A # 0 &(3X s)[{e)f)(e)l => eA(e)i],

where f(x)l means f(x) is defined and f(x)r means f(x) is undefined. The
requirements (Ve)(30°5)[{e}^(<'>(e)i => {e}A(e);] guarantee A' < T 0', where
(3 °° s) denotes " there exist infinitely many s such that".

The priority ordering of requirements will be No, Po, Nx, Px, First, we
define the use function

u(A(s);e,x,s) =

m + 1, where m = the maximum element used in the

computation of {e}f'\x), if {e}f'\x)i,

t,

and the restraint function r(e,s)= Max{Min(8e — A(s)), u(A(s); e, e, s)}. Then
r(e, s) will be a recursive function because { A(s)}, 6 u is a recursive sequence.

Construction of A. Stage 0. Let A(0) = 0 , £ 0 = 0 .

Stag* 5 + 1. Case (i): 3 j < s[Wls n y4(i) = 0 & (3x)(x e ^ , & (Ve <
i)(r(e,s) < x)). Define

and say that P, +i receives attention.
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Case (ii). Otherwise, define A(s+1) = A(s\ Es+l = Es (end of construction).
We say that x injures Ne at stage 5 + 1 if x e A(s+l) - A(s) and x < r(e, s).

Define the injury set, Ie, for Ne as follows

Ie= {x: x injures Ne at some stage s}.

LEMMA 1. (y/e)[Ie is finite].

PROOF. By construction, each pointwise requirement Pt contributes at most one
element to S, and Ne can be injured by Pt only if /' < e. Hence Ie is a finite set.

LEMMA 2. For every e, requirement Ne is met and r(e) = l i m s _ „ r(e, s) exists.

PROOF. Fix e. By Lemma 1, choose a state se such that Ne is not injured at any
stage s > se. Then for any s > se, r(e,s) = r(e,se). If {e}f'\e) = {e}f'\e) for
all / > s, then {^}/l(e)i by the Use Principle (see [14, p. 18]). It is clear that
Min(Se - AM) G « e - A.

LEMMA 3. for every i, requirement />,- is met.

PROOF. Fix / so that Wt is finite. By Lemma 2, choose s such that

Choose s' > s such that no Pj, j < i, receives attention after stage s'. Choose
t > s' such that

(3x)(x e Whl&(Ve < i)(r(e) < x)).

Then either WitC\ At=t 0 or else Pt receives attention at stage t + 1. In either
case Wt, n Al+1 ^ 0 so Pt is met by the end of stage t + 1.

THEOREM 4.6. There exists an everywhere simple set A which is everywhere low
{that is, V / (8, # 0 =» (8,. n 4) ' = r 0')).

PROOF. It suffices to construct an r.e. set A to meet, for all e, the requirements

Pe: We is infinite implies We n A * 0 ,

Ne:8e* 0 implies 8, - A * 0 & (3aoi)[{e}</n«'>")(e)i =» {e

where ( ^ n 8,)(i> = A^ n 8,,,, »F/(e) = 8,, and 8 ^ = H^(e)>,.
Now by the proof of Proposition 4.3, V i(Se =£ 0 implies 8e - yl ¥= 0 ) implies

V/(8e =̂  0 implies 8e - /I is infinite).
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Modify the construction in the proof of Theorem 4.5 by using ( ^ n 8e)
(s) in

place of AU) in the definition of the use function. It is then clear that the A
constructed in this way satisfies Theorem 4.6.

DEFINITION 4.7. A is said to be everywhere hyperimmune if A is infinite and for
all ; and every recursive function / , 5 ,+ 0 => / does not majorize 5 ,n A.

PROPOSITION 4.8. (a) A is hyperimmune does not imply A is everywhere hyperim-
mune.

(b) A is everywhere hyperimmune implies A is hyperimmune.

PROOF, (a) Take 5, # 0 , 5, * 0 such that 5, n ^ = 0 . Define

g(n + 1) = [ixix &8,&x> g(n)&x>fHt+1(n + 1)),

where / 0 , / 1 ; . . . , / „ , . . . is a sequence of total functions which includes all the
recursive functions. Then A = range g is hyperimmune but is not everywhere
hyperimmune.

