J. Austral. Math. Soc. 24 (Series A) (1977), 309-311.

NOTE ON COMPACT CLOSED CATEGORIES

B.J.DAY*

(Received 8 September 1976)

Communicated by R. H. Street

Abstract

Several categorical aspects of localisation to compact closed categories and free compact closed categories are discussed.

Introduction

The concept of a symmetric compact closed category was formalised by Kelly (1972). Generally speaking a compact bicategory is a bicategory in which each l-cell has an adjoint. The details of this article can be followed through in this generality but we discuss, for simplicity, the "one-object" symmetric case over $\mathscr{E}ns$.

By way of introduction we repeat the brief survey of Kelly (1972). A compact closed category is a symmetric monoidal category $(\mathscr{A}, \otimes, I)$ and a functor $*: \mathscr{A}^{op} \to \mathscr{A}$ and natural transformations $g_A: I \to A \otimes A *$, $h_A: A * \otimes A \to I$ such that $(1 \otimes h)(g \otimes 1) = 1: A \to A \otimes A * \otimes A \to A$ and $(h \otimes 1)(1 \otimes g) = 1: A * \to A * \otimes A \otimes A * \to A *$. Such a category is closed, with $[A, B] = A * \otimes B$; moreover, since adjoints are unique, we have $A \cong$ A ** for all $A \in \mathscr{A}$. Conversely, a monoidal closed category is compact exactly when the canonical transformation $\kappa : [A, I] \otimes A \to [A, A]$ is an isomorphism whereupon A * = [A, I], h is evaluation and g is $I \to [A, A] =$ $[A:A \otimes I]$ followed by κ^{-1} ; as a consequence we have $A \cong [[A, I], I]$.

Perhaps the simplest non-trivial example of a compact closed category is the category of finite-dimensional vector spaces over a given field.

^{*} The author gratefully acknowledges the support of a Postdoctoral Research Fellowship from the Australian Research Grants Committee.

B. J. Day

Free compact closed categories and monadicity.

Let \mathcal{SMC} denote the category of small symmetric monoidal closed categories and strict symmetric monoidal closed functors. Let \mathcal{CMC} denote the full subcategory of small compact closed categories.

PROPOSITION 1. The inclusion $\mathcal{CMC} \subset \mathcal{SMC}$ has a left adjoint.

PROOF. We assign to each $\mathcal{A} = (\mathcal{A}, \otimes, I, \cdots) \in \mathcal{GMC}$ a universal compactification $C(\mathcal{A})$ together with a projection $P: \mathcal{A} \to C(\mathcal{A})$. Consider the class K of transformations $\kappa : [A, I] \otimes B \to [A, B]$ and let \overline{K} be its monoidal closure: $\overline{K} = \{A \otimes \kappa; A \in \mathcal{A} \text{ and } \kappa \in K\}$. Then the effect of forming the symmetric monoidal category $\mathcal{A}(\bar{K}^{-1})$ (Day (1973)) is equivalent to inverting the members of the class S comprising the transformations $\sigma: B \otimes [A, C] \rightarrow [A, B \otimes C]$; this fact can be verified by simple coherent diagrams. It can also be seen that S is in fact monoidal and that the transformations called Ten: $[A, B] \otimes [C, D] \rightarrow [A \otimes C, B \otimes D]$ are inverted. In particular the transformations $[A, I] \otimes [B, I] \rightarrow [A \otimes B, I]$ are inverted. Thus, if we write A * for the image of [A, I] under the projection $P: \mathcal{A} \to \mathcal{A}(S^{-1})$, we have $A * \otimes B * \cong (A \otimes B) *$. This means that both the functors $\otimes : \mathscr{A} \times \mathscr{A} \to \mathscr{A}$ and $[-, -] : \mathscr{A}^{op} \times \mathscr{A} \to \mathscr{A}$ factor to make $\mathscr{A}(S^{-1})$ a compact closed category. It also induces on P the structure of an \mathcal{SMC} morphism. We write $C(\mathcal{A}) = \mathcal{A}(S^{-1})$.

