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EXPECTED COALESCENCE TIME FOR A
NONUNIFORM ALLOCATION PROCESS
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Abstract

We study a process where balls are repeatedly thrown into n boxes independently
according to some probability distribution p. We start with n balls, and at each step,
all balls landing in the same box are fused into a single ball; the process terminates when
there is only one ball left (coalescence). Let c := ∑

j p
2
j , the collision probability of two

fixed balls. We show that the expected coalescence time is asymptotically 2c−1, under
two constraints on p that exclude a thin set of distributions p. One of the constraints
is c = o(ln−2 n). This ln−2 n is shown to be a threshold value: for c = ω(ln−2 n),
there exists p with c(p) = c such that the expected coalescence time far exceeds
c−1. Connections to coalescent processes in population biology and theoretical computer
science are discussed.
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Remark. All limits in this paper are taken as n → ∞, and we use Landau notation o, ω, andO
in the usual sense. We say that an eventA holds with high probability (w.h.p.) if P(Ac) = o(1),
and we denote the set {1, 2, . . . , n} by [n].

1. Introduction

We consider the following balls-into-boxes process. Let p = (p1, . . . , pn) be any proba-
bility vector. At time t = 0, start with b0 balls and throw them into n boxes, where each ball
has probability pj of landing in box j , independently of all other balls. Fuse all balls that land
in the same box, and then repeat the allocation at times t = 1, 2, . . . according to the same
rules with this possibly smaller new number of balls. The random time T at which all balls are
first fused into a single one is called the coalescence time; we will be mainly interested in its
asymptotic expected value.

This problem has been studied in various guises by numerous authors. Initially, it was stated
in terms of finding the most recent common ancestor in a random genealogical process. We
will restrict ourselves to the balls-into-boxes formulation here, but it is important to note that
any of the results we obtain here can be recast in the language of population biology; we will
occasionally provide the reader with the appropriate analogy. The seminal work in this area
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Nonuniform expected coalescence time 1003

was carried out by Kingman [7]–[9] who, for fixed b0, proved convergence of the underlying
process to the continuous-time coalescent process, thereby establishing convergence of the
distribution of T/E[T ]. In [8] he also proved that, for b0 = n and the uniform distribution
p = (1/n, . . . , 1/n),

E[T ] ≤ 2n− 2,

which effectively implies that

E[T ] ∼ 2n, n → ∞. (1.1)

More recently, Donnelly and Tavaré [3], Möhle [12], and Möhle and Sagitov [14] have studied
the limiting behavior of more general classes of allocation (reproduction) models for b0 fixed.
In [13], Möhle considered the case b0 → ∞ as well for several models, which, however, do
not include the one at hand.

There is a good deal of literature on continuous-time coalescent processes that bears men-
tioning. For large times t , when the number of balls is small, we should expect relatively long
time intervals during which no collisions happen, likely punctuated by binary (one-on-one)
collisions. This behavior is characteristic of Kingman-type coalescent processes and admits
a natural time scaling to a continuous-time process. More recently, the theory of �- and
�-coalescents, developed by Pitman [15], Sagitov [19], and Schweinsberg [20], among others,
allows for models involving multiple simultaneous collisions. Indeed, in our model, for small
times t , we are likely to have multiple simultaneous collisions; however, these happen at fixed
time intervals. There is therefore no natural time scaling that can be performed in order to
interpret this behavior in the limit as a continuous-time process with random collision times.

The process can also be described in terms of compositions of random functions: choose
random functions {fs : [n] → [n]}s∈N independently, in such a way that, for all i ∈ [n] and
all s ∈ N, fs(i) = j with probability pj , independently for all i and s. The coalescence time
T is then the smallest value of t for which ft ◦ · · · ◦ f2 ◦ f1 is a constant function. It is this
formulation that has been used in connection with computer science: this problem is potentially
useful in bounding the running time of so-called ‘coupling from the past’ algorithms introduced
in [17] and [18]; see Section 6 for a brief discussion of this. Motivated by this connection, and
apparently unaware of Kingman’s work for the uniform distribution, Dalal and Schmutz [2]
established (1.1); Fill [4] and Goh et al. [6] derived the limiting distribution of T/E[T ].

For b0 = n, Adler et al. [1, Theorem 4] were able to extend Kingman’s result (1.1) to a
nonuniform p, showing that

E[T ] ∼ 2c−1
2 , c2 :=

∑
j

p2
j (1.2)

(note that c2 = 1/n for the uniform p), under the condition

c3

c2
<

3

n
, c3 :=

∑
j

p3
j . (1.3)

Here c2 and c3 are the probabilities of a double collision and a triple collision, respectively. In
essence, (1.3) means that p is sufficiently close to (1/n, . . . , 1/n).

We should expect the largest contribution to the time T to happen during the late stages of
the process, when the number of balls is relatively small. In this case, any reduction in the
number of balls will most likely be due to the collision of a single pair of balls. This explains
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the appearance of c2 in (1.2). (In fact, c2 had been used as a scaling parameter for a wide
class of models by Möhle in [12] in the context of population genetics.) The bound (1.3) on
c3 ensures that, if in one of those late stages the number of balls has dropped, then the actual
decrease is exactly 1 with conditional probability sufficiently close to 1.

The proof in [1] revealed that the expected time spent in the late stages was about 2c−1
2

under conditions far less restrictive than (1.3). Equation (1.3) was used in [1] to show that the
expected time spent in the early stages was o(c−1

2 ).
In this paper we prove that this property of the process and (1.2) continue to hold for a much

wider class of distributions p. Here is our main result.

Theorem 1.1. Let b0 = n. Suppose that, for some however small ε > 0,

c2 = o(ln−2 n) and c3 ≤ c
3/2
2 ln−(1/2+ε) n. (1.4)

Then

(i)
E[T ] = 2c−1

2 (1 + o(1)) for n → ∞, (1.5)

and

(ii)
T

E[T ]
d−→

∑
k≥2

2

k(k − 1)
Yk, (1.6)

where ‘
d−→’ denotes convergence in distribution, and the Yk are independent and expo-

nentially distributed, i.e. P(Yk > x) = e−x .

Remarks. 1. It is always the case that c2 ≤ 1 and c3 ≤ c
3/2
2 ; so, if not for the logarithmic

factors, the conditions in (1.4) would not have excluded any probability vectors p. Furthermore,
c

3/2
2 /(n−1c2) ≥ n1/2, since c2 ≥ n−1 for all p. This means that the restriction c3/c2 < 3/n

in [1] is much more stringent than c3 ≤ c
3/2
2 ln−(1/2+ε) n in our Theorem 1.1.

2. The lower bound in (1.5), E[T ] ≥ 2c−1
2 (1 − o(1)), holds for any p as long as c2 → 0. This

can be deduced from [1, Theorem 2] via an elementary coupling argument; we will provide a
brief proof in Section 4. Therefore, our main task is to prove a matching upper bound.

3. For the case of the uniform p = (1/n, . . . , 1/n), (1.6) follows from Kingman’s work.
Independently, it was proved later—in a setup close to that of our paper—by Fill [4]; still later
Goh et al. [6] gave a detailed description of the cumulative distribution function of the limiting
distribution.

4. Part (ii) of Theorem 1.1 follows from part (i), via an argument very similar to Fill’s proof for
the uniform case; cf. Theorem 6.1 of [13].

Interestingly, ln−2 n appearing as the upper bound for c2 in Theorem 1.1 is a genuine
threshold for the property ‘E[T ] is of order c−1

2 exactly’.

Theorem 1.2. Let b0 = n. For c2 = ω(ln−2 n), there exists a probability vector p with∑
j p

2
j = c2 such that, w.h.p., T = ω(c−1

2 ), and, thus, E[T ] = ω(c−1
2 ).

Adler et al. [1, Theorem 5] proved that E[T ] → ∞ for a probability vector satisfying
conditions ensuring that lim c2 > 0.
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The rest of the paper is organized as follows. In Section 2 we bound the expected time spent
during an early phase. We achieve this by showing that, w.h.p., for certain ‘small’ values of
t , the stochastic process is well approximated by a deterministic process, amenable to sharp
estimates. To this end, we will build on the method used in [16] for asymptotic analysis of a
rumor-spreading process introduced and studied in [5]. In Section 3 we bound the expected
time spent in a ‘middle’ phase and a ‘late’ phase, showing that the late phase contributes,
overwhelmingly, to the total number of steps. In Section 4 we prove the lower bound for
Theorem 1.1. In Section 5 we prove Theorem 1.2. In Appendix A we prove some auxiliary
inequalities needed for the proof of Theorem 1.1.

2. The expected duration of an early phase

Let the distribution p be given. Assume that b0 = n. For t ∈ N, we denote by B(t) the
random number of balls at time t , so that B(0) = n. In the language of the genealogical
process, B(t) is the number of individuals at generation −t which have a descendant alive in
the current generation 0. We denote by τ(k) the random first time t when B(t) falls below
k, i.e. τ(k) = min{t ≥ 0 : B(t) ≤ k}. The coalescence time T is therefore τ(1). Obviously,
{B(t)}t≥0 is a Markov chain on the state space {1, 2, . . . , n}, so we will refer to B(t) as the
state at time t .

