NOTE ON SUBDIRECT SUMS OF RINGS

MASAYOSHI NAGATA

In my previous paper "On the theory of semi-local rings," we saw that if a semi-local ring R with maximal ideals $\mathfrak{p}_1,\ldots,\mathfrak{p}_h$ is a subdirect sum of local rings $R(\mathfrak{p}_i)$," then R is the direct sum of $R(\mathfrak{p}_i)$ (proposition 15, $(slr)^1$) and that a complete semi-local ring is a direct sum of complete local rings (Remark to proposition 5, (slr)).

The main purpose of the present note is to prove two kinds of generalization (also for non-commutative case) of the first assertion mentioned above (Theorems 2 and 3). We first introduce in §1 the concept of n-rings and then we define the concepts of semi-local rings, local rings and so on; it is proved here that a commutative (semi-) local ring is a (semi-) local ring in the sense of (slr). It is also remarked that the assumption in Proposition 15, (slr), is a necessary and sufficient condition in order that a commutative semi-local ring is a direct sum of local rings. In §2, we prove our main theorems. In §3, we prove a generalization of the second assertion mentioned above for non-commutative case; in §4 we study rings which are subdirect sums of (a finite number of) n-rings.

1. Definitions and remarks to commutative case

DEFINITION 1. A ring³⁾ R is called an n-ring if $R^2 = R$ and if for any proper ideal⁴⁾ \mathfrak{a} in R there exists a maximal ideal⁵⁾ containing \mathfrak{a} .

DEFINITION 2. A quasi-semi-local ring is a non-zero *n*-ring which contains only a finite number of maximal ideals. A quasi-local ring is a non-zero *n*-ring which contains only one maximal ideal.

DEFINITION 3. A quasi-semi-local ring R with maximal ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_h$ is called a semi-local ring if $\bigcap_{i,n} \mathfrak{p}_i^n = (0)$. In this case we introduce a topology in R by taking $\{\bigcap_{i=1}^h \mathfrak{p}_i^n; n=1,\ldots,k,\ldots\}$ as a system of neighbour-

Received Sept. 4, 1950.

¹⁾ To appear in Proc. Jap. Acad. and will be referred as (slr) in the present note.

²⁾ This notation is same as in (slr); this denotes the topological quotients ring of p with respect to R: See Chapter I, (slr).

³⁾ A ring means an associative ring.

⁴⁾ An ideal means a two-sided ideal.

⁵⁾ Since $R^2 = R$, any maximal ideal is prime (we say an ideal $\mathfrak p$ in a ring R is maximal if $R \neq \mathfrak p$ and if there exists no ideal $\mathfrak a$ such as $R \supset \mathfrak a \supset \mathfrak p$).

hoods of zero; thus a semi-local ring is a topological ring. A local ring is a semi-local, quasi-local ring.

LEMMA 1. Let R be a ring and $\mathfrak{p}_1, \ldots, \mathfrak{p}_h$ be proper prime ideals in R. Then $\bigcup_{i=1}^h \mathfrak{p}_i \neq R$.

Proof. For h=1, our assertion is trivial. So, we assume that $\bigcup_{i=1}^{h-1} \mathfrak{p}_i \neq R$. Let a be an element of R which is not contained in $\bigcup_{i=1}^{h-1} \mathfrak{p}_i$. If $a \notin \mathfrak{p}_h$, our assertion is true; if not, we take an element b of R such as $b \in \bigcap_{i=1}^{h-1} \mathfrak{p}_i$, $b \notin \mathfrak{p}_h$,*) then $a+b \notin \mathfrak{p}_i$ for any i $(1 \le i \le h)$. This proves our assertion.

COROLLARY. Let R be an n-ring. Then any union of a finite number of proper ideals does not coincide with R.

Proposition 1. A commutative quasi-semi-local ring contains the identity.