REMARKS. The category $C(\mathscr{A})$ can be localised further to the "cancellative compactification" $C_c(\mathscr{A})$ of \mathscr{A} . This is formed by inverting, in addition to S, all the transformations $A \otimes [-:B, C] \rightarrow [A \otimes B, A \otimes C]$. This process inverts all the transformations $A \otimes [A, B] \rightarrow B$ so that a cancellative compact closed category is a compact closed category for which $e: [A, B] \otimes A \rightarrow B$ is an isomorphism. In particular $A * \otimes A \cong A \otimes A * \cong$ I in $C_c(\mathscr{A})$. The isomorphism classes of $C_c(\mathscr{A})$ form a preordered abelian group. When this preorder is replaced by the trivial preorder we obtain $K_0(\mathscr{A})$ where K_0 is left adjoint to $\mathscr{A}b \subset \mathscr{SMC}$. Thus $K_0(\mathscr{A})$ is universal for functions $f: |\mathscr{A}| \rightarrow G$. (G an abelian group) such that: (1) $A \cong B \Rightarrow fA = fB$, (2) $f(A \otimes B) = fA + fB$, (3) f[A, B] = fB - fA. If \mathscr{A} is the free \mathscr{SMC} category on a symmetric monoidal category \mathscr{M} then $K_0(\mathscr{A}) = K_0(\mathscr{M}, \otimes)$ (see Swan (1968); also see Conway (1976)).

PROPOSITION 2. CMC is monadic over Cat and has all small limits and colimits.

PROOF. The forgetful functor $U: \mathscr{CMC} \to \mathscr{Cat}$ has a left adjoint by monadicity of \mathscr{GMC} over \mathscr{Cat} (see Lambek (1969)) and Proposition 1. The

same technique as used by Lambek (1969) can be used here to show that U creates coequalisers of U-split pairs and coequalisers of reflective pairs; namely treat each $\sigma \in S$ and its inverse as a functor $\mathscr{A} \times \mathscr{A} \times \mathscr{A}^{op} \rightarrow \mathscr{E}ns^2$. Thus \mathscr{CMC} is monadic over \mathscr{Cat} (by Beck's theorem; see Mac Lane (1971)) and has small colimits (by Linton (1969)). \Box

REMARK. Whilst \mathcal{GMC} is "clubable" over \mathcal{Cat} , \mathcal{CMC} is not (see Kelly (1972)).

References

- J. H. Conway (1976), On numbers and games (Acad. Press, New York-London).
- B. J. Day (1973), 'Note on monoidal localisation', Bull. Austral. Math. Soc., 8, 1-16.
- S. Eilenberg and G. M. Kelly (1966), 'Closed categories', Proc. Conference on Categorical Algebra, La Jolla 1965 (Springer-Verlag) 421-562.
- G. M. Kelly (1972), Many-variable functorial calculus I, Coherence in Categories (Lecture Notes in Mathematics, 281, Springer-Verlag), 66–105.
- J. Lambek (1969), Deductive systems and categories II, Category Theory, Homology Theory and their Applications I (Lecture Notes in Mathematics, **86**, Springer-Verlag) 76-122.
- F. E. J. Linton (1969), *Coequalisers in categories of algebras*, Seminar on Triples and Categorical Homology Theory (Lecture Notes in Mathematics, **80**, Springer-Verlag) 75-90.
- S. Mac Lane (1971), Categories for the working mathematician, GTM5 (Springer-Verlag, New York-Heidelberg-Berlin).
- R. G. Swan (1968), Algebraic K-theory (Lecture Notes in Mathematics, 76, Springer-Verlag).

Department of Pure Mathematics,

University of Sydney,

N. S. W. 2006, Australia.

[3]