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Abstract

We examine the concepts of nowhere simplicity in a wide class of abstract dependence systems.
Initially we examine how many of the existing results valid for L(o>), the lattice of r.e. sets, have
analogues valid for more general lattices. For example, we show that any r. e. subspace of Vx can be
decomposed into a pair of nowhere simple subspaces.

Later we begin an analysis of effective nowhere simplicity by giving a number of results which are
new for both L(oi) and more general systems. In particular we examine and define the concept of
being a member of a maximal pair. We prove:

THEOREM. An r.e. (closed) set A may be decomposed into an re. maximal pair if and only if A is
simple.

COROLLARY. There exist effectively nowhere simple (closed) sets in each r. e. degree (¥= 0).

1980 Mathematics subject classification (Amer. Math. Soc): primary 03 D 45; secondary 03 D 25, 03 G
10.

0. Introduction

The study of constructivity in mathematics seems to proceed in two stages. The
first stage is to identify those processes or functions which we shall call effective.
Having identified these, we may then proceed to the second stage, which is to
analyse the "effective content" of various mathematical systems. Typically, we
identify the class of effective functions with recursive functions and this we shall

* These results were obtained whilst the author was at Monash University, and form part of his
Ph.D. thesis.
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{21 Nowhere simplicity in matroids 29

do here. This (admittedly vague) description of the second stage is perhaps best
clarified by an example (essentially Metakides and Nerode [7]). Consider the
classical theorem "Every vector space has a basis". We wish to analyse the
constructive content of this theorem. To clarify the situation we ask that our
spaces be recursive sets (identified with «), the underlying field be a recursive
field, the operations of scalar multiplication and vector addition be recursive
functions and identity be a recursive relation. We call such a vector space V
recursively presented. (If identity is only r.e., we say F i s r.e. presented.)

Question. Does every recursively presented vector space have a recursive basis?
Answer. NO.

In essence this shows that the classical theorem has a nonconstructive element.
Of course, one important area of development is really devoted to the first stage,
that is, to the analysis of the structure of the set of those functions which we call
effective. Post initiated the study of the lattice L(u) of recursively enumerable
(r.e.) sets. One important insight due to Metakides and Nerode [7] is that
questions like the one above can often be answered by an analysis of L(VX), the
lattice of r.e. subspaces of a fully effective vector space Vx. By fully effective we
mean that Vx is recursively presented and has a dependence algorithm, that is,
given a,bx,...,bn G Vx we can effectively determine whether or not a G
(Z>|,... ,bn)*, where A* denotes the subspace generated by A. To see this, we list a
few observations. The first observation is that every r.e. (recursively) presented
vector space Q is recursively isomorphic to Vx mod W for some r.e. (recursive)
subspace W oi Vx. The second observation is that an r.e. vector space Q has a
dependence algorithm if and only if Q has a recursive basis. The third observation
is that Vx mod W has a recursive basis if and only if W is complemented in
L(VX). Thus to obtain the negative answer to the earlier question we simply need
to construct a recursive subspace of Vx which is not complemented in LiV^).

This form of analysis has been generalized in two ways. One way is to consider
more general mathematical systems. In this paper we consider one such generali-
zation to abstract dependence (Steinitz) systems (see Section 1), others are to
topology (Kalantari, Retzlaff, Leggett, Remmel), abelian groups (Lin, Smith),
fields (Metakides and Nerode), orderings (Crossley, Manaster, Remmel) Boolean
algebras (La Roche, Remmel) and many other systems. The other form of
exploration is a more intensive study of L(VX) (for example, Baldwin, Shore and
most of the earlier authors).

One important point of analysing L(VX) (and other areas) is perhaps worth
mentioning, namely, such analyses shed a great deal of light on L(u). One
example is Metakides and Nerode's adaptation of an e-state construction from
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L(w) to L(VX). The key aspect in both lattices is the interplay of dependence and
recursion theory which makes the adaptation possible.

The main thrust of much of the analysis of L(VX) has been in constructing r.e.
subspaces W of Vm whose complements contain few r.e. subspaces. One powerful
example of this is the construction of a supermaximal subspace of Vx. We say
WGL(VX) is supermaximal if dim(Vx/W) = oo and, for all Q E L(VX), if
QD W then either Q = Vx or dim(Q/W) < oo. Note that the existence (proved
in [8]) of an r.e. supermaximal subspace of Vx implies that there exists an r.e.
(recursively) presented vector space whose only r.e. subspaces are finite dimen-
sional.

In this paper, we concentrate upon the other side of things, that is, upon r.e.
subspaces where complements contain many r.e. subspaces. Their behaviour
differs from their analogues in L(u). For example, the natural analogue of a
recursive set that is a decidable (complemented) subspace Vx of Vx. It is
interesting that even the behaviour of decidable subspaces of Vx differs markedly
from the corresponding behaviour of recursive subsets of u. In particular, C. J.
Ash and the author [0] have shown that every r.e. subspace is the direct sum of a
pair of decidable subspaces. Here we concentrate upon nowhere simplicity and
effective nowhere simplicity in HV^) (more generally L(U)) as defined in Section
1. Briefly, a set (subspace) V is nowhere simple if every r.e. set (subspace)
containing V contains an r.e. infinite (infinite dimensional) subset (subspace)
disjoint from V. Thus the existence of a nowhere simple nondecidable subspace
establishes the existence of a represented vector space without a recursive basis,
yet having many r.e. subspaces (of infinite dimension).