Proof. This follows from our Lemma 1 (or Corollary to it) and the fact that a commutative ring $R \neq (0)$ contains the identity if (and only if) there exists an element a of R such that aR = R.

COROLLARY. A commutative semi-local ring is a semi-local ring in the sense of (slr).

We mention, by the way,

PROPOSITION 2. Let a commutative ring R which contains the identity be a direct sum of rings R_i $(i=1,\ldots,n)$ $(R_i \neq (0))$. Let $\{\mathfrak{p}_{i\lambda};\ \lambda \in A_i\}$ (for each $i=1,\ldots,n$) be the totality of maximal ideals whose images in R_i are different from R_i . Then R_i is the ring of quotients of S_i with respect to R, where S_i is the complementary set of $\bigcup_{\lambda \in A_i} \mathfrak{p}_{i\lambda}$ with respect to R. If R is a semi-local ring (or more generally, generalized semi-local ring in the sense of (slr)) then R_i coincides also with the topological quotients ring of S_i with respect to R.

Proof. Easy.

2. Main theorems

LEMMA 2. Let a ring R be a subdirect sum of rings R_i (i = 1, ..., n). If \mathfrak{p} is a proper prime ideal in R, then for at least one i the image of \mathfrak{p} in R_i does not coincide with R_i .

Proof. Let \mathfrak{n}_i be the kernel of natural homomorphism of R onto R_i , for each i. Then $\bigcap_{i=1}^{n} \mathfrak{n}_i = (0)$. Therefore $\mathfrak{n}_i \subseteq \mathfrak{p}$ for at least one i.

COROLLARY. Let an *n*-ring R be a subdirect sum of rings (necessarily *n*-rings) R_i (i = 1, ..., n). If a is a proper ideal in R, then for at least one i the

⁶⁾ Set theoretical union.

^{*)} We may assume without loss of generality that $p_i \neq p_j (i \neq j)$.

image of a in R_i is different from R_i .

THEOREM 1. Let a ring R be a subdirect sum of n-rings R_i (i = 1, ..., n) (n > 1). Then R contains R_i if (and only if) the following condition is satisfied: If $\bar{\mathfrak{p}}_1$ and $\bar{\mathfrak{p}}_2$ are two maximal ideals in the direct sum R of R_i (i = 1, ..., n) such that $\bar{\mathfrak{p}}_1 \supseteq R_1$, $\bar{\mathfrak{p}}_2 \not = R_1$, then $\bar{\mathfrak{p}}_1 \cap R \neq \bar{\mathfrak{p}}_2 \cap R$.

Proof. We set $R_1 \cap R = \mathfrak{a}$. We assume that $\mathfrak{a} \neq R_1$. Let \mathfrak{p}_1 be a maximal ideal in R_1 entaining \mathfrak{a} . Then $\mathfrak{p} = R \cap (\mathfrak{p}_1 + R_2 + \ldots + R_n)$ is a maximal prime ideal in R. On the other hand, R/\mathfrak{a} is a subdirect sum of rings R_i ($i=2,\ldots,n$). Therefore, for a suitable k (k>1), the image of \mathfrak{p} in R_k is different from R_k : Let \mathfrak{p}_k be a maximal ideal in R_k containing the image of \mathfrak{p} in R_k . Then \mathfrak{p} is contained in $R_1 + \ldots + R_{k-1} + \mathfrak{p}_k + R_{k+1} + \ldots + R_n$. This shows that $R \cap (\mathfrak{p}_1 + R_2 + \ldots + R_n) = R \cap (R_1 + \ldots + R_{k-1} + \mathfrak{p}_k + R_{k+1} + \ldots + R_n)$, contrary to our assumption.

THEOREM 2. Let a ring R be a subdirect sum of n-rings R_1, \ldots, R_n . Then R is the direct sum of R_i ($i = 1, \ldots, n$) if (and only if) the following condition is satisfied: If $\bar{\mathfrak{p}}_1$ and $\bar{\mathfrak{p}}_2$ are distinct maximal ideals in the direct sum \bar{R} of R_i ($i = 1, \ldots, n$), then $\bar{\mathfrak{p}}_1 \cap R \neq \bar{\mathfrak{p}}_2 \cap R$.