Note that, by the definition of the stochastic sequence {B(t)}t≥0,

E[B(t + 1) | B(t) = k] =
n∑
j=1

(1 − (1 − pj )
k), B(0) = n,

because the probability of box j receiving at least one ball out of k allocated balls is 1−(1−pj )k .
It would seem natural to try to prove that the conditional distribution ofB(t+1) is concentrated
around E[B(t + 1) | B(t) = k], as long as k is large enough. Curiously, we will be able to
show instead that, for smallish t , w.h.p., B(t + 1) is relatively close to �p(B(t)), where

�p(k) :=
n∑
j=1

(1 − exp(−pjk)). (2.1)

Note that �p(B(t)) is close to E[B(t + 1) | B(t)] when most of the pjB(t) are small, which
may not be the case when B(t) is relatively close to n.

Here is an outline of our argument. We introduce k∗ = o(c−1
2 ), and a recurrence inequality

which the random sequence B(t) is believed to satisfy w.h.p. as long as B(t) is above k∗.
Assuming that the inequality does hold, we derive efficient bounds for τ(k∗). Lastly, we show
that, indeed w.h.p., {B(t)}t≤τ(k∗) satisfies the recurrence inequality.

2.1. Variational problems

In order to determine the likely decline of {B(t)}, we need to bound�p(k) from above for a
certain range of k. This task seems quite hard, since�p(k) depends on all n components of p in
a rather complicated way. Remarkably, the worst case bounds will do the job quite efficiently,
because the worst distribution p turns out to be much simpler than a feasible generic p.

Let us define Dn to be the set of probability n-vectors. For any q ∈ Dn, define

Fq(k) :=
n∑
j=1

exp(−kqj ), (2.2)
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so that �q(k) = n− Fq(k), and set

D(c2) :=
{
q ∈ Dn

∣∣∣∣
∑
j

q2
j = c2

}

and

D(c2, c3) :=
{
q ∈ Dn

∣∣∣∣
∑
j

q2
j = c2,

∑
j

q3
j = c3

}
.

That is, D(c2) and D(c2, c3) are the sets of probability vectors that share the same sum of
squares and, respectively, squares and cubes as p. When dealing with D(c2) and D(c2, c3),
we will assume that c2 > 1/n; otherwise these sets are reduced to a point (1/n, . . . , 1/n).
The functional Fq(k) is continuous and the sets Dn, D(c2), and D(c2, c3) are compact, so the
infima of F (as a function of q for fixed k) over these sets are attained.

Proposition 2.1. For any k ∈ [n],
min
q∈Dn

Fq(k) = Fu(k),

where u is the uniform vector u = (1/n, . . . , 1/n).

Proposition 2.2. For any k ∈ [n],
min

q∈D(c2)
Fq(k) = Fθ(c2)(k),

where θ(c2) = (θ1, θ2, . . . , θn) has the property that θ1 > θ2 = · · · = θn (when listed in
nonincreasing order). That is, θ has only two distinct entries, and the larger one has support
size equal to 1. We will refer to such vectors as being of ‘topheavy’ type. Using the equations
θ1 + (n− 1)θ2 = 1 and θ2

1 + (n− 1)θ2
2 = c2, we can explicitly express the two entries of θ as

θ1 = 1 + √
(n− 1)(c2n− 1)

n
, θ2 = 1 − θ1

n− 1
. (2.3)

Proposition 2.3. For any k ∈ [n],
min

q∈D(c2,c3)
Fq(k) = Fr(c2,c3)(k),

where r(c2, c3) := (r1, r2, . . . , rn) (when ordered in nonincreasing order) has the following
property: for some ν ∈ [n],

r1 = · · · = rν ≥ rν+1 > rν+2 = · · · = rn. (2.4)

That is, r(c2, c3) has at most three distinct entries, and the middle one (if any) has support size
equal to 1.

Clearly, Dn ⊃ D(c2) ⊃ D(c2, c3), and so Fp(k) ≥ Fr(c2,c3)(k) ≥ Fθ(c2)(k) ≥ Fu(k).
These propositions therefore provide sharper and sharper estimates, so at various junctures we
will use whichever one is easiest to work with, while still being sharp enough.
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Proof of Proposition 2.1. Using the fact that ϕ(x) = e−x is concave up,

Fp(k) =
∑
j

exp(−pjk) = n
∑
j

1

n
exp(−pjk) ≥ n exp

(
−

∑
j

1

n
pjk

)
= ne−k/n = Fu(k).

Proofs of Propositions 2.2 and 2.3. To prove Proposition 2.2, there are two steps.

1. Show that a minimizer θ of Fq(k) onD(c2) cannot have a configuration θj1 > θj2 > θj3 ;
that is, that it cannot have three distinct entries.

2. Show that a minimizer θ cannot have a θj1 = θj2 > θj3 configuration (ji ∈ [n]), which
will imply that the larger entry is unique.

We will only prove Proposition 2.3, as it is more difficult; the interested reader would not find
it difficult to adapt the argument to prove Proposition 2.2.

We may recast Proposition 2.3 as follows: letting zj := qj k and z = (z1, . . . , zn), we want
to minimize G(z) := ∑

j exp(−zj ) under the constraints∑
j

zj = k,
∑
j

z2
j = k2c2, and

∑
j

z3
j = k3c3. (2.5)

Our task is to show that the minimizer x = (x1, . . . , xn) of G(z), with components listed in
nonincreasing order, must have the form x1 = · · · = xν ≥ xν+1 > xν+2 = · · · = xn for some
ν ∈ [n]. To this end, we show first that a minimizer ofG(z) has at most four distinct components
(see case I, below) and second that an entry value which is strictly intermediate is encountered
exactly once (see case II, below). Our proof does not rely on the method of Lagrange multipliers,
because its applicability for the equality constraints needs a prior justification and because, in
principle, it may deliver only a ‘first-order’ necessary condition, definitely too crude to handle
case II.

Case I. We first show that a minimizer of G(z) cannot have four distinct entries. Suppose
for the sake of contradiction that we have a minimizing vector x for which there exist j1, j2, j3,
and j4 (relabel as 1, 2, 3, and 4) such that x1 > x2 > x3 > x4 ≥ 0. Let yj = xj + εj
for j = 1, . . . , 4, and yj = xj for j = 5, . . . , n; we will show that, for a suitable choice of
(ε1, . . . , ε4), y = (y1, . . . , yn) satisfies the conditions in (2.5), and G(y) < G(x), and, thus,
such an x cannot be a minimizer on the set D(c2, c3).

First note that we require ε4 ≥ 0 because of the possibility that x4 = 0, but ε1, ε2, and ε3
can be of either sign. For y to satisfy the conditions in (2.5), we require that

4∑
j=1

εj = 0, (2.6)

2
4∑
j=1

xj εj +
4∑
j=1

ε2
j = 0, (2.7)

3
4∑
j=1

x2
j εj + 3

4∑
j=1

xj ε
2
j +

4∑
j=1

ε3
j = 0. (2.8)

Now we wantG(x)−G(y) > 0; by linearizing the e−εj factors, it will be sufficient (by taking
the εj as small as we wish) to show that

e−x1ε1 + e−x2ε2 + e−x3ε3 + e−x4ε4 > 0. (2.9)

https://doi.org/10.1239/aap/1231340162 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1231340162


1008 J. K. MCSWEENEY AND B. G. PITTEL

We now obtain expressions for the εj . For given xj , the system (2.6)–(2.8) is a system of three
nonlinear equations in four unknowns, ε1, ε2, ε3, and ε4; treating ε4 as a parameter, we hope
to be able to solve it uniquely for ε1, ε2, and ε3 near (0, 0, 0)�. Let ε := (ε1, ε2, ε3)

�, and
write (2.6)–(2.8) as the vector equation:

f (ε) = b(ε4), b(ε4) := (−ε4,−2x4ε4 − ε2
4,−3x2

4ε4 − 3x4ε
2
4 − ε3

4)
�.

The derivative (Jacobian) matrix of f at 0 = (0, 0, 0) is

L :=
⎛
⎜⎝

1 1 1

2x1 2x2 2x3

3x2
1 3x2

2 3x2
3

⎞
⎟⎠ .

Its determinant is equal to 6
(x1, x2, x3), where
(x1, x2, x3) is the Vandermonde determinant
for x1, x2, and x3:


(x1, x2, x3) = (x2 − x1)(x3 − x1)(x3 − x2),

which is nonzero (negative), as the xi are distinct (decreasing). Therefore, by the inverse vector
function theorem, for sufficiently small |ε4|, there exists a differentiable solution ε = ε(ε4),
ε(0) = 0, such that

ε = γ ε4 + O(ε2
4), γ := L−1b′(0) = L−1(−1,−2x4,−3x2

4 )
�.

Here O(ε2
4) = (O(ε2

4),O(ε
2
4),O(ε

2
4)). Explicitly, by Cramer’s rule,

γ1 = −
(x4, x2, x3)


(x1, x2, x3)
, γ2 = −
(x1, x4, x3)


(x1, x2, x3)
, γ3 = −
(x1, x2, x4)


(x1, x2, x3)
.