(b) This is immediate.

PROPOSITION 4.9. Let A be a hyperimmune set. Then A is everywhere hyper-
immune if and only if V/(5, ¥= 0 => 5,, n A ¥= 0 ) .

PROOF. The "only i f statement is immediate. To prove the if statement, let
a0, a1,...,an,... be the members of A in strictly increasing order. By the proof
of Proposition 4.3, V/(5, # 0 => 5,n A # 0 ) if, and only if, V/(5, * 0 =» 5, n
A is infinite). Fix Si ¥= 0 . We can assume b0, b1,...,bn,... are the members of
A n S, in strictly increasing order. Since {bn: n < u>} c {an: «<<o},
(*) V « , a n < 6 n .

By hypothesis, A is a hyperimmune set; it follows from (*) that A is everywhere
hyperimmune.

THEOREM 4.10. There exists an everywhere hyperimmune set.

PROOF. Let / 0 , flt...,fn,... be a sequence of functions which includes all the
recursive functions. By Lemma 1.5(2) there is a recursive function g such that for
every /, Sg(j) ¥= 0 , and every non-empty 5, is 8g(j) for some /. Define h by

h(n + 1) = nx(x e 8g(n+1) &x > h(n) &x > fH+1(n + 1)).

Then A = range h satisfies Theorem 4.10.
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DEFINITION 4.11. A is everywhere hypersimple if A is recursively enumerable 
and for any 8, 0 , 8t - A is hyperimmune. 

THEOREM 4.12. (a) There exists a hypersimple set which is not everywhere 
hypersimple. 

(b) There exists an everywhere hypersimple set. 

PROOF, (a) Choose 8 , 0 , 6} # 0 with 8, n 8j = 0 . Let i be a given 
recursively enumerable, non-recursive set. Let h be a one-to-one function with 
range /i = 8,.. Let / be a one-to-one recursive function with range / = A. Define 

B = {h(x): (3y)(x<y &f(y)<f(x))}. 

Then B is recursively enumerable. X - B is hyperimmune, for if not, let g 
majorize X - B, then x e A if and only if x e {/(0), / ( 1 ) , . . . , / (g(x) )} , so 4̂ 
would be recursive. Since B c 8,, it follows that 5 is hypersimple but not 
everywhere hypersimple. 

(b) Let A be a given everywhere non-recursive r.e. set. Let / be a onerto-one 
recursive function such that A = range / . Define 

5 = {x:(3y)(x<y &f(y)<f(x))}. 

Then B is an everywhere hypersimple set. For, if not, let g majorize 8, — B. Let / 
be an increasing recursive function such that 8, = range h. Then 

h(x)^An8i^h(x)e {f(0),f(l),...,f(g(h(x)))}. 

So A n 8, would be a recursive set. 

5. Everywhere incomparable r.e. sets 

DEFINITION 5.1. We say r.e. sets A and B are everywhere incomparable if for 
every 8, # 0, A n 8, £ T B n 8t and B n 8¡ £ T A n 8,, 

THEOREM 5.2. There exist r.e. sets A and B such that A and B are everywhere 
incomparable. 

PROOF. By Lemmas 1.3 and 1.5, we can assume that, for all /', 8, # 0 and take 
a one-to-one recursive function / such that V/ i ({ / (n ,m): m < « } c á „ ) . To 
establish Theorem 5.2, it suffices to recursively enumerate A and B to meet the 
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requirements

The priority ordering of the requirements will be Ro, Rlt R2,

Construction of A and B. Stage 0. A^ = 5 ( 0 ) = 0 , x%e = f(r(2e),0), x%e+1 =
f(r(2e + l),0), and r(e,0) = - 1 for all e.

Stage i + 1 . If {l(e)}BMnS'«>(xs
2e) = 0 & r(2e,s) = - 1 , then we say the

requirement R2e requires attention; if

{l(e)}fin'™(x'2e+i) = 0&r(2e + l,s) = - 1 ,

then we say the requirement R2e+i requires attention.

Case (i). 3 / < s(Ri requires attention). We define

is + i = pi < s (Rj requires attention),

and say R: receives attention.

