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LITTLEWOOD-PALEY THEORY ON GAUSSIAN SPACES

JURGEN POTTHOFF*)

§ 1. Introduction

In this article we prove a number of inequalities of Littlewood-Paley-
Stein (LPS) type for functions on general Gaussian spaces (s. below).

In finite dimensional Euclidean spaces (with Lebesgue measure) the
power of such inequalities has been demonstrated in Stein's book [12].
In his second book [13], Stein treats other spaces too: also the situation
of a general measure space (X, μ). However the latter case is too general
to allow for a rich class of inequalities (cf. Theorem 10 in [13]).

Meyer has proved in [6] a large set of LPS inequalities for the
Wiener space, i.e. larger than in Stein's theorem quoted above. This is of
course possible due to the concrete nature of the Wiener measure. As an
application, Meyer has proved in [7] an equivalence of certain norms on
Wiener space and the algebraic structure of a space of "smooth" Wiener
functionals. These results have in turn important applications in the
Malliavin calculus. The generalizations of these results for general
Gaussian spaces will be discussed in a forthcoming paper.

Here we consider the following situation: let Jί be a real, separable,
nuclear pre-Hilbert space with scalar product ( , • )> compatible with the
nuclear topology of ΛΛ Jf denotes the completion of ^V in the norm
| | induced by ( , •)> and Jf* is the (topological) dual of ΛΛ By J* we
denote the σ -algebra generated by the cylinder sets of Jf* and dμ is the
Gaussian measure on Jί defined by the scalar product on JF (via the
Bochner-Minlos theorem [3, 5]):

(1.1) J ^ exp (ί<*, O)dμ(x) = exp ( - λ\ξή

for ξeJί, < , •) denoting the pairing of Jf* and Jf. We refer to the
triple (yF*, J*, dμ) as a Gaussian space.
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48 JURGEN POTTHOFF

As we shall see, this structure is rich enough to obtain a large class

of LPS-inequalities, including the one of Meyer. (Note that Wiener func-

tionals can be represented as white noise functional, i.e. functions on

jr* = cf*(R) and Jf is chosen as L\R, dt), cf. also [5]). Moreover the

framework described above is most fitting for the discussion of construc-

tive quantum field theory and applications of the inequalities presented

here in this field are expected.

Meyer proves his set of inequalities by martingale methods, while in

this paper we shall use techniques from Fock space calculus [2, 8, 9, 10, 11]

and functional analysis. The strategy of proof is adopted from Stein's

proof in [13] for compact Lie groups.

Roughly speaking the inequalities to be shown fall into two classes:

"parabolic" inequalities and "elliptic" inequalities.

To explain these notions, consider L2 = U(JΓ*, dμ). It is well-known

(e.g. [9, 11]) that L2 is isomorphic to the symmetric Fock space Γ(3tf) over

the complexification Jf c of Jtif. If A is a (densely defined, closed) linear

operator on M7, then we have on Γffl) the (densely defined, closable)

linear operators Γ(A) and dΓ{A), the so-called second quantizations of

A (cf. [2, 9, 11]). The corresponding isometric images of these operators

on V will be denoted by the same symbols. If A is self adjoint on 2/f with

domain ^(A), then Γ(A) and dΓ(A) are essentially selfadjoint on a domain,

which can be explicitly constructed from Qι(A) [2]. Assume that A is

selfadjoint and positive, then Γ(A) and dΓ(A) are positive. We are going

to consider the semigroups {Pt, teR+}, {Qt, teR+} with

(1.2) Pt: = exp(- tdΓ(A)),

(1.3) Qt: = exp(-t(dΓ(A)y<*).

For h e L2 consider then Pth and Qth, which satisfy a "parabolic", "elliptic"

resp. equation:

(1.4) (3t + dΓ(A))Pth = 0 ,

(1.5) (31 - dΓ(A))Qth = 0 .

These equations will play a crucial role in the estimates we are go-

ing to prove, therefore the above mentioned names.

For the rest of this paper, we make the following assumptions on A:

(A.I) A is self adjoint on ^ and A > 1
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(A.2) A admits a complete set of eigenvectors {ek, keZ+}, Aek — λkeh,
which belong to Jί.