With these formulae, (2.9) is equivalent to showing (by letting ε4 > 0 be as small as needed)
that

e−x4
(x1, x2, x3) < e−x1
(x4, x2, x3)+ e−x2
(x1, x4, x3)+ e−x3
(x1, x2, x4),

which in turn is equivalent to showing that

D(x) :=

∣∣∣∣∣∣∣∣

e−x1 e−x2 e−x3 e−x4

1 1 1 1
x1 x2 x3 x4

x2
1 x2

2 x2
3 x2

4

∣∣∣∣∣∣∣∣
> 0.

By using the operations typical for computation of the Vandermonde-type determinants, we
obtain

D(x) = −
∣∣∣∣∣∣
e−x2 − e−x1 e−x3 − e−x1 e−x4 − e−x1

x2 − x1 x3 − x1 x4 − x1

x2
2 − x2

1 x2
3 − x2

1 x2
4 − x2

1

∣∣∣∣∣∣

= e−x1

4∏
i=2

(xi − x1)

∣∣∣∣λ(x1 − x2)− λ(x1 − x3) λ(x1 − x2)− λ(x1 − x4)

x3 − x2 x4 − x2

∣∣∣∣ ,
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where λ(x) := (ex − 1)/x. Next, we factor x3 − x2 and x4 − x2 from the first column and from
the second column. So, introducing

C(x) := e−x1

4∏
i=2

(xi − x1)

4∏
i=3

(xi − x2) < 0,

we then obtain

D(x) = C(x)

∣∣∣∣∣∣
λ(x1 − x2)− λ(x1 − x3)

x3 − x2

λ(x1 − x2)− λ(x1 − x4)

x4 − x2

1 1

∣∣∣∣∣∣

= C(x)

[
λ(x1 − x2)− λ(x1 − x3)

(x1 − x2)− (x1 − x3)
− λ(x1 − x2)− λ(x1 − x4)

(x1 − x2)− (x1 − x4)

]
. (2.10)

Now λ(x) is concave up for x > 0. Therefore, since

0 < x1 − x2 < x1 − x3 < x1 − x4,

the quantity in square brackets in (2.10) is strictly negative, by considering its terms to be slopes
of secant lines to the graph of λ(x). Using this andC(x) < 0, we obtain the desired conclusion,
i.e. D(x) > 0.

Case II. Now we show that a vector x with a configuration x1 > x2 = x3 > x4 ≥ 0 cannot
be a minimizer of G either. Define x := x2 = x3. Now that f ′(0) is singular, determination
of small feasible ε1, . . . , ε4 such that G(y) < G(x) is more of a challenge. The fact that the
linear terms in (2.6)–(2.8) now depend on only ε1, ε2 + ε3, and ε4 hints that |ε1|, |ε2 + ε3|, and
|ε4| should be equally small, and that |ε2| and |ε3|, while small, should be much larger.

Believing in this scenario, we set

ε1 = δ1ε
2, ε2 = ε + δ2ε

2, ε3 = −ε, ε4 = δ4ε
2,

and seek the feasible δi(ε) for small ε. To begin with, we again require that δ4 ≥ 0. Letting
δ = (δ1, δ2, δ4), conditions (2.6)–(2.8) become

δ1 + δ2 + δ4 = 0, (2.11)

x1δ1 + xδ2 + x4δ4 = −1 + εb2(ε, δ), (2.12)

x2
1δ1 + x2δ2 + x2

4δ4 = −2x + εb3(ε, δ), (2.13)

where the bi(ε, δ) are polynomials. Note that
 := 
(x1, x, x4), the determinant of the matrix
in (2.11)–(2.13), is nonzero. So, for small enough |ε|, there exists a differentiable solution
δ(ε) such that δ(0) is the solution of (2.11)–(2.13) with 0, −1, and −2x respectively on the
right-hand side. By Cramer’s rule,

δ1(0) = 1




∣∣∣∣∣∣∣
0 1 1

−1 x x4

−2x x2 x2
4

∣∣∣∣∣∣∣
, δ2(0) = 1




∣∣∣∣∣∣∣
1 0 1
x1 −1 x4

x2
1 −2x x2

4

∣∣∣∣∣∣∣
,

δ4(0) = 1




∣∣∣∣∣∣∣
1 1 0
x1 x −1

x2
1 x2 −2x

∣∣∣∣∣∣∣
,
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which gives

δ1(0) = (x − x4)
2



, δ2(0) = (x1 − x4)(x1 + x4 − 2x)



, δ4(0) = − (x − x1)

2



.

Reassuringly, δ4(0) is positive (because
 is negative). Again, we wantG(x)−G(x +ε) > 0;
we have

G(x)−G(x + ε) =
4∑
j=1

(1 − e−εj )e−xj

= e−x1(1 − e−ε1)+ e−x(1 − e−ε2 + 1 − e−ε3)+ e−x4(1 − e−ε4)

= e−x1(δ1ε
2 +O(ε4))

+ e−x(ε + δ2ε
2 − 1

2 (ε + δ2ε
2)2 +O(ε3)− ε − 1

2ε
2 +O(ε3))

+ e−x4(δ4ε
2 +O(ε4))

= ε2(δ1e−x1 + (δ2 − 1)e−x + δ4e−x4 +O(ε)). (2.14)

Thus, by taking ε sufficiently small, (2.14) will be greater than 0 if

δ1(0) e−x1 + (δ2(0)− 1)e−x + e−x4δ4(0) > 0.

In light of the formulae for the δi(0) and the fact that 
 < 0, this is equivalent to

T (x) := −(x− x4)
2e−x1 + (
− (x1 − x4)(x1 + x4 − 2x)) e−x + (x− x1)

2e−x4 > 0. (2.15)

Now multiplying T (x) by ex and using the inequalities

exp(−(x1 − x)) < 1 − (x1 − x)+ (x1 − x)2

2
, exp(x − x4) > 1 + (x − x4)+ (x − x4)

2

2
,

we obtain

exT (x) = (x − x4)
2(1 − exp(x − x1))+ (x − x1)

2(exp(x − x4)− 1)+


> (x − x4)
2
(
(x1 − x)− (x1 − x)2

2

)
+ (x − x1)

2
(
(x − x4)+ (x − x4)

2

2

)
+


= (x − x4)
2(x1 − x)+ (x − x1)

2(x − x4)+ (x − x1)(x4 − x1)(x4 − x)

= 0.

Therefore, (2.15) holds, and, thus, as before, x cannot be a minimizer. This concludes case II.
This only leaves the possibility that the minimizer x of G is of the form

x1 = x2 = · · · = xν ≥ xν+1 ≥ xν+2 = · · · = xn,

and, thus, that the minimizer r of Fq(k) over D(c2, c3) is of the form (2.4) for any k. This
concludes the proof of Proposition 2.3.
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2.2. Identifying and iterating a likely recurrence inequality

Let
k∗ := c−1

2 ln−ε n, (2.16)

with ε coming from (1.4). (Here k∗ is meant to be an integer, as is another parameter k1 defined
later, but for simplicity we omit the ‘integer part’ notation.) This k∗ will serve as a threshold
separating the ‘early’ states (B(t) > k∗) from the ‘late’ states (B(t) ≤ k∗). So, in light of the
informal discussion in the introduction, ‘k∗ = o(c−1

2 )’ should be more or less expected; the
need for an additional factor, ln−ε n, will become clear later in Section 3.

Our immediate task is to identify a function�p(k) such that, intuitively at least, the random
sequence {B(t)}, w.h.p., satisfies a recurrence inequality

B(t + 1) ≤ �p(B(t)) if B(t) ≥ k∗. (2.17)

Then, for k ≥ k∗, �p(k) needs to be large enough so that, conditionally on {B(t) = k}, the
event {B(t + 1) ≤ �p(B(t))} is very likely. Since we think that �p(k) defined in (2.1) is a
‘sharp’ conditional predictor of B(t + 1), we must have �p(k) > �p(k). Also, to be of any
use,�p(k)must fall below k. Last, but not least, we must be able to solve a chosen recurrence.
The function

�p(k) = 1
2 (k +�p(k)) = 1

2 (k + n− Fp(k)), (2.18)

with Fp(k) as defined in (2.2), happens to meet all three requirements.
Define an event


 := {for all t : B(t) ≥ k∗ implies that B(t + 1) ≤ �p(B(t))}.
In Subsection 2.5 we will show that P(
) → 1 as n → ∞. In this subsection, assuming that
the event
 holds, we solve the recurrence (2.17) and estimate sharply τ(k∗), the first moment
t when B(t) ≤ k∗.

Lemma 2.1. On the event 
,

τ(k∗) ≤ 5c−1/2
2 ln n = o(c−1

2 ).

