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Abstract

We prove the boundedness of Bergman-type operators on mixed norm spaces Lpq{ip) for 0 < q < 1 and
0 < p < oo of functions on the unit ball of C" with an application to Gleason's problem.
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1. Introduction

Let B denote the open unit ball of the complex vector space €", v be the Lebesgue
measure on C" normalized so that v(B) = 1, and let a be the surface measure on the
boundary dB of B. A positive continuous function <p on [0, 1) is normal (see [4]) if
there exist positive numbers a < b and 0 < r0 < 1 such that:

(p(r) <p(f)
(1) is nonincreasing for r0 < r < 1 and lim = 0;

(1 - r)a r-»i- (1 — r)a

(2) is nondecreasing for r0 < r < 1 and lim — = oo.
(1 — r)b r-,i- (1 — r)b

The a, b in the definition are not uniquely related to <p. Let av denote the superemum
of all possible a's and bv denote the infimum of all possible b's. We say that a? and b9

are characteristic exponents of <p.
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For a positive continuous function (p on [0, 1) and 0 < p, q < oo, let Lp'q(<p)
denote the usual space of measurable functions f on B with ||/||p,9,^ < oo, where

,mi _\(for2n-1(\-r)-V(r)MP{r,f)dr)i/P, 0 < p < oo,

[sup0<r<1 <p(r)Mq(r, / ) , p = oo,

and

Suppose s e K and t > 0 (here and afterward in this note). The Bergman-type
operator PSJ on Lp-q((p) is given by

.(1.1) Ps,J(z) = c.,,(l -

where cn., = T(n + r)/(r(r)r(n + 1)) and <z, w) = XX. z*«'/ for z = (z,, . . . , z j ,
1 0 = ( l O i , . . . , W n ) .

The boundedness of Bergman-type operators PSJ on mixed norm spaces Lp-q((p)
has been studied extensively; see, for example, [3, 4] and references cited therein.
Ren and Shi showed in [4], that if t > b > a > —s, then Psl is a bounded operator
on Lpq(cp) for 1 < p, q < oo. Liu proved the case forO < p < 1, 1 < q < oo in [3].
The only unsolved case is for 0 < q < 1. Since both the results in [4] and in [3]
rely on Holder's inequality for 1 < q < oo (see [4, Lemma 2.1] and [3, Lemma 3]),
-the idea used there cannot deal with the case 0 < q < 1. In this note, by using an
inequality due to Beatrous and Burbea [1], we prove that PSt, is bounded on Lp'q(<p)
for 0 < q < 1 and 0 < p < oo.

THEOREM 1.1. Let <p be a normal function with characteristic exponents a^ and bv.
For 0 < q < 1 and 0 < p < oo, ift > n(\/q - 1) + bv and s > —a9, then Ps_, is a
bounded operator on Lpq(<p).

In this note, C denotes a constant independent of functions. Such a C may differ
at different occurrences.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need the following lemmas.
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LEMMA 2.1. Suppose f : [0, 1) -> [0, oo) is increasing, a, fi > 0, 0 < p < 1 and
0 < p < 1. Then there exists a constant C such that

— / ( r ) d r ) < C / - firYdr.

The proof of Lemma 2.1 follows ideas of Hardy and Littlewood [2]. For the
completeness of the paper we prove it below.

PROOF. For 0 < p < 1 and ft > 0, the function f{r)/{\ — prY is increasing with
respect to r e [0, 1). We only need to prove the following fact: for an increasing
function g : [0, 1) -> [0, oo), a > 0 and 0 < p < 1,

(J {\-rT-lg{r)dr\ <C j (1 - r)>-lg(ry dr.

In fact, let rk = 1 — 2~k. Using the monotonicity of g and since 0 < p < 1, we have

\

> I \k=\

*=1 / t=l

k=\ k=0

This proves Lemma 2.1. •

LEMMA 2.2 ([6, Lemma 6]). ForO < p < 1, and ft > a > 0,

(1 - r)"'1 C

LEMMA 2.3. Le? <p be a normal function with characteristic exponents av and br

For p>0,0<p<l,ifs + t>bip and s < a^, then

Io ( I - / "
•dr < C-
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Using definitions of a^ and b^, the proof of Lemma 2.3 follows that of [4,
Lemma 2.3].

LEMMA 2.4 ([1]). LetO < p < q < oo, 0 < a, fi < oo and a + \/p = /3 + \/q.
Then for any measurable function f on B

( l -
' / f

LEMMA 2.5. LetO < q < \ and s +t > n(\/q — 1). Then for any measurable
function f on B

aI «(2«-l)/i _ r \? (r + l)- 1/

( 1_,p )J,+o-n
PROOF. Let

z2n~xf(z)

where ^, ̂  e 9B. Applying Lemma 2.4, equation (1.1) gives

\Ps,,f(w)\" < C(l-py>( f (1 -r)'"1 /" )

(l-r)<-]M1(r,F)dr\r\

- p)sq f (1 -r)9('+1)-2M«(7-, F)dr
Jo

/

I /• ? ( 2 « - 1 ) Q _ r

Integrating on 3B with respect to f, together with the formula in [5, Section 1.4.10],
yield

, Ps,,f) < f
Jo

/

I r?(2B-l)/i _ _\?(/ + l)-2
Ml (r, / ) dr.