Rather than listing our results we close with a couple of comments. Our initial
results are adaptations of L(w) constructions and are therefore only new in terms
of their algebraic settings. However this is interesting because (a) results concern-
ing L(u) do not always adapt to L(VX) and (b) the results concerning automor-
phisms of £(«) and L(VX), which we obtain, simultaneously concern themselves
with two entirely different objects for there are 2S° automorphisms of L(u) and
only No of L(VX) (all essentially effective).

Finally all of our later results (for example, Proposition 1.15, Corollary 1.16)
are new for L(w) and hence explore the notion of an (effectively) nowhere simple
set which is of considerable importance in L(u).

This paper extends some of the investigations to be found in Metakides and
Nerode [8], and the author [3] and [4]. We shall use the basic results and
definitions of [8]. The structures we are interested in are a subclass of the class of
Steinitz {closure) systems.

DEFINITION 1.0 ([8]). A Steinitz (closure) system (U, cl) consists of a set U and
an operation cl: P(U) -* P(U) such that for all subsets A and B of U

https://doi.org/10.1017/S1446788700024757 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024757


[4 ] Nowhere simplicity in matroids 31

(i)ACcl(A),
(ii)A C B implies c\(A) C cl(5),

(iv) x 6 c\(A) implies that, for some finite A' C ^ x G c\(A'),
(v) (exchange) x G c\{A U {y}) - cl(A) implies y G c\(A U {JC}).

A Steinitz system (U, cl) /IOS1 recursive dependence if £/ is recursive and there is a
uniformly effective procedure which, when applied to elements a, bx,...,bn of U
determines in a finite number of steps whether or not a G cl(ft,,... ,bn).

EXAMPLES OF STEINITZ SYSTEMS, (i) (w, cl). Here u is the integers and cl(^4) = A.
(ii) (Vx,*). Again, Vx denotes a fully effective vector space with A* the

subspace generated by A (see [7,8]).
(iii) (F^cl). Here Fx denotes a fully effective algebraically closed field (that is,

with an infinite recursive transcendence base) and cl denotes an effective alge-
braic closure operator (see [8]).

(iv) (VX(F), Kl). We say that x G Vx depends affinely o n j , , . . . ,yn in Vx if there
exists A,,... ,Xn G F such that x = 2A,.y, and 2X, = 1. If x depends affinely on
yu...,yn we write x G Kl ( j , , . . .,yn). This is the well-known generalization of
occurence on points, lines, planes (see [4]).

(v) Let V be a recursive subsef of Vx. Define (V,cl) via (for A C V),
d(A) = A* n V. This is wide class oftentimes referred to as V*-algebras (see
[10]).

If the reader is unfamiliar with Steinitz systems he is asked to keep (w, cl) and
(Vx,*) in mind. We give a brief review of some of the basic results from [8] and
refer the reader there for further details:

We say a set A is independent (over B)ifA ¥= 0 and for all a G B, a £ c\B(A —
{a}) where c\B(X) — cl(B U X). Similarly we may define spanning sets, bases
and the like. We may write A + B for c\(A U B). A pair of closed sets A, B are
independent if each basis of A is independent over B and conversely. Akin to
L(VX) we let L(U) denote the lattice of r.e. closed subsets of U.

The following result shows how Steinitz systems are similar to Vx:

PROPOSITION 1.1. For A, B subsets of U in a Steinitz closure system (U, cl),
(i) if A is closed, I is independent, S spans A and I C S, then there is as basis X

of A extending I with I C X C S.
(ii) Let A and B be closed and B C A. Suppose Bx is a basis for B and Al a basis

for A over B. Then AXKJ Bxis a basis for A.
(iii) Let X U Y be independent {over B). Then c\B(X C\Y) = c\B(X) n clB(y).
(iv) If B is closed, I is independent over B and x G clB(/) , then there is a smallest

finite set / ' C / with x G clB(I').
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PROOF. For (i) see [8], for (ii) see [8], Theorem 2.4, for (iii) see 2.6 of [8] and (iv)
is 2.7 of [8].

The (unique) smallest finite subset / ' of / with x E clfi(/') in (iv) of 2.3 is
referred to as the support of x over B relative to I and is denoted by supp/(x)
(over B). As in [8] the dimension of A over B (dim(A/B)) is the cardinality of
any basis for A over B. If (U, cl) has recursive dependence we can determine
effectively for a finite A and B whether or not cl(A) C c\(B), A is independent
over B, and for any Q G L(U) find an r.e. basis of Q (extending any given finite
independent subset). Finally for V £ L(U), the dependence set D(V) if Fin L(U)
is UkewD(V)k where D(V)k is the set of all k-tuples dependent over V. The
dependence degree is the (Turing) degree of D(V) of D(V) =rO we say V is
decidable. Note that Fis decidable if and only if F is complemented in L(U).