Proof. The proof is divided into two cases.
Case 1: c2 ≥ 2n−1. First of all, by Proposition 2.2 we have

�p(k) ≤ �θ(c2)(k) for all k ∈ [n],
θ(c2) being the topheavy distribution (θ1, θ2, . . . , θ2) with parameter c2. Therefore, on the
event 
,

B(t + 1) ≤ �θ(c2)(B(t)) for all t ≤ τ(k∗). (2.19)

Let us bound �θ(c2)(B(t)) from above. Since c2 ≥ 2n−1, we obtain, using (2.3),

θ1 ≥ 1

2
c

1/2
2 ⇒ θ2 ≤ 1 − (1/2)c1/2

2

n− 1
. (2.20)

By (2.20) and

�θ (B(t)) = 1
2 (B(t)+ n− exp(−θ1B(t))− (n− 1) exp(−θ2B(t))),
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we have (using the inequality e−x ≥ 1 − x)

B(t + 1) ≤ 1
2 (B(t)+ n− 0 − (n− 1)(1 − θ2B(t)))

≤ 1

2

(
B(t)+

(
1 − c

1/2
2

2

)
B(t)+ 1

)
(2.21)

≤
(

1 − c
1/2
2

4

)
B(t)+ 1

2
, (2.22)

a linear recurrence inequality. (Implicit in this derivation is an intuition that, for the distribution
θ in question, a large enough proportion of collisions happen in box 1 and that we may disregard
collisions in boxes 2, . . . , n without inducing too large an error.) It follows, from (2.22) and
B(0) = n, that

B(t) ≤ n

(
1 − c

1/2
2

4

)t
+ 2c−1/2

2 for B(t) ≥ k∗. (2.23)

To obtain a bound on τ(k∗), note that

k∗ < B(τ(k∗)− 1) ≤ n

(
1 − c

1/2
2

4

)τ(k∗)−1

+ 2c−1/2
2 , (2.24)

and let τ := τ(k∗)− 1. Now c
−1/2
2 = o(k∗) if c2 = o(ln−2ε n), which is certainly implied by

(1.4). So we can crudely use the bound 2c−1/2
2 ≤ 1

2k∗ in (2.24) to obtain

1

2
k∗ ≤ n

(
1 − c

1/2
2

4

)τ
≤ n exp

(
−c

1/2
2 τ

4

)
.

Taking logarithms and solving for τ , we obtain

τ ≤ 4(ln n+ ln c2 + ε ln ln n+ ln 2)c−1/2
2 ≤ 5c−1/2

2 ln n.

Hence, τ(k∗) = o(c−1
2 ), since c2 = o(ln−2 n), which is the first condition in (1.4).

Case 2: c2 ≤ 2n−1. This time θ(c2) is too close to being uniform, and inequality (2.21)
is too crude. A bit of reflection shows that we should not expect B(t) to decay exponentially
here. We show instead that, for some absolute constant A,

B(t) ≤ An

t + 1
, t ≤ τ(k∗). (2.25)

The proof is by induction. The case t = 0 holds if A ≥ 1. Suppose that (2.25) holds for some
t . Observe that

�p(k) =
n∑
j=1

ψ(pjk), ψ(x) := 1

2
(x + 1 − e−x),

and that ψ(x) is increasing and concave down. Then, by the inductive assumption,

B(t + 1) ≤
n∑
j=1

ψ(pjB(t)) ≤
n∑
j=1

ψ

(
pj

An

t + 1

)
≤ nψ

(
1

n

n∑
j=1

pj
An

t + 1

)
= nψ

(
A

t + 1

)
.
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So we need to find A ≥ 1 such that

ψ

(
A

t + 1

)
≤ A

t + 2
, (2.26)

or, defining x := A/(t + 1),

ψ(x) ≤ x
t + 1

t + 2
⇐⇒ 1 − e−x ≤ x

(
1 − 2

t + 2

)
. (2.27)

We therefore define x(t) implicitly by

1 − e−x(t) = x(t)

(
1 − 2

t + 2

)
; (2.28)

by considering the graphs of the functions of x(t) on the left- and right-hand sides of (2.28),
it is clear that x(t) is well defined and decreasing (to 0) in t . Therefore, (2.27) is satisfied
if and only if x ≥ x(t). It is not difficult to show that x(t) ∼ 4/(t + 2) as t → ∞, and so
A∗ := lim supt→∞(t + 1)x(t) is finite. Thus, to satisfy (2.26) and thereby to complete the
inductive proof, we can pick A = max{1, A∗}. Therefore, on the event 
, we have

k∗ < B(τ(k∗)− 1) ≤ An

τ(k∗)
,

which we can invert to obtain

τ(k∗) ≤ An

k∗
= 2A lnε n,

which is certainly o(c−1/2
2 ln n). Combining this with the case c2 ≥ 2/n, we have τ(k∗) =

O(c
−1/2
2 ln n) on the event 
. This completes the proof of Lemma 2.1.

2.3. Exponential tail bounds

We need to show that P(
) converges to 1 and that it does so sufficiently fast. To this end,
and also for Theorem 1.2, we establish two-sided exponential tail bounds for the distribution of
B(t + 1) conditioned on B(t). Like Chernoff bounds for sums of independent and identically
distributed random variables, the bounds are based on a generating function approach for
estimating the probabilities of large deviations.

Let πkb := P(B(t + 1) = b | B(t) = k), and note that πkb = 0 for k < b. Introduce the tail
probabilities

π−
kb = P(B(t + 1) < b | B(t) = k) and π+

kb = P(B(t + 1) > b | B(t) = k).

Theorem 2.1. We have

π−
kb ≤ 3

√
k exp

(
− (�p(k)− b)2

2k

)
, b ≤ �p(k), (2.29)

and

π+
kb ≤ 3

√
k exp

(
− (b −�p(k))

2

2k

)
, b ≥ �p(k). (2.30)

The heart of the proof is an expression for πkb by means of generating functions. As usual,
the expression [ym]f (y) denotes the coefficient of ym in the power series expansion of f (y).
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Lemma 2.2. We have

πkb = k!
nk

[xkzb]
n∏
j=1

(1 + z(exp(npjx)− 1)), 1 ≤ b ≤ k ≤ n.

Proof. We have

πkb = P(B(t + 1) = b | B(t) = k)

=
∑

U⊂[n], |U |=b
P(k balls go into exactly the boxes indexed by U)

=
∑
U

∑
ε1+···+εb=k

εj>0 for all j∈[b]

P(each box j from U gets εj balls)

=
∑
U

∑
�ε

(
k

ε1ε2 · · · εb
) ∏
j∈U

p
εj
j

= k!
∑
U

∑
�ε

∏
j∈U

p
εj
j

εj ! .

Now we build a bivariate generating function for the probabilities πkb. Start with the k index.
Incorporating for future convenience an nk factor, we have

∑
k

πkb
nk

k! x
k =

∑
U

∑
k

∑
ε1+···+εb=k

εj>0

∏
j∈U

(nx)εj p
εj
j

εj ! .

We merge the second and third sums, yielding for the right-hand side

∑
U

∑
εj>0

∏
j∈U

(nx)εj p
εj
j

εj ! .

Reversing the order of summation and multiplication, we obtain

∑
k

πkb
nk

k! x
k =

∑
U

∏
j∈U

∞∑
ε=1

(nxpj )
ε

ε! =
∑
U

∏
j∈U

(exp(npjx)− 1).

Multiplying by zb and summing for b ≥ 0, we obtain

∑
b

∑
k

πkb
nk

k! x
kzb =

∑
b

zb
∑

|U |=b

∏
j∈U

(exp(npjx)− 1)

=
∑
U⊂[n]

zb
∏
j∈U

(exp(npjx)− 1)

=
∑
U⊂[n]

∏
j∈U

z(exp(npjx)− 1)

=
n∏
j=1

(1 + z(exp(npjx)− 1)).
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Therefore, we have

πkb
nk

k! = [xkzb]
n∏
j=1

[1 + z(exp(npjx)− 1)],

and from here the lemma follows.

Proof of Theorem 2.1. By Lemma 2.2,

gk(z) := E[zB(t+1) | B(t) = k] =
k∑
b=1

πkbz
b = k!

nk
[xk]

n∏
j=1

(1 + z(exp(npjx)− 1)).

Now, for b ≤ k, we have

zbπ−
kb =

b∑
i=1

πkiz
b ≤

b∑
i=1

πkiz
i ≤ gk(z), 0 < z ≤ 1,

zbπ+
kb =

k∑
i=b+1

πkiz
b ≤

k∑
i=b+1

πkiz
i ≤ gk(z), z ≥ 1.