(1 _ rp),(B+,+,)-n 9 J

Lemma 2.5 is proved. •
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PROOF OF THEOREM l.l. Let / e Lp-"{(p) and g{z) := z2"
Case \. 0 < q < I,p < q. Applying Lemmas 2.1,2.3 and 2.5 and the assumptions

that t > n{\/q - 1) + bv, s > —av, we have

\\ps,f\\
p

pqip < c f P
2n-X(\ - p ) " - y ( p )

JOal q(2n-\)(1 _r\qU+i)-2 \P'i

Ml (r, / ) dr dp

\ / />1 ( ] _r\q{t+\)-2 f

/

> / /•' Ci _ ry(f+\)-plq-\ \

«-rt-v(p)(jft (,_f<,^m,^";fr-«>*)*»
= C / ^ ^ - " ( l - r)pil+l)-p/q-lM^r, f)

Jo
X V o (1 - rp)P("+s+»-"i>'<> P)

<C ! r"an-X)(\ - ry"-nW-l">)-l(p"(r)Mp(r, f)dr
Jo

<C f r2"-1(l-r)-V(r)Af,'(r,/)rfr = C||/||J,v,
Jo

where we used the change of variables rp = p and the inequality (pp(rl/p) < C(p{r).
In fact, since ̂  is normal, there exists fr > 0 and 0 < r0 < 1 such that <p(r)/(] — r)*
is nondecreasing for r0 < r < 1. So r ' /p < r implies that

fl _ ri//>)*
( 1 7 " ) < ( >

Case 2. 0 < <? < 1, <? < ̂  < oo. Let Q := p/q and \/Q' + \/Q = \. We select
positive numbers bub2, b3 and fe4 such that

(1) 0 < q(t + 1) - 1 = h + b2 = b3 + b4;
(2) b3>bu
(3) b2/q + (n-l)(l-\/q)>bip;
(4) â  > (fc3 -bj)/q-s.

For example, for a sufficiently small number e > 0, we may take

b\ = q(t + 1) - 1 - (1 + e) {bv + (1 - n)(] - l/q))q,

b2 = (l+e){b<p + (\-n)(\-l/q))q,

b3=q(t + l)-\-(l+ £) {bv + (1 - n)(l - 1/^)) ^ + eq,
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and

b4 = (1 + B) {b9 + (1 - n)(\ - \/q)) q - eq.

By Lemmas 2.2, 2.3 and 2.5 and Holder's inequality, we get

\\Ps.,f\\p
pq9<c [ P

2"-\\-py-V(p)

Jo

— Mq
a (r, g) dr dp

QIQ

_ r)G*i - i

c / ( P)

_ r)fi*s-l

Jo
(1 _ p)P(s+U>i-Wrt-i(pP(p)

/

'

( r , / ) d r < C | | /« ;

Case 3. 0 < g < 1, p = oo. Since f > n{\/q - 1) + bv, s > —a^, there exists
/6 > 0 such that (n - l)(l - \/q) + ft + s > b^ and av > fi - t - 1 + \/q. In fact,
from the definitions of a^ and b^, there exist 0 < a0 < b0 and 0 < r0 < 1 such that
t > n(l/(? — 1) + b0, s > —aQ, and <p(r)/{\ - r)a° is nonincreasing for r0 < r < 1
with limr_+1-(<p(r)/(l — r)"0) = 0, ^(r)/(l - r)*° is nondecreasing for r0 < r < 1
with limr^,-(<p(r)/(l - r)b°) = oo. Taking fi = (1 - «)(1 - 1/g) + a0 + *0- It is
easy to check that fi satisfies the requirement.

a' = (1 - n) (\ - - j + a0 and fc' = (1 - n) (1 - - j + b0.

Then xfr(r)/(l — r)a' = (1 — r)b°/(p(r) is nonincreasing for r0 £ r < 1 and

lin,
r - 1 " (1 - r)a'
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- /•)* = (1 - r)aa/<p{r) is nondecreasing for r0 < r < 1 and

Therefore \js(r) is a normal function.
From Lemmas 2.3 and 2.5, we obtain

ii^.f/Hoo.,.,<c sup <P(PKI-py(fr' i)(i~rn+,i)

o<P<i VJo (1 — rp)i(-n+s+')-n

< C sup <p(p)(l - p)s

0<p<\

< Cll/Hoo,,^ sup <p(p)(l - P)s ( I — ~ rTTTT—— dr )
o<p<i \Jo (1 — rp)«(n+J+')-n /

0,qi<p SUp
0<p<l

o,,,», SUp (1 -
0<p<l

This completes the proof of Theorem 1.1. •

Finally we finish this note by stating a result on an application of Theorem 1.1 to
Gleason's problem. Define Hpq((p) to be the space of holomorphic functions on B
belonging to Lpq(<p). Gleason's problem on Hp-q(<p) has been solved for the case
l < o < o o , 0 < p < oo (see, for example, [3] and [4]). The only unsolved case
is 0 < q < 1, 0 < p < oo. As an application of Theorem 1.1, we solve Gleason's
problem on Hp-q(<p) for 0 < q < 1 and 0 < p < oo.

THEOREM 2.6. Gleason's problem can be solved on Hpq(<p) for 0 < q < 1
and 0 < p < oo. Precisely, for any integer m > \, there exist bounded linear
operators Aa on Hpq((p) such that iff e Hpq(<p) and Daf(O) = 0 Qa\ < m - 1),
then f(z) — J2\a\=m zaAaf{z) on B, where Da f denotes the fractional derivative
of f of order a, for a = (a,, . . . ,«„) . |ot| = |a, | + • • • + \an\.

The proof of Theorem 2.6 is similar to that of Theorem B in [3] and so is omitted.
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