DEFINITION 1.2. Let (f/,cl) be a Steinitz system. We say (f/,cl) has C.I.P.
(closure intersection property) if, for all closed subsets D of U, whenever A and B
are both independent over D and clD(A) D clD(B) = cl(D), then A U B is
independent over Z).

Not every Steinitz system has C.I.P.; of our examples, (i^.cl) and (Vx, Kl) do
not. The C.I.P. was introduced in [3] mainly to account for a certain class of
phenomena which occur in LiV^) but not L(FX). Henceforth (U,cl) will always
denote a Steinitz closure system with recursive dependence and with C.I.P. As an
analogue of the Shore's definition ([14], page 323) we have:

DEFINITION 1.3. Let S £ L(U) with dim(U/S) - oo. We say S is nowhere
simple if, whenever Q G L(U) with Q D S and dim(Q/S) — oo, there exists an
r.e. Q' (ZQ such that dim(<2') = oo and Q' D 5 = cl(0).

It has been suggested1^ that there is a stronger notion of nowhere simplicity.
Namely we say V is strongly nowhere simple if, for all Q G L(U) with dim(Q/V)
= oo (that is dim(£> + V/V) — oo) there exists Q' C Q such that dim(fl') = oo
and Q' H V = {0}. However we may show they are equivalent as follows:

PROPOSITION. Suppose FGL([ / ) and (U,c\) has C.I.P. Then V is strongly
nowhere simple <-> F is nowhere simple.

PROOF. (->) is clear.
(«-) Suppose F is nowhere simple and that Q G L{U) with dim (Q/V) — oo.

As F is nowhere simple there exists Q' C Q + V such that Q' n V — cl(0) and

*It was observed by the referee of a paper (by the author) "Co-immune subspaces and complemen-
tations in Vx," (to appear J. Symbolic Logic) that this form was needed for some applications.
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d\m(Q') — oo. Compute a recursive basis B of Q + V as follows. Let

{</,, qx, q2,...} be a recursive basis of Q. Let {v0, vu...} be a recursive basis of

V. Define £ = U ^ in stages:

Stage O . f l o = {qx}.

Stage 1.

0 U {t>0} if Bo U {t>0} is independent,

0 otherwise.

Stage 2s (s > 0).

5 2 j _ , U {qs} ifB2s_l U {^} independent,
D —

2s j - 8 2 j - i otherwise.

Stage 2s + 1.

2s u ( M i ^ 2 s u ( M independent,

2 j otherwise.

Set B = DsBs and let B = {b0, bx,...} list the elements of B.

Let {z0, Z|, . . .} be a recursive basis of Q'. Note that

(1) each bt is either a #, or a u;.

Compute supp(z,) = {bio,..., btj and by (1), supp(z,) = {qiQ • • • qh, vio • • • vt).
We claim:

(*) there exist Q, G cl(^r,o, ...,qh) with qt & V and Vt G cl(«,-o, • • • ,t>,) such that
z, G cl(Q,, K,).

We prove this by induction. We only do the Qt case, the Vt case is similar. If
k=\, then supp(z,) = {qio, vio,... .©J. Now, by CLP. cl(z,., qh) n cl(u,o,... ,vti)
¥= cl(0) (else, {z,, ̂ f,o,... ,u,} is independent). Find TJ ^ c l (0) and r) G cl(z;, ^,.)
n cl(u,,.. . ,«,-). By exchange, it follows that:

(2) z, G cl(<7io, TJ).

Consider k — m + 1. supp(z,) = {qio,. ..,qim+l, «,-„,. • •,«,-_}, and so by (2) (with

similar manipulations) z, G cl(<7/o, TJ) where i) G c l ( ^ ; i , . . . ,9im+l, «,-„»• • • ,«,-,)•

Without loss of generality supp(i)) = {qit,...,qim+t, u,o, . . .,vt,}. By induction

there exist yi,Vi such that TJ G cl(y,, Vt) with y,. G c l ^ , . . . , ^ ^ ) and Vt G

c l (u / o , . . . , t ; , ) , so that z, G cl(<7,o, y,, F,). By (2) again, there exists Qt such that

0 G cl(o ,...,q ) with z G (Q ,Vt) and the claim follows as Q, $ V else

z, G F.

Set T= {Qi\i G w}. It is easy to show that c l (T) n V- c l ( 0 ) since T is

independent over F. This is because V / i E w ( c l K ( z , , . . . , zn) = c l K ( Q , , . . . , g n ) )

and so {g, | i £ u } is independent over V. By C.I.P., cl{Q, | i £ w } D F = c l ( 0 ) .
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Thus, we have constructed an r.e. infinite dimension closed subset (namely
cl(r)) such that cl(T) C Q and cl(r) n V= cl(0). Thus Fis strongly nowhere
simple.