This gives

π−
kb ≤ gk(z)

zb
= k!
zbnk

[xk]
n∏
j=1

(1 + z(exp(npjx)− 1)) for 0 < z ≤ 1, (2.31)

π+
kb ≤ gk(z)

zb
= k!
zbnk

[xk]
n∏
j=1

(1 + z(exp(npjx)− 1)) for z ≥ 1. (2.32)

Since the coefficients of the products in (2.31)–(2.32) are nonnegative, we use the inequality
[xk]f (x) ≤ f (x)/xk (for all x > 0) to obtain

π−
kb ≤ k!

zb(nr)k

n∏
j=1

(1 + z(exp(npj r)− 1)) for all r > 0 and 0 < z ≤ 1, (2.33)

π+
kb ≤ k!

zb(nr)k

n∏
j=1

(1 + z(exp(npj r)− 1)) for all r > 0 and z ≥ 1. (2.34)

Our task is to get the most out of bounds (2.33)–(2.34) by choosing values for z and r judiciously.
We use Stirling’s formula, k! ≤ 3

√
k(k/e)k , to transform the product-type formulae (2.33) and

(2.34) into

π−
kb ≤ 3

√
k exp(H(z, r, b)), z ≤ 1, (2.35)

π+
kb ≤ 3

√
k exp(H(z, r, b)), z ≥ 1, (2.36)

where

H(z, r, b) := k ln

(
k

rne

)
− b ln(z)+

∑
j

ln(1 + z(exp(npj r)− 1)). (2.37)
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For a given b, we want to use a stationary point of H(z, r, b), i.e. a solution to

Hz = −b
z

+
∑
j

exp(npj r)− 1

1 + z(exp(npj r)− 1)
= 0, (2.38)

Hr = −k
r

+ z
∑
j

npj exp(npj r)

1 + z(exp(npj r)− 1)
= 0. (2.39)

This complicated system has a simple solution (z∗, r∗) = (1, k/n) for

b = b∗ := n−
∑
j

exp(−pjk)(= �p(k)).

Moreover, from (2.37), it is immediate that H(z∗, r∗, b∗) = 0. This is a first sign that the
inequalities (2.35)–(2.36) may indeed lead to meaningful explicit bounds for π±

kb. Of course,
we need to know that (2.38)–(2.39) has a solution (z, r) for b �= b∗ as well, such that z < 1 for
b < b∗ and z > 1 for b > b∗.

Observe that

det

(
Hzz Hzr

Hrz Hrr

)
= HzzHrr −H 2

zr > 0

for every solution (z, r) of (2.38)–(2.39) (see Lemma A.1 in Appendix A for a proof of this).
So, by the implicit vector function theorem, there exists an infinitely differentiable solution
(z(b), r(b)) of (2.38)–(2.39) such that

(z(b∗), r(b∗)) = (z∗, r∗).

Moreover, z(b) is strictly increasing (see (A.13) in Appendix A), so that indeed z(b) < 1 for
b < b∗ and z(b) > 1 for b > b∗. So, introducing

h(b) = H(z(b), r(b), b), (2.40)

we have
π−
kb ≤ 3

√
k exp(h(b)), b < b∗, (2.41)

π+
kb ≤ 3

√
k exp(h(b)), b > b∗; (2.42)

here h(b∗) = H(z∗, r∗, b∗) = 0.
To obtain efficient bounds from (2.41)–(2.42), let us approximate h(b) by its Taylor poly-

nomial about b∗. First, using (2.38)–(2.39),

h′(b) = d

db
H(z(b), r(b), b)

= Hz(z(b), r(b), b)z
′(b)+Hr(z(b), r(b), b)r

′(b)+Hb(z(b), r(b), b)

= Hb(z(b), r(b), b)

= −ln(z(b)). (2.43)

It follows that h(b) is unimodal (concave down, in fact), attaining its zero maximum at b = b∗.
Consequently,

h(b) = h(b∗)+ h′(b∗)(b − b∗)+ h′′(b̃)
2

(b − b∗)2 = h′′(b̃)
2

(b − b∗)2, (2.44)
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b̃ being between b and b∗. It is shown in Appendix A (Lemma A.2) that

h′′(b̃) ≤ −1

k
.

This bound, (2.41), (2.42), and (2.44) imply (2.29) and (2.30), thereby concluding the proof of
Theorem 2.1.

2.4. Using the exponential tail bounds

For the upper bound, we will need (2.30), which gives, for b = �p(k) (recall the definition
of �p(k) in (2.18)),

π+
k,�p(k)

≤ 3
√
k exp

(
− (�p(k)−�p(k))

2

2k

)

= 3
√
k exp

(
− (k −�p(k))

2

8k

)
. (2.45)

Introducing

Hp(k) := 1

k
(�p(k)−�p(k))

2,

we rewrite (2.45) as
π+
k,�p(k)

≤ 3
√
k exp

(− 1
2Hp(k)

)
. (2.46)

The next lemma states, roughly, that the larger k is, the more likely it is that the next state
B(t + 1) is close to the prediction based on information B(t) = k.

Lemma 2.3. For all k and p, Hp(k) is increasing in k.

Proof. Define

Np(k) := �p(k)−�p(k) = 1

2

(
k − n+

n∑
j=1

exp(−pjk)
)
,

so that Hp(k) = k−1Np(k)
2. Then

H ′
p(k) = Np(k)

k2 (2kN ′
p(k)−Np(k)),

where

2kN ′
p(k)−Np(k) = 1

2

n∑
j=1

(pj k + 1 − (2pjk + 1) exp(−pjk)) > 0,

because

f (x) := x + 1 − (2x + 1)e−x > x + 1 − 2x + 1

x + 1
= x2

x + 1
> 0 for x > 0.

This completes the proof.

Lemma 2.4. For all k ∈ {k∗, . . . , n},
Hp(k) ≥ A∗ ln1+ε n,

whereA∗ is some absolute constant. Thus, the probability in (2.46) is superpolynomially small.
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Proof. Consider first the case in which c2 ≥ 2n−1. From Proposition 2.3 and Lemma 2.3,
it follows that, for all k ≥ k∗, Hp(k) ≥ Hp(k∗) ≥ Hr(k∗); here

Hr(k∗) = (�r(k∗)−�r(k∗))2

k∗

= 1

4k∗

( n∑
j=1

(exp(−rj k∗)− 1 + rj k∗)
)2

≥ 1

4k∗
(ν(exp(−r1k∗)− 1 + r1k∗))2. (2.47)

To bound (2.47) from below, we need to have sharp bounds for r1 and ν. Recalling the definition
of r in Lemma 2.3, and letting µ := n− ν − 1, we have

νr1 + r2 + µr3 = 1, νr2
1 + r2

2 + µr2
3 = c2, νr3

1 + r3
2 + µr3

3 = c3. (2.48)

Obviously, r3 ≤ n−1. Since we assume that c2 ≥ 2n−1, we also have

c3 ≥ c2
2 ≥ 4

n2 .

Hence,

µr2
3 ≤ µ

n2 ≤ 1

n
≤ c2

2
, µr3

3 ≤ µ

n3 ≤ 1

n2 ≤ c3

4
. (2.49)

Combining (2.48), (2.49), and r2 ≤ r1, we obtain

c2

4
≤ νr2

1 ≤ c2,
3c3

8
≤ νr3

1 ≤ c3. (2.50)

These double inequalities directly imply that

3

8

c3

c2
≤ r1 ≤ 4

c3

c2
,

1

64

c3
2

c2
3

≤ ν ≤ 64

9

c3
2

c2
3

. (2.51)

Armed with (2.51) we return to (2.47). Recalling that k∗ = c−1
2 ln−ε n, we need to consider

separately the subsequences {ni} such that r1k∗ = O(1) for n ∈ {ni}, and the subsequences
{ni} along which r1k∗ → ∞. In the first case,

inf
ni

exp(−r1k∗)− 1 + r1k∗
r2

1k
2∗

≥ δ > 0.

So, using (2.50), we obtain, from (2.47),

Hr(k∗) ≥ δ2

4
ν2r4

1k
3∗ ≥ δ2

4
(νr2

1 )
2c−3

2 ln−3ε n ≥ δ2

64
c−1

2 ln−3ε n.

In the second case, for large enough ni ,

exp(−r1k∗)− 1 + r1k∗ ≥ 1
2 r1k∗.

So, using (2.50) again and (2.51),

Hr(k∗) ≥ 1

16
ν2r2

1k∗ = 1

16
ν(νr2

1 )k∗ ≥ 1

212

c3
2

c2
3

ln−ε n.
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Therefore, there exists a constant A > 0 such that, for large enough n,

Hr(k∗) ≥ Amin

{
c−1

2 ln−3ε n,
c3

2

c2
3

ln−ε n
}
,

for if there were not, there would be a subsequence {r1k∗(nj )}j≥1 along which this did not
hold. This subsequence would then have a further subsequence which tended to ∞, or remained
bounded, which would contradict the bound for one of the two cases established above. Since

c3 ≤ c
3/2
2 ln−(1/2+ε) n, c2 ≤ C ln−2 n

for some large enough constant C, the last inequality leads to

Hr(k∗) ≥ A ln1+ε n

for large enough n, as long as ε < 1
4 , which of course we may assume without loss of generality.

Now consider the case in which c2 ≤ 2n−1. This time, by Proposition 2.1 and Lemma 2.3,
for all k ≥ k∗ = c−1

2 ln−ε n,

Hp(k) ≥ Hp(k∗) ≥ Hu(k∗),

where

Hu(k∗) = 1

4k∗
(k∗ − n+ ne−k∗/n)2 ≥ k3∗

36n2 ≥ 1

288
n ln−3ε n.

(For the first inequality, we used

e−x − 1 + x ≥ x2

2
− x3

6
≥ x2

3
for x ∈ (0, 1).)

Thus, Hp(k) = ω(ln1+ε n) for this case, and this concludes the proof.

2.5. Validation of the deterministic approximation

Now that we have established the (superpolynomially) small bound for π+
k,�p(k)

, we can
finally show that the event 
 is extremely likely indeed.