Subcase (i). is + 1 = 2e. Define A(s + 1) = A(s) U {xs
2e}, fi(j+1> = B(s\

(r{j,s), ifj<2e,

r(j,s + l)=lu(B^nSr(e);l(e),xs
2e,s), ifj=2e,

( - 1 , ilj>2e,

where u is the use function from Theorem 4.5,

x) if j < 2e,

(ixG { f(j,2m): m < u) such that if j > 2e and
x£Ais+1)UB(s+1)&x>xsj j is even,

&x> max{r(k,s + 1): k < 2e},

( ixe{ /(y, 2m + 1): m < w } such that if j > 2e and
x € A(s+1) U & x > xj j is odd.

&x > max{r(k,s + 1): k
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Subcase (ii). is+l = 2e + 1. Do as for subcase (i) with A and B interchanged.

Case (ii). Otherwise, no Rt requites attention for i <; s. Define

f(j, s + 1) = f(j, s) for all j ,

Xj+1 = xj for all j (end of construction).

LEMMA. For every e < u>, requirement Re receives attention at most finitely often
and is eventually satisfied.

PROOF. The proof is by induction on e.
Fix / and assume by induction that the Lemma holds for all j < i. Then we

can choose s such that

s = ^s [(V/ < z')(W > s)(Rj does not recieve attention at stage / ) ] .

Then

V; 3* s: x\ = x] = x,. & xt £ (A(s) U B(i)) n 8r{i)

where x, = lim,jc'.

Case (i). / = 2e.

Subcase (i). R2e never receives attention after s. Then {l(e)}BnS^(x2e) * 0
since r(2e, s) * - 1 for sufficiently large s. Hence x2e e {/(e)}BnS-<". But xs

2e is
never put into Ais) for s > s, and therefore x2e £ A n 8r(e). Hence

Subcase (ii). /?2(, receives attention at some stage t + 1 > s. Then

n «r(e) n {JC:X <«(!»(') n

= fi n 8r ( e ) n { x : x < M ( 5 ( " n 5 r ( f ) ; / ( e ) , x 2 s , r ) } ,

so

But

that is,
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Case (ii). i = 2e + 1. This is similar to Case (i).

6. An everywhere splitting theorem

THEOREM 6.1. For every r.e. nonrecursive set C there is an everywhere simple set
A such that V /(S, # 0 => C < rv4 n 8,).

PROOF. It suffices to construct an A to satisfy, for all e, the requirements

NJ: C± {l(e)}AnS'<'\

Ne": Se- A * 0 ,

Pe: We is infinite =* We n A * 0 ,

where, by Lemma 1.5(2) we may assume (\f i)(Si ¥= 0 ) . The order of priorities is
Afo',Wo", Po, N{, N", Px, Nj,.... Let {Cs } s e u be a recursive enumeration of C.

Construction of A. Stage 0. .4<0) = 0 .

+ 1. Given v4(i), define, for all e, recursive functions /, fx and f2 as
follows:

< x[cs(y) = {l(e))

n«rW;/(e)^,s): x

where {e}^(x) = y means x, y, e < s & {e}A(x) is defined and equals y in
strictly less than s steps. For each i < s if Wt s C\ A(s) = 0 and

( 3 x ) [ x G ^ , , & ( V e < i ) [ h ( e , s ) + r 2 ( e , s ) < x ] ] ,

then put the least such x into A, otherwise do nothing (end of construction).

LEMMA 1. For every e, the injury set

Ie= {x: (3s)[x & A(s+l) - Als) &x ^ r^cs) + F2(e,s)]}

is a finite set.

PROOF. Each positive requirement Pt contributes at most one element to A A
by the construction. But N^ or Ne" can be injured by Pt only if / < e.

L E M M A 2 . (Ve)[8e - A * 0].
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PROOF. Assume for a contradiction that Se — A = 0 . By Lemma 1, choose s"
such that Ne" is never injured after stage s". Then \/s 3* s"(r2(e, s) = F2(e, s")),
so f2(e, s") = min(5? - A), contrary to hypothesis.