REMARK. If (V, cl) does not have C.I.P. this equivalence is not clear. In fact we
believe that it does not hold, but do not pursue strong nowhere simplicity further.

The reason for considering systems with C.I.P. becomes clear if one takes an
example of a Steinitz system without C.I.P. Let Q G L(FX). Suppose M D Q for
some M G L(FX). Let b £ M — Q. Let {qx, q2, • •.} denote a recursive basis of Q.

Let R = {b + qx, b
2 + q2, b

3 + q3,...}. Now dim(cl(i?)) = oo, cl(R) C M and
c\(R) n Q — cl(0). Thus in (Fm,cl) every closed subset is nowhere simple.
Similar problems occur if one tries to define simplicity in (F^cl). This was
discussed in [4]. Recall that Q £ L(V) is simple if for all R E L(V) if R n Q =
cl(0) then dim(/?) < oo. In systems with C.I.P. there are simple closed subsets.
Thus there are many elements of L(U) that are not nowhere simple.

PROPOSITION 1.4. Let Q e L(U). Then there exists Qu Q2 E L(U) with Qt and
Q2 independent. Qx + Q2 = cl(<2, U Q2) = Q and Q,, Q2 are nowhere simple.

PROOF. We build At = ^JSA] in stages (for / = 1,2) so that Ax C\ A2- 0 and
Ax U A2 is a basis of Q. At each stage s, cl(As

t U A2) = c\(Qs). Clearly we may
assume dim((?) = oo. Let We enumerate the eth r.e. closed subset of U. We
attempt to meet the following requirements (for / = 1,2) P{e,ny A\m(We D cl(v4,))
^ n. The priority ranking is />„', i"0

2, P\, Pf, P2\....

DEFINITION 1.4.1. P\e^ is satisfied at stage 5 if dim(cl(W/) n c\(A])) > n.

DEFINITION 1.4.2. P\e>n) requires attention at stage s + 1 if P[e^y is the
unsatisfied requirement of highest priority such that

a ^ e c i ( w ; + 1 ) nd (<3 J + 1 ) w i t h ^ ^ c i ( ^ UAS
2).

Construction. Stage 0. A°x - A% = 0 .
Stage s + 1. If cl(Qs+l) = cl(<2") do nothing. If d(Qs+l) ¥= c\(Qs) find the

requirement P'^e ns which requires attention at stage 5 + 1 . Let \p be least for
( e, n ) and set

1 \A] U M ify = i.

Let Ai = UJA'I and Qi = cl(^,) for / = 1,2.
End of construction.
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We claim that both Q] and Q2 are nowhere simple. Suppose Ql is not. Then (*)

below holds.

(*) there exists WeD Ax with We containing no infinite dimensional r.e. closed

subset meeting d(Ax) only trivially.

Let

Z = {x\3s,t(t>s&x Ed(We
s)&x &d(Qs)&x E

Suppose Z is infinite. Then it is easy to see that V n(P'^e „> is met (for / = 1,2)),
and therefore dim(We n A2) — co giving a contradiction to (*). Thus Z is finite.
Hence there is a stage s0 such that

(3) V s > so(x £ d(We') ^xG d(Qs) W / > j ( j t $ d(G')))-

Now if dim(dQ(We)/Q) < oo, then as (U,cl) has C.I.P. it follows that dim(We D
cl(A2))< oo. For let dim(cle(W^,)/<2) < oo and suppose dim(We n cl(v42)) < oo.
Let 5 , be a basis of We over cl(^, U (We D A2)), and B2 a basis of cl(g) over
cl(^, U (We n A2)) = T. Then BlHB2= 0 and clT(B{) n clr(B2) = cl(r).
Therefore 5 , U B2 is independent over T and so Bl is independent over cl(2?2 U
d(Ai U (We (1 A2))) = Q. This implies that dim(cl Q(We)/Q) - oo—a con-
tradiction.

Thus without loss of generality we may suppose

(4) d i m ( d e ( » ; ) / e ) = oo.

Now under the assumption (4) we show that (3) implies that we can produce an
r.e. subset R of We with c\R) n Q = cl(0) and /{independent over cl(g).

Construction. Stage 0. Let x0 be the first x occurring at the least stage s0 > s0

such that x £ cl(J*7°) - d(Qs<>). Let R° = {x0}.
Stage t + 1. Let /?' = {x0,.. .,x,} and suppose we have defined s' > • • • > s°.

Let xt+i be the first x occurring at the least stage s'+l > s' such that xt+l £
+1) - cl(0*'+') and xl+l $ d(Qs'+> U {xo,...,x,}). Let R = U,/?' and

o/ construction.