Lemma 2.5. For some constant A > 0,

P(
) ≥ 1 − 12n ln n exp(−A ln1+ε n) ≥ 1 − n−K for all K > 0 and n ≥ n(K).

Remark. Borrowing a term from Knuth et al. [10], the event 
 holds quite surely (q.s.).

Proof of Lemma 2.5. Introduce the events

Ct = {B(s + 1) ≤ �p(B(s)) for all s < t, B(t + 1) > �p(B(t)), B(t) ≥ k∗};
that is, Ct is the event that the recursive inequality B(s + 1) ≤ �p(B(s)) is violated at a state
B(t) ≥ k∗, and t is the first such moment. Clearly,


c =
⋃
t≥0

Ct .
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Let us show that
Ct = ∅ for all t ≥ t∗ := 4c−1/2

2 ln n.

Suppose, on the contrary, that Ct1 �= ∅ for some t1 > t∗. Then, by the definition of Ct1 , we
have

B(s + 1) ≤ �p(B(s)) for all s ≤ t∗,
and certainlyB(t∗) ≥ k∗. However, using this recurrence inequality exactly as in the derivation
of (2.23), we must have

B(t∗) ≤ n

(
1 − c

1/2
2

4

)t∗
+ 2c−1/2

2

≤ n exp

(
−(4c−1/2

2 )(ln n)

(
c

1/2
2

4

))
+ 2c−1/2

2

= 1 + 2c−1/2
2

< k∗,

since c2 = o(ln−2ε n). This is a contradiction. Thus, 
c is a union of at most t∗ events Ct .
Now, by (2.45) and Lemma 2.3, we have

P(Ct ) ≤ 3n1/2 exp

(
−Hp(k∗)

2

)
, t ≥ 0,

since B(t) ≥ k∗ on Ct . Therefore,

P(
c) = P

(⋃
t≤t∗

Ct

)

≤
∑
t≤t∗

P(Ct )

≤ 3t∗n1/2 exp

(
−Hp(k∗)

2

)

= 12c−1/2
2 n1/2 ln n exp

(
−Hp(k∗)

2

)

≤ 12n ln n exp

(
−Hp(k∗)

2

)

≤ 12n ln n exp(−0.5A∗ ln1+ε n) by Lemma 2.4,

and from here the lemma follows.

This completes a program we put forth at the end of the introduction. Combining Lemma 2.1
and Lemma 2.5, we have proved the following.

Lemma 2.6. Let k∗ = c−1
2 ln−ε n for some however small ε ∈ (0, 1

4 ), and let τ(k∗) denote the
random moment when B(t) falls to or below k∗ for the first time. Then, for some constant
a > 0,

P(τ (k∗) ≤ ac
−1/2
2 ln n) ≥ 1 − n−K for all K > 0 and n ≥ n(K).

In short, q.s., τ(k∗) = o(c−1
2 ).
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2.6. Bounding the expectation of τ(k∗)
Even though τ(k∗) = o(c−1

2 ) q.s., proving that E[τ(k∗)] = o(c−1
2 ) as well is not straight-

forward, since we do not have a polynomial (worst-case) bound for τ(k∗). As a first step,
introducing the event indicators I
 and I
c , we split E[τ(k∗)] using 1 = I
 + I
c and bound
the second summand via the Cauchy–Schwarz inequality:

E[τ(k∗)] = E[τ(k∗)I
] + E[τ(k∗)I
c ]
≤ 5(ln n)c−1/2

2 +
√

E[τ 2(k∗)] E[I 2

c ]

≤ 5(ln n)c−1/2
2 +

√
E[τ 2(k∗)]

√
P(
c). (2.52)

It remains to show that E[τ 2(k∗)] is at most polynomially large. To do so, introduce Tk , the
random time the process {B(t)} spends at state k, i.e.

Tk = |{t ≥ 0 : B(t) = k}|. (2.53)

Then

τ 2(k∗) =
( n∑
k=k∗+1

Tk

)2

≤ (n− k∗)
n∑

k=k∗+1

T 2
k ,

again by the Cauchy–Schwarz inequality. Therefore,

E[τ 2(k∗)] ≤ n

n∑
k=k∗+1

E[T 2
k ] ≤ n

n∑
k=k∗+1

E[T 2
k | Tk > 0].

Recalling the notation πkk = P(B(t + 1) = k | B(t) = k), we observe that

P(Tk = j | Tk > 0) = π
j−1
kk (1 − πkk), j > 0,

i.e. conditioned on {Tk > 0}, Tk is geometrically distributed, with success probability 1 − πkk .
In particular,

E[Tk | Tk > 0] = 1

1 − πkk
, var[Tk | Tk > 0] = πkk

(1 − πkk)2
.

It is obvious intuitively, and can be easily proved, that πkk decreases with k: the larger
the number of balls—the larger the probability of collision. Consequently, both conditional
moments of Tk decrease with k. So

E[τ 2(k∗)] ≤ n

n∑
k=k∗+1

(
πkk

(1 − πkk)2
+ 1

(1 − πkk)2

)

≤ n

n∑
k=k∗+1

2

(1 − πkk)2

≤ 2n2

(1 − πk∗k∗)2
. (2.54)
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Therefore, it remains to show that only 1/(1 −πk∗k∗) is at most polynomially large in n. Using
the simplest lower bound for the probability of the union of events, via the inclusion–exclusion
formula, we write

1 − πkk = P(there is a collision during a k-allocation)

≥
∑

{a,b}⊂[k]
P(balls a and b collide)−

∑
{c,d}�={e,f }⊂[k]

P(c, d collide and e, f collide)

≥
(
k

2

)
c2 −

((
k

3

)
c3 + 1

2

(
k

2

)(
k − 2

2

)
c2

2

)
(2.55)

=
(
k

2

)
c2

(
1 − a1k

c3

c2
− a2k

2c2

)
, (2.56)

where a1 and a2 are some absolute constants. The two rightmost terms of (2.55) are due to the
fact that there are two ways in which two distinct pairs of balls can collide: either the two pairs
overlap at one ball or they are disjoint. Now introduce k1 := c

−1/2
2 ln−ε/4 n; clearly, k1 < k∗,

and we also have
lim k1

c3

c2
= 0, lim k2

1c2 = 0.

So, by (2.56), uniformly for all k ≤ k1,

1

1 − πkk
≤ 1(

k
2

)
c2
(1 + o(1)). (2.57)

Consequently,
1

1 − πk∗k∗
≤ 1

1 − πk1k1

= O(k−2
1 c−1

2 ) = O(lnε/2 n), (2.58)

which is sufficient. Thus, by (2.52) and (2.54),

E[τ(k∗)] = O(c
−1/2
2 ln n) = o(c−1

2 ). (2.59)

3. Bounding expected duration of a middle phase and a late phase

To complete the proof of Theorem 1.1, it remains to bound the expected duration of the
process after the number of balls has dropped below k∗.

We define a middle phase as [τ(k∗), τ (k1)), the time interval during which the number of
balls is below k∗ and above k1. Using the Tk defined in (2.53), we have

E[τ(k1)− τ(k∗)] =
k∗∑

k=k1+1

E[Tk] ≤
k∗∑

k=k1+1

1

1 − πkk
.

Then, by decreasing monotonicity of (1 − πkk)
−1 and (2.58),

E[τ(k1)− τ(k∗)] ≤ k∗ − k1

1 − πk1k1

= O(c−1
2 ln−ε+ε/2 n) = O(c−1

2 ln−ε/2 n) = o(c−1
2 ). (3.1)

(The last computation explains at long last why we needed the ln−ε n factor in the definition of
k∗, (2.16).)
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Naturally, we define a late phase as [τ(k1), τ (1)]. By (2.57),

E[τ(1)− τ(k1)] ≤ 1 +
k1∑
k=2

1 + o(1)

c2
(
k
2

) = 2c−1
2 (1 + o(1)), (3.2)

where we used
1

k(k − 1)
= 1

k − 1
− 1

k
, k ≥ 2.

That does it! Adding the estimates (2.59), (3.1), and (3.2), we obtain

E[τ(1)] ≤ 2c−1
2 (1 + o(1)).

4. Lower bound

We now provide the matching lower bound for Theorem 1.1. We will not need assumptions
on p as strong as (1.4); rather, we will simply assume that c2(p) → 0.

For any m ≤ n, let T (m) denote the coalescence time for the process starting with m balls
(we have so far been considering the case in which T := T (n).) We start by stating Theorem 2
of [1]: for any p,

E[T (m)] ≥ 2c−1
2

(
1 − 1

m
− (m− 1)(m− 2)

12

c3

c2

)
. (4.1)

To obtain a bound on T (n), first note the following obvious-looking fact.

Proposition 4.1. Letm1 ≤ m2 ≤ n. Then, for any p, T (m2) stochastically dominates T (m1).

Proof. This is a result of the following basic coupling argument. Start with m2 balls, m1
of which are marked, then perform the usual allocation process; the time X at which all balls
coalesce is distributed as T (m2), and at this time, certainly all marked balls have coalesced
as well; call the time that these marked balls have first coalesced Y , so that X ≥ Y and Y is
distributed as T (m1). From here, the result follows.