Proof. This is an immediate consequence of Theorem 1.

COROLLARY 1. If a ring R is a subdirect sum of (quasi-) semi-local rings R_1, \ldots, R_n and if the number of maximal prime ideals R_i of R_i is the sum of those of R_i , then R is the direct sum of R_i ($i = 1, \ldots, n$).

COROLLARY 2. A semi-local ring R with maximal ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_h$ is a direct sum of local rings if and only if each \mathfrak{p}_i is the unique maximal ideal containing $\bigcap_{n=1}^{\infty} \mathfrak{p}_i^n$.

COROLLARY 3. Let a ring R be a subdirect sum of n-rings R_1, \ldots, R_n . If R_i/\mathfrak{p}_i and R_j/\mathfrak{p}_j are non-isomorphic to each other for any maximal ideals \mathfrak{p}_i in R_i and \mathfrak{p}_j in R_j ($i \neq j$), then R is the direct sum of R_1, \ldots, R_n .

THEOREM 3. If an n-ring is a subdirect sum of (quasi-) local rings R_i ($i = 1, \ldots, n$), then R is a direct sum of suitable m ($\leq n$) (quasi-) local rings. (If moreover R contains n distinct maximal ideals, R is the direct sum of R_i .)

Proof. Our assertion is trivial for the case n = 1. Now, assuming that our assertion is true for the case n < h, we prove the case n = h. Let \overline{R} be the direct sum of rings R_1, \ldots, R_h . We set $a_i = R \cap R_i$. Then R/a_i is a subdirect sum of $R_1, \ldots, R_{i-1}, R_{i+1}, \ldots, R_h$. Hence R/a_i is a direct sum of m_i (< h)

⁷⁾ Evidently this number is finite.

(quasi-) local rings. If $m_i < h-1$ for some i, our assertion is true because R is a subdirect sum of m_i+1 (quasi-) local rings. Therefore we assume that $R/\mathfrak{a}_i \cong R_1 + \ldots + R_{i-1} + R_{i+1} + \ldots + R_h$ for any i. Whence, if $\mathfrak{a}_i = R_i$ for some i, our assertion is true, i.e., in this case, $R = \overline{R}$. Now, we assume that $\mathfrak{a}_i \neq R_i$ (for at least one, therefore any, i). Let $\overline{\mathfrak{p}}_1, \ldots, \overline{\mathfrak{p}}_h$ be the maximal ideals in \overline{R} , where $\overline{\mathfrak{p}}_i \cap R_i \neq R_i$. Set $\overline{\mathfrak{p}}_i \cap R = \mathfrak{p}_i$. Since R/\mathfrak{a}_i contains only h-1 maximal ideals, one \mathfrak{p}_j , say \mathfrak{p}_h , coincides with some \mathfrak{p}_k , say with \mathfrak{p}_{h-1} . Therefore, if h=2, R is itself a (quasi-) local ring. If h>2, R contains elements $(b_1,0,\ldots,0,a_h)$ and $(b_2,0,\ldots,0,a_{h-1},0)$ with suitable $b_1,b_2 \in R_1$ and $a_h \in R_h$, $a_{h-1} \in R_{h-1}$, such that each a_i is not contained in the maximal ideal in R_i . This is a contradiction to our assumption that $\mathfrak{p}_{h-1}=\mathfrak{p}_h$.

Remark. If a semi-local ring R is a direct sum of semi-local rings R_i (i = 1, ..., n), R is a product space of R_i .

3. Complete 8) semi-local rings

LEMMA 3. Let R be a ring such that $R^2 = R$. If α , β and c are ideals in R such that $\alpha + \beta = R$ and $\alpha + c = R$, then $\alpha^m + b^n = R$ for any integers m and n, and $\alpha + \beta c = R$ (therefore $\alpha + (\beta \cap c) = R$).