Note that by (4) card(/?) = oo. We claim R is independent over Q. For
suppose {x0,... ,x,} is independent over Q but {JC0,. .. ,xl+l) is dependent over
Q. Now, by construction {x0,... ,xl+l} independent over d(Qs' '). Thus at some
stage z>s'+\ {xo,...,xl+]} dependent over cl(<2z) but independent over
d(Qz~]). Let Tbe a basis of cl(£z~') and T U {^} a basis of cl(Qz). By C.I.P. it
follows that cl(r U {»//}) n cl{xo,. . . ,x,+ 1} ̂  cl(0). Thus ascl({jco,.. .,*,+ ,}) C
d(We

s'+') and z > s'+l and cl(r U {^}) C cl(gz) it follows that

3 T J ( T / £ C U V ; ' + ' ) & T ,
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However by construction s'+1 > s0 and this contradicts (3). Thus R is indepen-

dent over Q and the result follows.

As Shore pointed out in [14] for L(w) we can control the degrees of <2, and Q2

to ensure both Qt and Q2 are r.e. nonrecursive if Q is r.e. nonrecursive. Recall a

decidable closed subset is one with an r.e. independent complement. If we use the

method of either Shore [15] or Retzlaff [11] we can ensure similarly that if Q is

not complemented, Qx and Q2 are not complemented.

PROPOSITION 1.5. Let Q E L{U), with Q not complemented in L(U). Then there

exist noncomplemented Q{, Q2 E L(U) with cl(Ql U Q2) = Q, Qx and Q2 indepen-

dent and both Qx and Q2 nowhere simple.

In any case, each decidable closed subset of U is expressible as the intersection

of two noncomplemented members of L(U). Thus

COROLLARY 1.8. The r.e. noncomplemented nowhere simple closed subsets of U
generate L(U) (under D and + ) .

In L(U) we define A = *B if and only if there exists a finite F C U such that

clO U F) = cl(B U F).

Clearly = * is an equivalence relation. With this, we define the lattice L*(U) of
members of U modulo the equivalence = *. It is not too difficult to obtain the
following, which is an analogue of Shore's automorphism result for L*(w).

COROLLARY 1.9. If <p: L*(VX) -» L*(VX) is any elementary monomorphism and
<p is the identity on S, a nontrivial class of r.e. subspaces closed under recursive
isomorphism. Then <p is the identity on L*(VX).

COROLLARY 1.10. 7/<p, and <p2 are automorphisms of L*(VX) agreeing on S then
<p, = <p2.

In [14] Shore goes on to prove as corollaries many results concerning extenda-
bility and nonextendability of automorphisms of subclasses of L(u). In general,
analogues of his results do not seem to hold. For example Lemma 7 of [13] does
not hold in LiV^). There are many reasons for this. In his thesis Guichard has
shown that there are only S o automorphisms of L(VX), each induced by a
recursive semilinear transformation. Thus the automorphisms of L(VX) are very
different from those of L(w).
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One method of producing nowhere simple sets in L(w) is to spht a maximal set
M into two distinct r.e. non-recursive sets M, and M2. Now M, and M2 are both
effectively nowhere simple in the sense of the following definition, which is the
analogue of Shore's definition for L(w) in [14].

DEFINITION 1.10. Let S G L{U). We says S is effectively nowhere simple if S is
nowhere simple and whenever QD S, dim(Q/S) = oo and g E L( ( / ) we can
effectively compute Q' C Q such that Q' G L(U), dim(g') = oo and Q' D S =

()
In fact as we found in [5] the sets M, and M2 form a maximal pair where we

defined Mx and M2 G L(«) to be a maximal pair if, for all C G L(«) with
CD M, (resp. C D M2) and C n M2 = 0 (resp. C f l M , = 0), card(C - M,)
< oo (resp. card(C — M2) < oo). It is easy to see that any member of a maximal
pair is effectively nowhere simple. In L(U) we have:

DEFINITION 1.11. Let Ax, A2 G L(U). We say Ax and A2 are a maximal pair if
dim(f///l, + /12) = oo, Ax n /*2 = cl(0), and whenever C G L(U) with C D /I,
(resp. C D .-42) and CnA2 = cl(0) (resp. C f l ^ = cl(0)), dim(C/^,) < oo
(resp. dim(C/^42) < oo).

In a Steinitz system with the CLP. there is a very easy way of producing
maximal pairs. We say Q G L(U) is maximal if dim([//Q) = oo and, for all
W G L{U) HWDQ either dim(U/W) < oo or dim(Hy£>) < oo.

PROPOSITION 1.12. Let M be any maximal closed subset of U and let (M, + M2)
— M be any r.e. nondecidable disjoint decomposition of M. Then (M,, M2) is a
maximal pair.

PROOF. Let C G L(U) with d im(C/M,) = oo, C D M, and C D M2 = c l (0 ) .
Now dim(cl(C U M2)/c l (M, U M2)) = oo (by CLP.) and so dim(f//cl(C U
M2)) < oo. Thus both C and A/2 are decidable closed subsets contradicting the
choice of M2.

We note that as the author (paper in preparation) has shown that any r.e.
nondecidable subspace may be decomposed into the direct sum of a pair of
subspaces no r.e. basis of either of which may be extended to an r.e. basis of V^,
there exists a nowhere simple subspace no basis of which is fully extendable.