LEMMA 3. (Ve)[C * {!(e)}An *-«>].

PROOF. Assume for a contradiction that C = {l(e)}AnSr(e). Then

(6.1) hm I(e,s) = oo.

By Lemma 1, choose s' such that JV/ is never injured after stage s'. For any
n e w, by (6.1) find $ > s' such that /(e, 5) > n. It follows by induction on t < J
that
(6.2)

and hence that

{/(e)}^>n*-(n) = {/(e)}^>os-'(n) = {/(eJJ^^^n) = C(n),

that is, C is a recursive set, contrary to hypothesis.
Now we show (6.2) by induction on t < J. Since l(e, s) > n, (6.2) holds for

/ < s. Assume it holds for /. Then f-^e, t) and s > s' ensure that

VJC < «, Vz < u(A^ n Sr(e); l(e),x, /)(^('+1> n «Kr) n {x: x < z)

= Awn8r(e)n{x: x <z}).

Thus {/(e)}^"n*'<')(x)i =» {/(e)}'4"+1>ria'<')(x)i converges and equals
{l(e)}A<"nS^(x) for x < «. So /(«, / + 1) > n unless (3x < l{e, t))[Cl+1(x) #
Cr(x)]. Assume there is such an x. Define x', / ' as follows:

x' = jux{x < n: (3/ > s)[x < l(e, t) & Cl+1(x) * C,(x)]},

t' = pt{t>s:C,+1(x')*C,(x')}.

By the definition of r(e, s),

C,(x')*{l(e)}AU)^{x>)

contrary to C = {(e)}An8'<". It remains to show

(6.3) rx(e,t + 1) > m a x { w ( ^ w n «r(e); / ( e ) , j c , j ) : x < n ) .

In fact, rx(e, t + 1) = max{«(^( / + 1 ) n 8r(e); l(e), x, t + 1): x < /(«, r + 1)}, and
/(e, / + 1) > «, and t > s > s', so

max[«(^ ( j ) O 5r(s); l{e),x,s): x < « j

<max{«(^ ' + 1 »n« r W ; / (« ) ,x , / + l ) : x</ (<M +

and hence (6.3) holds.
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LEMMA 4. (Ve)[\ims _ x fx{e, s) exists and is finite].

PROOF. By Lemma 3, choose n = (fix)[C(x) * {l(e)}AnS'^(x)]. Choose s'
sufficiently large such that, for all s > s',

(6.4) (V* < n)[{l(e)}f)ns^(x), = {l(e)}An'™(x)],
(6.5) (Vjc««)[C,(x) = C(x)],

(6.6) NJ is not injured at stage s.

Case (i). (Vs > s')[{l(e)}f)nS'<'>(n)i]. Then C,(n) * {l(e)}AMnS-«>(n) for
all J > s'. Hence (Vs > s')[rx{e, s) = ^(e, J ')]-

Case (ii). (3 /> j ')[{/(«)r>n*""(«);]• Take such a /. By (6.4) and the
definition of n, (VJ > 0['(e»J) = "L s o

(V5 ̂  0h(«,*) > u(A^nSr{e);l(e),n,s)}.

Hence, by induction on s > t from (6.6) we have

Thus,

But C(«) # {l(e)}An*'<'>(«). Therefore (Vs > ^ r 1 (e > i ) = r1(e,O]. Hence

LEMMA 5. (Ve)[H^ infinite => WenA* 0].

PROOF. By Lemma 4, let rx(e) = tims _ x r^e, s) and /?(e) = max{r1(/):
i <e). Now if Jf; is infinite then (3x)[x e We & x > R(e)]. But then WeC\A
* 0 .

Finally, note that A nS, is infinite since (Ve)[5e - A # 0], and hence A is
everywhere simple. This completes the proof of Theorem 6.1.

THEOREM 6.2. For every everywhere nonrecursive r.e. set C there is an everywhere
simple set A such that V/(«, # 0 = » C n « ( £TA C\ 5,).
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PROOF. It suffices to construct A to satisfy, for all e, the requirements

Ne": he- A* 0,

Pe: We is infinite implies We - A * 0.