Proof. Since $a + b^2 \supseteq R^2 = R$, we have $a + b^2 = R$. This proves our first assertion. The second one follows from $R = R^2 \subseteq a + bc$.

THEOREM 4. A complete semi-local ring is a direct sum of complete local rings.

Proof. Let $\mathfrak{p}_1,\ldots,\mathfrak{p}_h$ be the totality of maximal ideals in a complete semi-local ring R. We set $\mathfrak{q}_i^{(n)} = \bigcap_{j \neq i} \mathfrak{p}_j^n$. By Lemma 3, $\mathfrak{p}_i^{n} + \mathfrak{q}_i^{(n)} = R$. Let a be an element of R. Then we can find an element $a_{i,n}$ of $a_i^{(n)}$ such that $a_{i,n} \equiv a$ (mod. \mathfrak{p}_i^n). Then the sequence $(a_{i,n})$ $(n=1,2,\ldots)$ is convergent (for each i). Let $f_i(a)$ be its limit. Then $f_i(a) \equiv a \pmod{\bigcap_{n=1}^n \mathfrak{p}_i^n}$, $f_i(a) \in \bigcap_{n=1}^n \mathfrak{q}_i^{(n)}$. This proves that each \mathfrak{p}_i is the unique maximal ideal containing $\bigcap_{n=1}^\infty \mathfrak{p}_i^n$, i.e., that R is the direct sum of local rings $R_i = R/(\bigcap_{n=1}^\infty \mathfrak{p}_i^n)$ $(i=1,\ldots,h)$. Completeness of each R_i is evident.

4. Subdirect sums of n-rings

THEOREM 5. Let a ring R be a subdirect sum of n-rings R_1, \ldots, R_n . Then

- (i) R is an n-ring if (and only if) $R^2 = R$, and
- (ii) R^n is an n-ring.

Proof. Let n_i be the kernel of natural homomorphism of R onto R_i (for

⁸⁾ This means topological completeness.

⁹⁾ This shows that $\sum_{i=1}^{h} f_i(a) = a$ and that R is the direct sum of ideals $\bigcap_{n=1}^{\infty} \alpha_i^{(n)}$ (i = 1, ..., h).

each i).

(1) Proof of (i).

Let \mathfrak{a} be an ideal in R such that there exists no maximal ideal containing \mathfrak{a} . Then $\mathfrak{a} + \mathfrak{n}_i = R$ for each i. Therefore $\mathfrak{a} + (\bigcap_{i=1}^n \mathfrak{n}_i) = R$, by Lemma 3, i.e., $\mathfrak{a} = R$. (2) Proof of (ii).

It is clear that R^n is a subdirect sum of R_1, \ldots, R_n . Hence, it is sufficient to prove that $R^{n+1} = R^n$, by virtue of (i). Evidently $R^2 + n_i = R$ for each *i*. Therefore it is easy to see that $R^{n+1} + n_1 n_2 \ldots n_n \supseteq R^n$, i.e., $R^{n+1} = R^n$.

Example. Let R be a ring such that $R^2 = (0)$ $(R \neq (0))$. Using the notation $(1, R)^{10}$ as in my paper "On the theory of radicals in a ring" ¹¹⁾ we construct a ring S = R + (1, R) (direct sum). Let $\mathfrak{n}_1 = R$, $\mathfrak{n}_2 = \{a + (0, a); a \in R\}$. Then S is a subdirect sum of n-rings S/\mathfrak{n}_1 and S/\mathfrak{n}_2 . On the other hand, S is not an n-ring because $S^2 = (1, R)$.

Mathematical Institute, Nagoya University

 $^{^{10)}}$ (1, R) is a typical over-ring of a ring R which contains the identity and in which R is an ideal.

¹¹⁾ To appear in J. Math. Soc. Jap.