This construction allows us to show more if the system (U, cl) is semiregular
(see [3]). A system is semiregular if no closed set can be written as the union of a
pair of its proper closed subsets. In a semiregular system we showed in [3] there
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exist supermaximal closed subsets in each r.e. nonzero Turing and dependence
degree 8, where M G L(U) is supermaximal if dim(U/M) = oo and for all
Q G L(U) with Q D M either Q - U or dim(g/Af) < oo. We can modify the
construction in [3] to ensure the result is "mitotic".

PROPOSITION 1.13. Let (U,c\) be semiregular with CLP. Let 8 be an r.e.
nonrecursive degree. Then U contains a maximal pair (A, B) such that d(D(A)) —
d(A) = d(D(BJ) = d(B) = d(A + B) = d(D(A + B)) = 8.

PROOF. In [3] we showed that (U, cl) is semiregular if and only if, for all
A, B C U and C G L(U) with A U B independent over C and A D B - 0 , there
exists TJ such that

7) G clc(A U B) - dc{A) - dc{B)

(see [3], Proposition 2.4). Let ao,...,an,... be a recursive basis for U and
WQ, Wx,... an effective enumeration of the r.e. closed subsets of U.

We construct / = USIS, V= USVS, A = USAS, B = USBS, I
A = UsIf and

IB = UsIs
B in stages so that V = c\(A U B), A = d(JA), B = c\(IB), IA (MB =

0 , A and fi and independent closed sets, IA U IB is a basis for K and F is
supermaximal. We use Yates permitting and coding to control the degrees of
A, B,IA, IB and V(see [17]).

At each stage s let bs
0 < b\ < • • • list in order a cobasis for Vs at stage s. Let

supp^(x) denote the support of x at stage s relative to / / U / / U {bs
0, b\,...}.

Define

In if n is the greatest number such that bs
n G supp^*) .

Let 8 v̂  0 be an r.e. degree, / a 1-1 (total) recursive function with / (w) = Z and
Z =T8. Let ( •, • > denote the standard pairing function ( - , - > : w X w - » w .

Requirements.

QA: IA =Td(A) =Td(D(A)) =T8,

QB: IB =Td(B) =Td(D(B)) =T8,

RAUB: A and B are independent complements.

For each n G u and e E u

P(e,n): If We D Kand dim(We/U) + oo then an G We.

Ne: l i m ^ = be exists.
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DEFINITION 1.13.1. P^e ny requires attention at stages + 1 if
( i ) a n ^ c l ( ^ / + 1 U Vs),

(ii) 3 x G WJ+i such that {x, an) is independent over Vs, {bs
Q,.. .,bs^en^, x) is

independent over Vs and

x(£clK(bs
0,...,b

s
<en},an),

such that 3 Tj G clK(x, an) — c\v(an) such that

g(ij, 5) >max{ / ( j ) , <<?,/!>+1}.

(iii) (e,«) is least with respect to (i), (ii).

Construction. Stage 0. Set Io = l£ = Ig = 0,AO = Bo= Vo = cl(0) and 6? =
a, for all / G a.

Stage s + 1. If no P^e ny requires attention for ( e , n ) < s + 1 set If+l = / / U

If P(e,ny requires attention with x least for (e,n) and TJ least for x there are 3
cases (a), (b) and (c) below.

Case (a). g(V, s) = f(s). Set If+i = if U {,,, ^ J ) + 1 } , / / + I = / / U {b}(s)+2}
and

= |Z>; for i < / ( * ) ,

[fe;+3 for / > / ( , ) .

Cose (b). gin, s)=f(s) + 1. Set I,A+l = if U {v, bj(s)) and //+1 = / / U
{bf(s) + l} a n d

- + . = J*? ^rif(s),
\b*+3 for i > / ( S ) .

(c). *(i,, j) > / ( J ) + 1. Set lf+] = If U {T,, bj(s)}, Is
B

+] = IS
B U {bj(s)+l}

and

In all of the above cases set / J + 1 = If+i U / / + 1 , >4J+1 = cl(//+1),
( / / + 1 )andF J + 1 = cl(/J+1).

o/ construction.
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The lemmata which need to be checked are:

LEMMA 1.13.2. / = UsIs is independent.

LEMMA 1.13.3. Each P(e<ny requires attention at most once.

LEMMA 1.13.4. All the Ne are met.

LEMMA 1.13.5. All the P(e^} are met.

LEMMA 1.13.6. d(I) = d(D(I)) = d(IA) = d(D(IA)) = d(IB) = d(D(IB))

LEMMA 1.13.7. {bo,bt,...} =TI <T$-

As the proofs of the above lemmas with the exception of 1.13.6 are similar to
those in [3] we do not prove them here. The proof of 1.13.6 is similar to [3]
Lemma 3.13 with the added twist that we need to ensure the degrees of the
splitting of / into IA and IB are also of Turing (and dependence) degree greater
than or equal to 8. This is similar to 1.14.5 below and the proof is left to the
reader.

We can also give a simpler direct construction of a maximal pair. It has the
added advantage that it is more widely applicable than the construction of 1.13,
in particular, it applies to systems without semiregularity. In particular, this and
the remaining results constitute an analysis of the class of effectively nowhere
simple subsets of w.