Unfortunately, the rather restrictive condition (A.2) has to be posed
for some technical reason and it would be interesting to see, if, with
another strategy of proof than given here, it can be relaxed. Two typical
examples are: A — 1, so that dΓ(A) is the number operator, or Ornstein-
Uhlenbeck operator; A = - Δ + |*f for Jί = S?(Rd), ^ = L\R\ dx).

Let us now introduce the following three Littlewood-Paley functions:

(1.6) G,(/

/Λoo \l/2

(1.7) G2(/

(1.8) G,tf): = (I t[\FQtff + \dtQJf] dt

where

(1.9)

and d{η), η 6 Jf c, is the isometric image of the Fock space annihilation
operator on Ώ (both denoted by the same symbol), cf. e.g. [10, 11], nor-
malized in such a way, so that it becomes a derivation. (More precisely
on Fock space

(l.io) r(<O = © {^c)®n

τι=0

(x) being the symmetric tensor product, 3(η) acts on elements jp = /1(x)

®fn via

(1.11) d(η)F=±(η,ft)&%1fJ
i=l j^i

and (1.11) is extended in the usual way [10, 11]).
Furthermore we shall employ the following convenient notation: if

there exists a strictly positive constant cPiQ, depending on p and q only,
so that | |/ | |p < cpj\g\\q, we shall write | |/| |p < \\g\\q.

Now we are ready to state the main results.

THEOREM A (Parabolic Case). Let feLp~ Lp(Jί, dμ), for some pe
(1, oo). Then Gx(f) is in Lp too and
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(1.12)

If pe[2, oo). then also G2(f)eLp, with

(1.13) ||G2(/)l!p < „ / „ , .

// for some p e (1, 2] G2(f) e Lp and fdμ = 0, then also feLp and

(1.14) li/llp<l|G2(/)llp.

THEOREM B (Elliptic Case). Let feLp, for some p e (1, oo). Then Gz(f)

belongs to Lp too and

(1.15) \\Gs(f)\\p<\\f\\p.

If furthermore fdμ — 0, then also the converse inequality holds

In section 2 we shall prepare the proofs, recalling some properties of

semigroups on Lp and proving integral representations for Pt and Qt,

which will provide some simple estimates, that we shall use frequently.

Section 3 will be concerned with the proof of Theorem A, while section

4 treats the elliptic case. Since the strategies of proof are quite parallel,

section 4 is more sketchy, however it includes some useful corollaries of

Theorem B.

Acknowledgement. The author acknowledges gratefully the warm

hospitality of Prof. T. Hida and the Department of Mathematics, Nagoya

University. It is a pleasure to thank Prof. T. Hida, Dr. T. Funaki, and

N. Obata for discussions.

§ 2. Semigroups on Lp

Consider the semigroup {Pt, teR+} on L2 given by (1.2). Simon [11]

shows that {Pt} is a strongly continuous contraction semigroup on all

Lp, 1 < p < oo and the formula

(2.1) exp ( - tdΓ(A)) = Γ (exp (-1A)).

For λ > 0 and t > 0 we have [4; 314, 9c]

(2.2a) exp ( - tλ1/2) = Γ exp ( - sλ)vt(ds)
Jo

https://doi.org/10.1017/S0027763000002750 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002750


GAUSSIAN SPACES 51

with

(2.2b) vt(ds) = (4τr) - υHs ~zβ exp ( - t2/4s)ds .

Thus, by the spectral theorem, on Lp

9 p > 2

(2.3) Q, - Γ Psvt(ds)
Jo

for all teR+.

From (2.3) we conclude that Qt too is a strongly continuous con-
traction semigroup on Lp, at least for p > 2, but by density of V in L1,
this extends to all p > 1. Furthermore, since P£ is positivity improving
(cf. [11]) and vt(ds) is a positive measure on R+, also Q£ is positivity im-
proving.

For xeyΓ* we define exp(— tA)x as the element of yF*, which maps
ξeJί into <#, exp( — tA)ξ} (this makes sense because of condition (A.2),
section 1). Define

(2.4) : exp(i<x, ξ»: := exp

for Λ; e Jf*, ξ eJί and denote by i the algebra generated from such func-
tionals over Jf*, as ξ ranges over Jί.