This result shows that, for the bound E[T (n)] ≥ 2c−1
2 (1 − o(1)), it is sufficient to show that

E[T (m)] ≥ 2c−1
2 (1 − o(1)) for some m ≤ n. By the inequalities

c2
2 ≤ c3 ≤ c

3/2
2 ⇒ c2 ≤ c3

c2
≤ c

1/2
2 ,

we have c2 → 0 if and only if c3/c2 → 0. Letm∗ := (c2/c3)
1/3, say; thenm∗ → ∞ since we

assume that c2 → 0, and so (4.1) becomes

E[T (m∗)] ≥ 2c−1
2

(
1 − 1

m∗
−O(m2∗m−3∗ )

)
= 2c−1

2 (1 − o(1)),

and the result follows by Proposition 4.1. The proof of Theorem 1.1 is complete.
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5. Proof of Theorem 1.2

We start by restating Theorem 1.2 in a more detailed manner.

Theorem 5.1. Let b0 = n. Suppose that c2 = (ln−2 n)λ(n), where λ(n) → ∞ however slowly.
Set p = θ(c2), i.e. p is the topheavy distribution (θ1, θ2, . . . , θ2) with

θ2
1 + (n− 1)θ2

2 = c2.

Then, for the process evolving according to this p, w.h.p.,

τ(1) ≥ c−1
2

√
λ(n)

20
;

so, in particular, E[τ(1)] = ω(c−1
2 ).

Remarks. 1. Our choice of p should be expected. Indeed, the recurrence inequality (2.19)
signals, intuitively, that the coalescent process for p = θ(c2) is a good candidate for being the
slowest among all p with

∑
j p

2
j = c2.

2. In Theorem 5 of [1], Adler et al. proved that, for maxj pj bounded away from 0, and the
remaining pj uniformly small, the expected coalescence time exceeds c−1

2 by a factor of ln n.

5.1. Proof of Theorem 5.1

For simplicity, we let c := c2. For p = θ(c), the Markov chain is almost as simple as
that for the uniform p. Indeed, given B(t), the number of balls that land in box 2, . . . , n (call
it B̂(t)) is binomially distributed with parameters B(t) and success probability 1 − θ1, i.e.
B̂(t) = Bin(B(t), 1 − θ1) in short. Conditioned on B̂(t), we have a uniform allocation of B̂(t)
balls among n−1 boxes 2, . . . , n. Also, for sufficiently largeB(t), w.h.p., B̂(t) ∼ (1−θ1)B(t).
So, based on our experience with deterministic approximations earlier in the paper, we should
expect that—after fusing balls that landed in the same box—these B̂(t) balls give birth to about

(n− 1)

(
1 − exp

(
− B̂(t)

n− 1

))
∼ (n− 1)

(
1 − exp

(
− (1 − θ1)B(t)

n− 1

))

balls for the next generation. All the balls that landed in box 1, if there were any, will coalesce
into one ball. Ignoring this box for now, we expect then that the process {B(t)}, w.h.p., ‘closely’
obeys a recurrence inequality of the form

B(t + 1) ≥ (n− 1)ϕ

(
(1 − θ1)B(t)

n− 1

)
, ϕ(x) := 1 − e−x.

Here is a precise claim.

Lemma 5.1. Let γ := 1 − 2c1/2 < 1 − θ1, and introduce

�(k) = (n− 1)η

(
γ k

n− 1

)
, η(x) := 1.5ϕ(x)− 0.5x.

Then, for sufficiently large n,

P(B(t + 1) < �(B(t)) | B(t) = k) ≤ e−kc/3 + exp

( −k3

73n2

)
. (5.1)

Remark. We have η(0) = 0, η(x) ≤ ϕ(x), and η(x) is increasing for x ≤ ln 3.
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Proof of Lemma 5.1. Note first that

B(t + 1) ≥ R(t + 1),

where R(t + 1) is the number of boxes among 2, . . . , n that host at least one of B̂(t) balls.
Denoting P({·} | B(t) = k) by Pk({·}), we then have

Pk(B(t + 1) < �(k)) ≤ Pk(R(t + 1) < �(k))

≤ Pk(R(t + 1) < �(k), B̂(t) ≥ γ k)+ Pk(B̂(t) < γ k).

Now, denoting the cumulative distribution function of R(t + 1) conditioned on {B̂(t) = j} by
Fj , we have, for j1 < j2,

Fj2(x) ≤ Fj1(x) for all x ≥ 0.

(Informally, the fewer balls we allocate among the boxes 2, . . . , n, the fewer nonempty boxes
we end up with.) Therefore, letting �x� = min{k ∈ N : k ≥ x},
Pk(R(t + 1) < �(k), B̂(t) ≥ γ k) =

∑
j≥γ k

P(R(t + 1) < �(k) | B̂(t) = j)Pk(B̂(t) = j)

≤ P(R(t + 1) < �(k) | B̂(t) = �γ k�)
∑
j≥γ k

Pk(B̂(t) = j)

≤ P(R(t + 1) < �(k) | B̂(t) = �γ k�).
Consequently,

Pk(B(t + 1) < �(k)) ≤ P1 + P2,

where
P1 := Pk(R(t + 1) < �(k) | B̂(t) = �γ k�),
P2 := Pk(B̂(t) < γ k).

Using the Chernoff bound for the tail of the binomial distribution (see, for instance, [11]), we
have

P2 = P(Bin(k, 1 − θ1) < γ k)

≤ exp

(
−kpδ

2

2

)∣∣∣∣
p=1−θ1, δ=1−γ (1−θ1)−1

≤ e−kc/3, (5.2)

as θ1 ∼ c
1/2
2 , from the definitions of θ1 and θ2 in (2.3).

We now turn to P1. Applying Theorem 2.1 to the boxes set {2, . . . , n} and the uniform
distribution u on this set, we obtain

P1 ≤ 3
√
γ k exp

(
− (�u(γ k)−�(k))2

2γ k

)
.

Here, using the definition of η(x),

�u(γ k)−�(k) = (n− 1)ϕ

(
γ k

n− 1

)
− (n− 1)η

(
γ k

n− 1

)

= (n− 1)

2

(
γ k

n− 1
− ϕ

(
γ k

n− 1

))
.
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So, as

x − ϕ(x) = e−x − 1 + x ≥ x2

2
− x3

6
≥ x2

3
, x ∈ [0, 1],

we have

P1 ≤ 4
√
γ k exp

(
− (γ k)4

72γ k(n− 1)2

)
≤ exp

( −k3

73n2

)
. (5.3)

The estimates (5.2)–(5.3) imply (5.1), thereby completing the proof of the lemma.

To continue, let k̂ := n3/4. Introduce two events,

� := {for all t, B(t) ≥ k̂ implies that B(t + 1) ≥ �(B(t))}
and

� := {there exists t > c−3/2 : B(t) ≥ k̂}.
On the event �, B(t) does not decrease ‘too quickly’ as long as B(t) is above k̂. On the event
�, τ(k̂) ≥ c−3/2, i.e. τ(k̂) = ω(c−1). Then, by Lemma 5.1,

P(�c ∩�c) ≤ P

(c−3/2⋃
t=0

{B(t + 1) < �(B(t)), B(t) ≥ k̂}
)

≤ (1 + c−3/2)

(
e−k̂c/3 + exp

(
− k̂3

73n2

))

= (1 + c−3/2)

(
exp

(−n3/4c

3

)
+ exp

(−n1/4

73

))

→ 0,

i.e. P(� ∪�) → 1.
If we show that τ(k̂) = ω(c−1) on the event � as well, we will then be able to claim that,

w.h.p., τ(k̂) = ω(c−1), and the proof of Theorem 5.1 will be complete.
To do so, we observe that, on the event �,

x(t + 1) ≥ η(γ x(t)), x(t) := B(t)

n− 1
, x(0) = 1 − (n− 1)−1, (5.4)

as long as

x(t) ≥ k̂

n− 1
∼ n−1/4.

Lemma 5.2. Let n ≥ 3. Under the recurrence in (5.4),

x(t) ≥ 2

3

γ t

t + 1
. (5.5)

Proof. The argument runs in parallel to that for the lower bound of B(t) in (2.25). The base
case t = 0 is just

x(0) = 1 − n−1 ≥ 2
3 .

Suppose that (5.5) holds for some t . Since η(x) is increasing for x ≤ ln 3, (5.4) implies that

x(t + 1) ≥ η

(
γ

2

3

γ t

t + 1

)
= η

(
2

3

γ t+1

t + 1

)
.
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So, to complete the inductive step, we need to show that

η(y) ≥ y
t + 1

t + 2
, y := 2

3

γ t+1

t + 1
. (5.6)

Define z as a root of

η(z) = z
t + 1

t + 2
or 1 − e−z = z

t + 4/3

t + 2
. (5.7)

Since 1 − e−1 < 2
3 , (5.7) has a (unique) root z = z(t) for t ≥ 0. Using 1 − e−z ≥ z − z2/2,

we obtain

z(t) ≥ 4/3

t + 2
.

Inequality (5.6) holds if y ≤ z(t), which is certainly so because

y(t) ≤ 2/3

t + 1
≤ 4/3

t + 2
for all t ≥ 0,

and from here the lemma follows.