PROPOSITION 1.14. Let 8 ¥=Q be an r.e. nonzero degree. Then (U, cl) contains an
r.e. maximal pair {A, B) such that 8 - d{A) = d(D{A)) - d(B) = d(D(B)) with
A and B independent.

PROOF. We build A - UsAs and B - UsBs in stages so that (A, B) are the
desired maximal pair. To ensure AT > 8 and BT > 8 as we did in 1.13 we ensure
that at each stage either bJM or b^s)+l is put into As and either Bf(s)+i or bJU)+2 is
put into Bs. As in 1.13 we use Yate's permitting to ensure A <T8 and B mT8. We
retain the notions of supp/jc) and g(x, s) that we had in 1.13. We also retain the
basis {a, | i e «} and cobasis {b* \ i e «} of U over c l ^ U Bs).

Our requirements are simply

Pe
A:WeDA& dim(We/A) = oo implies We n B ¥= cl( 0 )
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Pe
B: WeD B& dim( We/B) = oo impUes We D A ¥= cl( 0 )

iVe: lim^fc* = fe6 exists

Q: A =TB =TA U B =TS =TD(B) =TD(A)

RAUB: A and B are independent.

The priority ranking is:
ff nAUB \T pA pB pA pB

DEFINITION 1.14.1. Pf requires attention at stage s + 1 if

(ii) 3 0 £ cl(W/+1) such that g(s, 6) ^ max{e, f(s)},
(iii) P/* has highest priority satisfying (i), (ii) above, or (i), (ii) above with B in

place of A. (Of course, here we define Pf to require attention similarly with B in
place of A and A in place of B.)

At each stage s we construct bases IS
A for As and /£ for Bs.

Construction. Stage 0. Set bf = a, for all / G to where T — {ai \ i G u) is an
recursive basis for U with a, 3= / for all / G «. Set 4̂° = 5° = cl(T^) where
/» = / » = 0 .

S/age 5 + 1. If no P / or Pe
B requires attention set FA

+X = IA U {6/{j)}, / B + 1 =
/« u {ft/w+.} a n d ^ + 1 = d(/J5+'),£,+ , = d ( / i + I ) a n d

Jfe; if/ </(,),
l*/+2 if i > / ( * ) •

If i*/* requires attention and 8 is least for e there are 3 cases:
Case (i). g(s,0) = / (* ) . Set 7^+1 = if U {<?} U {b>m+2}, IA

+l = IA U

(ii). g(s, 6) =f(s) + 1. Set 7£+1 = 1% U {0} U {/>/w+2}, and 7^+' = I'A

b>+3 if
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Case (iii). g(s, 8) > f(s) + 1. Set / | + 1 = TBU {6} U {bs
Rs)+x}, FA

+l = I'A U

ibhs)) a n d s e t

\M if i<f(s),
+2 iff(s)<i<g(s,O),

In cases (i), (ii) and (iii) setv4*+1 = cl(/^+1) and Bs+] = cl(FB
+i).

Use a similar construction if Pf requires attention. Let IA = UsIA, IB- UsFB,
A = c l ( / 4 ) a n d 5 = cl(/B).

End of construction.

The following lemma is easily proved by induction (see, for example, [3] for
details).

LEMMA 1.14.2. IA n IB = 0 and IA U IB is independent.

LEMMA 1.14.3. l i m ^ = be exists.

PROOF. The bs
e only change when e >f(s) and this can happen at most finitely

often.

Note also the Pf and Pe
B require attention at most once.

LEMMA 1.14.4. All the Pf and Pe
B are met.

PROOF. Let Pf be the requirement of highest priority not met. Let t0 be stage
where all the earher requirements that ever require attention do so before stage t0

and, for all i < e, bj" = bt. Now the hypotheses are that d.im(We/A) = oo,
We^> A and We H B — cl(0). We show/(«) = A is recursive, giving a contradic-
tion.

Let z E u. Let z' = m a x ^ , z + 1}. We can find a stage tz > tQ such that
3 0 G W'e with g(t2, 0) > z' + 1 (as dim(We/A) - oo). It follows that, as Pf can
never require attention,

g{tz,O)<f{tz).

By the priority scheme, and by construction the b* can only change when / > f(s).
It follows that V J > tz(g(t2, 6) < f(s)). Therefore V 5 > tz(z < /(*)) and so

ze / (<o) -zG( / (<o) ) r ' .

Let/? = {bo,bv...}.
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LEMMA 1.14.5. R = TIB U IAT>8.

PROOF. Let z G «. Recursively in IA U IB we can find a stage tz where

b\' = bl a l l / « z .

It follows that Vs > tz(f(s) > z). Thus IA U 7 B r > / ( « ) and deg(/(w)) = 5.

LEMMA 1.14.6./(«) = ZT^> IA U 7fi = TR.

PROOF. Let z G «. Recursively in Z we can find a stage ?z such that

Vs>tz(f(s)>z + 2).