A standard computation (e.g. using (2.1)) shows that

(2.5) Pt :exp(i<x,f»: - :exp(/<e"Mx, f>) =

It is then easy to establish

LEMMA 2.1. Let feLp, 1 < p < oo. ΓΛen for t > 0

(2.6) (Pt/Xx) = ί /(e-Mx + (1 - e - 2 " ) 1 ^ ) ^ ) ,
J> *

(2.7) (Qt/)(x) = ί ί7(β-^x + (1 - e-™y*y)vt(ds)dμ(y)
J jr* JO

hold in Lp-sense.

Sketch of the proof. Verify (2.6) on functions of the type (2.4). Next
use the fact that S is dense in all Lp, 1 < p < oo. (2.7) follows from (2.6)
and (2.3).

Let us denote by 0* the algebra generated by polynomials in the
variables (x, ek}, keZ+ (cf. (A.2), section 1). Note that Θ> too is dense
in all Lp, l<p < oo.
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The following two lemmas are also easy to verify and the proofs are

left to the reader.

LEMMA 2.2. On i or &

(2.8) dΓ(A) = Σ λfc9*(efc)3(efc)

(2.9) = Σ h (-3(e*) ! + <*, ek}d(ej)
Jc

where d*(ek) is the U-adjoint of d(ek).

LEMMA 2.3. On £ or & and for η e ^

(2.10) Ptd(e~tAη) = d(η)Pt

(2.11) Ptd*(η) = d*(e-"v)Pt.

Also we shall make use of

LEMMA 2.4. Let fei or & and u e [0, t]. Then

(2.12) \FPtff<e-^(Pu\FPt.J\)\

Proof. Recall (1.9). By the semigroup property of Pt

where we used Lemma 2.3 in the second equality. λk ;> 1 together with

the integral representation (2.6) yields the last inequality, if we take the

Z2-norm \gt\ — (X]fc|^fc]
2)1/2 under the integral by convexity.

COROLLARY 2.5. For feS or &

(2.13) \FPJf < e~Ψm\VPmff

(2.14) ΨQtff<e-\Qm\VQmf\γ

(2.15) <e-<Qt/2\FQt/2f?.

Proof Lemmas (2.1), (2.4) and Schwarz' inequality.

§ 3. LPS-Inequalities: Parabolic Case

We start with two simple lemmas.
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LEMMA 3.1. Let f be a poίntwίse defined, positive cylinder function on

Jί% in L\ depending on finitely many variables <x, efc>, keZ+. Then for

all p > 1, t > 0

(3.i) (3, + dr(A))(pjy = -P(p- i)(Pjy-2\FPtff.

Proof. First of all note that equation (3.1) makes sense, since Ptf>0

for t > 0, because Pt is positivity improving. Also the hypotheses on /

ensure that (dt + dΓ(A))(Ptf)* and \FPJf are well-defined. But then (3.1)

is an easy consequence of a straightforward computation, using (1.4), (2.9)

and the fact that d(η) is a derivation.

LEMMA 3.2. Let {F(-, t), teR+} be a family of I}-functions and assume

that, as a function of t, F(-, t) e C1 (in U-sense). Define

(3.2) I(x) : = - Γpt(dt + dΓ(A))F(x, t)dt.
Jo

Then I(x) e U and

(3.3) ^I(x)dμ(x) = J(F(x, 0) - F(x, oo))dμ(x).

Proof. Note that dΓ(A)l = 0 and Pt\ = 1. Then selfadjointness of

Pt and dΓ(A) on L2, together with integration by parts in dt prove (3.3),

which in turn shows that IeL1. The following lemma gives a sense to

definition (1.6) for fe V and p e (1, 2]

LEMMA 3.3. For all fe Ώ and p e (1, 2], Gx(/) e L and

(3.4)

Proof. It is sufficient to show (3.4) for fe&. Note, that in this case,

\Vf\ involves only a finite number of terms and is pointwise defined (cf.

(1.11)). Moreover

(3.5) Gx{f) < G2(f)

by Lemma 2.1 and Schwarz' inequality. Hence

using Holder's inequality. Now, for / s.t. fdμ = 0

(3.6)
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because

since Pt is selfajoint and Ptl = 1. Because of (2.8)

= ^J(PJ)(dΓ(A)Ptf)dμdt

and we used selfadjointness of dΓ(A), integration by parts and l i m ^ Ptf

= 0 (pointwise), since fdμ = 0. By subadditivity of G2(/), we find for

general feU

and the lemma is proved.