Thus, on the event �,

B(t) ≥ k̂ ⇒ B(t + 1) ≥ (n− 1)
2

3

γ t+1

t + 2
. (5.8)

Lemma 5.3. On the event �,

τ(k̂) ≥ ln2 n

20
√
λ(n)

= c−1
√
λ(n)

20
.

Proof. Let the event � hold. By (5.8), and the definition of τ(·), τ̂ := τ(k̂) satisfies

k̂ ≥ B(τ̂ ) ≥ (n− 1)
2

3

γ τ̂

τ̂ + 1
.

Recalling that k̂ = n3/4, γ = 1 − 2c1/2, and taking logarithms, we obtain

3c1/2τ̂ + ln(τ̂ + 1) ≥ 1
5 ln n,

or

3

√
λ(n)

ln n
τ̂ + ln(τ̂ + 1) ≥ 1

5
ln n. (5.9)

It then follows that, for large enough n,

τ̂ ≥ 1

4 · 5

ln2 n√
λ(n)

= c−1
√
λ(n)

20
,

as if it did not then ln(τ̂ + 1) = o(ln n) and

3

√
λ(n)

ln n
τ̂ ≤ 3

4 · 5
ln n < ln n,

which together contradict (5.9) for large enough n. This completes the proof.
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In summary, on the event � ∪�,

τ(k̂) ≥ min

{
c−3/2, c−1

√
λ(n)

20

}
= c−1

√
λ(n)

20
.

Recalling that P(� ∪�) → 1, we conclude that

c E[τ(1)] ≥ c E[τ(k̂)] ≥ E[τ(k̂) I�∪�] ≥
√
λ(n)

20
P(� ∪�) → ∞.

This concludes the proof of Theorem 5.1.

6. Concluding remarks and future work

A generalization of this problem is to allow the probability of a ball going to a certain box
to depend on its origin and not just on its destination; that is, if we have a ball in box i, it has
probability pij of landing in box j for any j ∈ [n], and these probabilities are not necessarily
the same for all i. This is more difficult, as {B(t)}t≥0 is no longer a Markov chain: we have to
keep track of the locations of the balls at any time and not simply their number.

Coupling from the past algorithms involve running simultaneous coalescing flows on a
Markov chain P := (pij )1≤i,j≤n with stationary distribution π , and return samples distributed
exactly according to π , at the time when all the flows coalesce. It would be very interesting
to extend the techniques in this paper to a more general case (when the rows of P are not
necessarily all equal to some vector p) in order to obtain an upper bound for the expected
running time of such algorithms.

Here is an approach that appears promising. We start with a fixed allotment of one ball in
each of the n boxes and, for t∗ times, we run n independent allocations for each ball, where
we do not fuse balls that land in the same box; call this a mixing phase. This t∗ is to be taken
large enough so that the location of each ball at time t∗ is ‘almost’ π -distributed. Then, at
time t∗ + 1, we allocate the balls into the boxes but fuse any that collide (a fusing allocation).
Continue alternating between mixing phases and fusing allocations until total coalescence has
occurred; the coalescence time for this process should dominate the time for the usual process
where we fuse colliding balls at every time. Moreover, if the locations of the balls at each
fusing allocation are sufficiently independent and close to π -distributed, then we may be able
to bring the results in this paper to bear on this more general case.

Appendix A. Missing parts of the proof of Theorem 2.1

Lemma A.1. Let χ = HrrHzz − H 2
rz. Then χ > 0 for all (z, r, b) on the curve C defined by

(2.38) and (2.39).

Proof. By the definition of H , we have

Hzz = b

z2 −
∑
j

(exp(npj r)− 1)2

(1 + z(exp(npj r)− 1))2
, (A.1)

Hrr = k

r2 + z(1 − z)n2
∑
j

p2
j exp(npj r)

(1 + z(exp(npj r)− 1))2
, (A.2)
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and

Hrz = n
∑
j

pj exp(npj r)

(1 + z(exp(npj r)− 1))2
. (A.3)

We can recast (2.38) and (2.39) as

b =
∑
j

z(exp(npj r)− 1)

1 + z(exp(npj r)− 1)
, k = nrz

∑
j

pj exp(npj r)

1 + z(exp(npj r)− 1)
. (A.4)

Using these in (A.1)–(A.3), we obtain, on C,

Hzz = 1

z2

∑
j

z(exp(npj r)− 1)

1 + z(exp(npj r)− 1)
−

∑
j

(exp(npj r)− 1)2

(1 + z(exp(npj r)− 1))2
, (A.5)

Hrr = nz

r

∑
j

pj exp(npj r)

1 + z(exp(npj r)− 1)
+ z(1 − z)n2

∑
j

p2
j exp(npj r)

(1 + z(exp(npj r)− 1))2
,

and now (A.5) simplifies to

Hzz = 1

z

∑
j

(exp(npj r)− 1)

(1 + z(exp(npj r)− 1))2
. (A.6)

As for Hrr , the best we can do is to rewrite the equation in the form

Hrr =
∑
j

nzpj exp(npj r)(1 + z(exp(npj r)− 1))+ rz(1 − z)n2p2
j exp(npj r)

r(1 + z(exp(npj r)− 1))2
.

Using the inequality ex − 1 ≥ x gives

Hrr ≥
∑
j

nzpj exp(npj r)(1 + znpj r)+ rz(1 − z)n2p2
j exp(npj r)

r(1 + z(exp(npj r)− 1))2
,

which then leads to some very convenient cancelling (in particular, of the z2 term) to obtain

Hrr ≥
∑
j

nzpj exp(npj r)(1 + rnpj )

r(1 + z(exp(npj r)− 1))2
. (A.7)

Multiplying (A.6) and (A.7) together, we obtain

HzzHrr ≥ n

r

(∑
j

(exp(npj r)− 1)

(1 + z(exp(npj r)− 1))2

)(∑
j

pj exp(npj r)(1 + rnpj )

(1 + z(exp(npj r)− 1))2

)
,

and using the Cauchy–Schwarz inequality, we obtain

HzzHrr ≥ n

r

(∑
j

[(exp(npj r)− 1)pj (1 + npj r) exp(npj r)]1/2

(1 + z(exp(npj r)− 1))2

)2

. (A.8)
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We need to show that this is strictly greater than H 2
rz, which can be expressed, using (A.3), as

H 2
rz = n2

(∑
j

pj exp(npj r)

(1 + z(exp(npj r)− 1))2

)2

. (A.9)

Taking square roots of the expressions in (A.8) and (A.9), the condition χ > 0 is equivalent to

∑
j

[(exp(npj r)− 1)pj (1 + npj r) exp(npj r)]1/2 − √
rnpj exp(npj r)

(1 + z(exp(npj r)− 1))2
> 0. (A.10)

For (A.10) to hold, it suffices that each summand is nonnegative (and at least one strictly
positive). Multiplying the numerators by

√
rn, we need to show that, for all j, 1 ≤ j ≤ n,

[(exp(npj r)− 1)npj r(1 + npj r) exp(npj r)]1/2 − rnpj exp(npj r) ≥ 0.

This is equivalent to showing that, for all j ,

f (npj r) ≥ 0, (A.11)

where we define f (x) = (ex − 1)x(1 + x)ex − x2e2x . Now

f (x) = xe2x + x2e2x − xex − x2ex − x2e2x

= xe2x − xex − x2ex = xex(ex − 1 − x)

> 0 for x > 0.

Therefore, the inequalities in (A.11) hold (and at least one of them is strict), and so the lemma
follows.

Lemma A.2. With h(b) as defined in (2.40), we have, uniformly for b ≤ k,

h′′(b) ≤ −1

k
.

Proof. First note that

h′′(b) = d

db
(h′(b))

= d

db
(−ln(z(b))) by (2.43)

= −z
′(b)
z(b)

. (A.12)

To find z′(b), differentiate Hz(z(b), r(b), b) = 0 and Hr(z(b), r(b), b) = 0 with respect to b;
we can solve for z′(b) in this system (using Hrb = 0 and Hzb = −1/z) to obtain

z′(b) = Hrr

z(b)(HzzHrr −H 2
rz)

= Hrr

z(b)χ
, (A.13)
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which is strictly positive by (A.7) and Lemma A.1. Now note that, using the expression forHzz

in (A.6), and (A.4) to express b,

Hzz

b
= 1

z(b)2b

∑
j

z(b)(exp(npj r(b))− 1)

[1 + z(b)(exp(npj r(b))− 1)]2

≤ 1

z(b)2b

∑
j

z(b)(exp(npj r(b))− 1)

1 + z(b)(exp(npj r(b))− 1)

= 1

z(b)2
. (A.14)

Therefore, using (A.12), (A.13), and (A.14),

h′′(b) = −z
′(b)
z(b)

= − Hrr

z(b)2χ
≤ −HrrHzz

bχ
≤ −1

b
,

where the last inequality holds because 0 < χ < HrrHzz. Using the fact that b ≤ k,�p(k) ≤ k,
and b̃ is between b and �p(k), we obtain

h′′(b̃) ≤ −1

k
.
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