Then z 6 ^ U / j < - z £ ( / x U /B) ' ' .

Thus R =TIA U 7B =T-Z and deg(Z) = S. Trivially IA <TIA U 7B and IB <TIA

U 7B. We claim IAT> IAU IB. To show this it suffices to show that d e g ^ ) s= /?.
Recursively in IA we can decide whether or not any member At of T is in IA or
not. Now at each stage s either iy(j) or */(i)+i is put into IA. Thus at each stage s a
member of T is put into 7 .̂ Let a, G 71. Recursively in IA we can find a stage st

such that

Therefore al• £. R <-> a, G RSl and so IA T > R. But as we observed earlier R =TZ
= /(«) and so deg(7^)>5. Therefore deg(7^) = deg(7s) = deg(7?) = 8. The
reader can check that as we can find supp7 u 7 UR(0) for 6 G U that we have

d(R) = d{lA) = d(IB) = d(B) = d(A) = d(B) = d(D(A)) = d(D(B)).

One observation concerning the above construction is that it works in more
general settings than for Steinitz systems with CLP. For example, it works for
VX(F) with affine dependence, that is, (K^.Kl). We can characterize the closed
sets with decompositions into (nowhere simple) maximal pairs. Recall that an r.e.
V in L(U) is simple if, for all Q in L(U) with Qn V = cl(0), dim(g) is finite.

PROPOSITION 1.15. Let Q G L(U). Then Q possesses a decomposition into a
maximal pair Q\,Q2 if and only if Q is simple.

PROOF. (->) is obvious.
(«-) Let Q be simple. Use precisely the same construction as given in Proposi-

tion 1.4. Suppose WeD Q, and d i m ^ / g , ) = oo and We n Q2 = cl(0), then it
follows that dim(We/Q) = oo and, by construction, Z = {x | 3 s, t{t > s& x G
d(We

s)&x $cl(Qs)&x G (£>'))} is finite (for otherwise we could meet the
P{e<n) and so dim(We n Q2) = oo, a contradiction).
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Thus, as we showed in Proposition 1.4, this allows us to construct an r.e. set R
independent over cl(Q) = Q (in the notation of 1.4). Thus by C.I.P. cl(R) n
cl(<2) = cl(0). It follows that Q is not simple—a contradiction.

For systems with C.I.P. there is an easy way to produce simple closed sets. Let
H be a hypersimple subset of degree 8 of a recursive basis B of U. Then c\{H) is
simple of Turing and dependence degrees 8. The reader may supply the details
(see Remmel [10]). This allows us to show:

COROLLARY 1.16. Let 8 ¥= 0 be an r.e. degree. Then there exists an r.e. closed set
Q with both its Turing and dependence degrees 8 such that there exists an r.e. closed
set Q' with (Q, Q') a maximal pair. In particular, each r.e. degree contains an
effectively nowhere simple closed set.

PROOF. Left to reader.

We close this paper with a number of open questions. In more general systems
(that is without C.I.P.) it is still possible to define a notion of nowhere simplicity.
We do this by using a method similar to that used in [4] for simplicity but keeping
everything in terms of "dimension over".

DEFINITION 1.17. Let S G L(U) with dim(U/S) = oo. We say S is (*)-nowhere
simple if, whenever Q G L(U) with d.ivn(Q/S) = oo, there exists Q' C Q such
that Q' D S = cl(0), Q'L(U) and dim(ds(Q')/S) = oo.

It is not clear whether or not there is an analogue of Proposition 1.4 for general
Steinitz systems in terms of (*)-nowhere simplicity. In fact this is not even known
for (Fx, cl). It is known that many properties of subsets of recursive bases can be
lifted to properties of the closed subsets they generate. For example Shore (in [7])
showed that a maximal subset of a recursive basis generates a maximal closed
subset. In [4] it is shown that a similar result holds for major subsets and major
closed subsets. Does a nowhere simple subset of a recursive basis generate a
nowhere simple closed subset of £/? Shore [14] showed that no creative set is
nowhere simple. To do this he showed one creative set is not nowhere simple and
then used Myhill's uniqueness theorem (see for example [14] for details). In our
setting we cannot do this. In [7], Metakides and Nerode defined a creative
subspace and showed that the analogue of Myhill's Theorem simply does not
work for HV^). Thus we may ask if either a creative subspace (closed subset) or
an EUH kernel (see [7]) can be nowhere simple. Another open problem is the
following: let R be a recursive basis and (A, B) a maximal pair in L(R), is
(cl(A), cl(2?)) a maximal pair in (t/,cl)?
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Added in proof. Whilst the paper was in proof I became aware of A. Nerode
and J. B. Remmel's paper "Recursion theory on matroids," 41-67 in Patras Logic
Symposion, North-Holland (Studies in Logic 109), 1982. There the authors
independently analyzed nowhere simplicity in matroids, and obtained many of
the results presented here. Also they show that the analogues of Soare's automor-
phism base results hold for Vx, but not as an analogue of [14] as I had thought.
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