The next step is

LEMMA 3.4. Let feLp,pe (1, 2]. Then

(3.7)

Proof. The case p = 2 is already proved in the preceding lemma.
Let now p e (1, 2). Assume first that / is real and note that it is sufficient
to prove (3.7) for real feί?. Decompose / into /+ —/_,/+ (— /_ resp.) being
its positive (negative resp.) part. Remark that f± satisfy the hypothesis
of Lemma 3.1. Thus we may write

JΛ = (P(P - i))-"ϊW«Λ)I-1"ϊ[(- 3,
< (P(P - i))-

Let us denote

(3.8) * * ( * ) : = I |
ί>0

for pointwise defined g, and a lemma in [13; p. 48] states that

(3.9) li£*IIP<||£llp.

Hence, applying this to our situation

Gtf+Άx) < AMf*Y-')*(x)I(x)
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with I(x) defined in (3.2) with F(x, t) = (Ptf+)p(x). By Holder's inequality

and (3.9)

Now apply Lemma 3.2 to the last factor

jldμ = ]"(/*(*) - (άm(Ptf.y(x)))dμ(x)

so that we have proved

Since

(3.10) Gx{f +g)< 21/2(G1(/) + Gx(g))

we find

dμ + jfldμ

J(Λ + f-Ydμ

= 11/11?,

proving (3.7) in case that / is real. For complex /, decompose it into real

and imaginary part, use (3.8) and proceed similarly as for f±.

Our next lemma is

LEMMA 3.5. Let φ,fe£P, φ positive. Then

(3.11) \G\{f)φdμ < K^fφdμ + \f*Glf)Gx{φ)dμ)

for a constant K and /* defined in (3.8).

Proof. Remark that for p — 2 and fe& equation (3.1) makes sense,

except on the set of zeros of /, which form a set of /^-measure zero. Thus

(3.1) and selfadjointness of Pt yield

J Gmφdμ = - 1 J J" <(3t + dΓ{A))(PJ)\Ptφ)dtdμ .
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Furthermore for two polynomials g, h we have the identity

0, + dΓ(A))gh = g(dt + dΓ(A))h + h(dt + dΓ(A))g - 2Vg Vh,

with the notation

Upon insertion

j}β"{-γ(3« + dΓ(A))((Ptf)\Ptφ)) + F(Pjy-PPtφ}dtdμ

= I + Π,

because (3t + dΓ(A))Ptφ = 0. Then

It remains to show that

But

< 2^f*^\FPtf\\FPtφ\dtdμ,

by Schwarz' inequality on P. Lemma 2.4 and Corollary 2.5 yield the
estimate

2 J > £ (Ptn\FPtnffy (Pιn\FPtnφ\)dtdμ .

Apply Schwarz' inequality for the dί-integration in the last expression to
find
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Now we can finally come to the

Proof of Theorem A. For 1 < p < 2 inequality (1.2) is already proved
in Lemma 3.4. Next we prove it for 4 < p < oo, so that by (3.10) and the
Marcinkiewicz interpolation theorem [12] the result follows for all p, 1 <
p < oo. Let q be conjugate to p/2 and φeLq, φ > 0. Then

= sup \G2{fYφdμ

and it is sufficient to take the supremum over polynomials φ e 0*. In
view of Lemma 3.5, Holder's inequality and (3.9)

Gl(f)φdμ < const. {\\f\\l\\φ\\q +

with q < 2. Applying Lemma 3.4 to

sup
φ,\\φ\\q<l

<WfU\\f\\P + \\G2(f)\\p),

from which ||G2(/)||P < | |/| |p follows. Since Gx(f) < G2(f), we have proved
(1.12) for all p e (1, oo) and also (1.13) for p e [4, oo). But since G2 is
subadditive and ||G2(/)||2 < 2-1/2||/||2, (1.13) holds for p e [2, oo) by the
Marcinkiewicz interpolation theorem. (1.14) follows from (1.13) and the

equality (3.6) ||G2(/)||2 - 2-^||/||2 if J/fy = 0, by duality.