The order of priorities is NJ, NJ', Po, N{, N", Pr, N2',.... Without loss of general-
ity we may assume all 8, =£ 0 .

Construction of A. Stage 0. A(0) = 0 .

Stage s + 1. Given A^s\ define, for all e, recursive functions

l(e,s) = max{x: (Vj; < x)\rmn{Cs{y),8r(e)(y)} = {l{e))f > n S " " (> ' ) ]} ,

/=!(«,*) = max{u(AM D Sr(e); l(e),x,s): x<l(e,s)},

r2(e,s) = min(Se-A
is)).

For each i < s it Wis n A(s) = 0 and

(3x)[x e ^ , s & (Ve < ^ ( e , * ) + F2(e,s) < x}}

then enumerate the least such x into A; otherwise do nothing (end of construc-
tion).

The proof is similar to the proof of Theorem 6.1.

THEOREM 6.3. Let B and C be r.e. sets such that C is non-recursive. Then there
exist r.e. sets Ao and Al such that

(i) A0U Ax = B andA0 n Ax = 0 and
(ii) (V/)8, # 0 =* [C £ TA0 n 5,. & C * r ^ n «,.].

PROOF. If 5 is a finite set, then Theorem 6.3 holds. So we can assume fi is an
infinite set.

Let {Bs}sSu, {Cs}seu be recursive enumerations of B and C such that Bo is
empty and Bs+1 contains exactly one more element than Bs. It suffices to
construct r.e. sets Ao and Ax to satisfy the single positive requirement

P: x G Bs+l - Bs =* [x G 4 J + 1 ) or x G ^<J+1»],

and the negative requirements for all e

NJ: C* {/(<?)}"°n*'«\

Ne": C* {l(e)}AinS'"\

T h e o r d e r i n g of p r io r i t i e s is #„ ' , Af0", i>0, A^/, A 7 " , P ^ A ^ ' , . . . .
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Construction ofA0 andAx. Stage 0. A^ = 0, A(
1
0) = 0 .

Stage s + 1. Given A (s)0 and A[s\ define recursive functions

i°(e,s) = max{x: (\fy < x)[cs(y) = {l(e)}fnS

i\e,s) = max{x: (V, < x)[c,(y) = {l(e)}fn'™

r°(e,s) = max{«(^>n Sr(e); l{e),x,s): x < l°(e,

r\e,s) = max{u(A[s)n <j>dr{e); l(e), x,s): x < '^(

where u is the use function. Let x be the unique element in Bs+1 — Bs.

Case (i). 3e < s[x «J r°(e,s) o r x < r\e,s)]. Set es+1 = \ie[x < r°(e,s) or

x < r\e,s)].

Subcase (i). x < f°(es+1,s). Def ine / l (
o

i + 1 ) = A(
o

s\ A[s+1) = A[s) U {x}.

Subcase (ii). x > r°(es+1,s), x < f\es + 1,s). Define ^l (
o

i + 1 ) = A^ U {^} ,

< + 1) < )

( i i ) . V e < 5 [ x > r°(e,s) & x> r\e,s)}. D e f i n e v4!,i + 1) = A (
o

s ) U {x},

A\s + l) = A[s). (end of construction).
Now we can define the injury sets

I? = {x: (3x)[x ^ A\?+V - A ^ & x < r ° ( e , s ) ] } ,

Il
e = {x: (3x)[x ^ A[s+1) - A[s) & x ^ r l ( e , s ) ] } .

It follows by induction on e that
(1) 1°, I) are finite,
(2) C # {l(e)}A°nS><>\ C * {l(e)}AinS-«\ and
(e) f°(e) = \imsr°(e,s), rl(e) = ]imsr\e,s) exist and are finite.

The proof is similar to ther proof of Theorem 6.1.
We can strengthen Theorem 6.3 as follows.

THEOREM 6.4. Let B, C be r.e. sets such that C is everywhere nonrecursive. Then
there exist r.e. sets Ao, Ax such that

(i) Ao U Ax = B, Ao n Ax = 0 , and
(ii) (Vi) (5,. * 0 => CC\ 8, & TA0 DS^CnS^rA.D 8,.).
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