§4. LPS-Inequalities: Elliptic Case

As mentioned in the introduction, this case is quite parallel to the
parabolic one and only the major steps of the proof of Theorem B are
indicated.

Firstly, equation (3.1) is now replaced by

(4.1) (3» - dΓ(A))(QtfY - p(p - l)(QtfyΛ(dtQJf + \FQJU

for p > 1, t > 0 and / as in the hypothesis of Lemma 3.1.
The function I(x), eq. (3.2), has to be defined in this case by

(4.2) I(x) : - Γ t(d] - dΓ(A))F(x, t)dt,
Jo

and (3.3) holds again, if t\\3tF(x, t)\\2 -> 0 as t-+oo, t-^0.
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In the same way as Lemma 3.3 (in fact a bit simpler), we can prove the

bound

(4.3) \\Gt(f)\\,£\\i\b

for all p e (1, 2], fe L2, this time using the equality

(4.4) ||G3(/)||2 = 2-1/2||/||2

for / e V with fdμ — 0, since, first

ί{i 9 ' 1 Q < /T - (dlQtf)(QJ)}dtdμ

or \Γt\dtQtffdtdμ = —\\f\\t and second
J J o 4

t(dΓ(A)Qtf)(Qj)dtdμ

{ll/li

and we have used Fubini's theorem, selfadjointness of dΓ(A) and integra-

tion by parts.

Next, analogous to Lemma 3.4 we can prove

LEMMA 4.1. Let feLp, p e (1, 2], then G3(f) is in Lp too and

(4.5) | | G 3 ( / ) | | P < | | / | | P

and also

LEMMA 4.2. For polynomials f and φ > 0

(4.6) J Glffφdμ < K \^fφdμ + J f**G3(f)Gs(φ)dμ}

for some constant K and

f**(x) : = K
ί>0

is proved as the corresponding lemma in section 3, in this case somewhat

easier.
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Sketch of the proof of Theorem B. Use Lemmas 4.1, 4.2, subadditivity

of G3 and the Marcinkiewicz interpolation theorem to prove (1.15) for all

p e (1, oo). To obtain the converse inequality for feLp with fdμ = 0, use

equality (4.4), inequality (1.15) and duality.

Let us define

(4.7) G4(/) : =

(4.8) G5(/) := ( tlPQtffdt)
\Jo /

then we have immediately from the preceding arguments the following

THEOREM 4.3. If feLp, pe(l, oo), then so are G4(/) and G5(/) and

their Lp-norms are bounded by Ap\\f\\p, for some constant Ap. If in addition

fdμ = 0, then also

(4.9) ll/llp£l|G*(/)IL i = 4,5

Proof The first statement follows trivially from Theorem B and the

second from the proof of equality (4.4) and duality.

Let us conclude this paper in showing a slight generalization of

Theorem 4.3 for G4.

THEOREM 4.4. Let {/fc, k e Z+] be a sequence of functions fkeLp, 1 < p

< oo and suppose that (Σ*Λ2)1/2 e ZΛ Then also ( Σ * G4(/fc)
2)1/2 e Lp and

holds. Furthermore, if for all k fkdμ = 0, then

(4.1D

Proof. Theorem 4.4 follows from Theorem 4.3 and the standard trick

to employ Rademacher functions [1,12]. Let {rfc, keZ+] be a system of

Rademacher functions on [0, 1], and let I be a finite subset of Z+. Con-

sider the Z/-function

F(u) = Σ rk(u)fk, u € [0,1].
kei

Apply Theorem 4.3 to F(u) and integrate:
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(4.12) f ||G4(F(«))|gd« < Γ||F(«)|gdu
Jo Jo

By Khintchin's inequalities (cf. [1, 12]) on I2 the righthand side of (4.12)

is equivalent to

11/ V PY/2\\P
11V z-j / kJ Up >

kei

while the lefthand side of (4.12) is equivalent to

again by Khintchin's inequalities, this time on L2(R+,tdt). Increasing I

to Z+, (4.10) is proved. The converse inequality (4.11) follows by the same

argument.

Remark. It is obvious, that similar generalizations can be found for

the other LPS-inequalities.
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