SEMI-PRIMARY QF-3 RINGS

R.R. COLBY and EDGAR A. RUTTER, JR.

A ring R (with identity) is *semi-primary* if it contains a nilpotent ideal N with R/N semi-simple with minimum condition. R is called a left QF-3 ring if it contains a faithful projective injective left ideal. If R is semi-primary and left QF-3, then there is a faithful projective injective left ideal of R which is a direct summand of every faithful left R-module [5], in agreement with the definition of QF-3 algebra given by R.M. Thrall [6]. Let Q(M) denote the injective envelope of a (left) R-module M. We call R left QF-3+ if Q(R) is projective. J.P. Jans showed that among rings with minimum condition on left ideals, the classes of QF-3 and QF-3+ rings coincide [5].

In this note we determine the class of semi-primary rings in which the notions of QF-3 and QF-3+ coincide. Next, we show that the characterization of QF-3+ rings given by Wu, Mochizuki, and Jans [7] for rings with the property that direct products of projective modules are projective, can be used to characterize semi-primary QF-3 rings. Finally, we give some results relating the notions of torsionless and torsion-free modules as defined by H. Bass [1] and A.W. Goldie [3]. In particular we show that if R is semi-primary, these notions coincide if and only if R is left QF-3 and has zero left singular ideal.

S. Eilenberg has given the following characterization of projective modules for semi-primary rings [2].

PROPOSITION 1. If R is semi-primary and P is a projective R-module, then $P = \bigoplus \sum P_{\alpha}$ where each P_{α} is isomorphic to an indecomposable direct summand of ${}_{R}R$.

PROPOSITION 2. If R is semi-primary then R is left QF-3⁺ if and only if R is left QF-3 and the left socle of R is the direct sum of a finite number of simple left ideals of R.

Received June 12, 1967.

Proof. If R is left $QF-3^+$, then $Q(R) \cong \bigoplus \sum P_{\alpha}$ where each P_{α} is an indecomposable direct summand of $_{R}R$. Since the restriction of this isomorphism to R is given by multiplication of an element of $\bigoplus \sum P_{\alpha}$, the image of R is contained in the sum of only finitely many summands. Since R is essential in Q(R), the sum, $\bigoplus \sum P_{\alpha}$, is a finite sum. Since each P_{α} is indecomposable and injective, the socle of each P_{α} is simple so the socle of R is the direct sum of a finite number of simple left ideals. Also, if $P_{\alpha_1}, \dots, P_{\alpha_\ell}$ is one of each isomorphism class of the P_{α_1} then $P_{\alpha_1} \oplus \cdots$ $\bigoplus P_{\alpha_i}$ is a faithful projective injective left ideal of R. Conversely, suppose R is left QF-3 and the socle of R has the form $S_1 \oplus \cdots \oplus S_t$ with each S_k simple. Then $Q(S_1) \oplus \cdots \oplus Q(S_t) = Q(R)$. Let I be a faithful projective injective left ideal of R. For each i, $S_i I \neq (0)$ so S_i is isomorphic to a submodule of *I*. Since I is injective, $Q(S_i)$ is isomorphic to a direct summand of I so is projective. Hence Q(R) is projective.

Example. Let D and D_1 be division rings and let M be a (D, D_1) -bimodule such that $[M:D] = \infty$. Let

$$R = \left\{ \begin{vmatrix} d & 0 & 0 \\ x & d_1 & 0 \\ d'' & m & d' \end{vmatrix} \middle| d, d', d'' \in D, m \in M, x \in \operatorname{Hom}_{D}(M, D) \right\}.$$

M. Harada has shown that R is semi-primary and left QF-3 but is not right QF-3 [4]. One computes that the left socle of R consists of all elements of the form

$$\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
d'' & m & d'
\end{bmatrix}$$

and is an infinite direct sum of simple left ideals. Hence R is not left $QF-3^+$.

An R-module M is torsionless if for every $x \in M$, there exists $f \in \operatorname{Hom}_R(M,R)$ such that $f(x) \neq 0$ [1]. Denote the class of all torsionless left R-modules by $\mathfrak L$ and the class of all left R-modules M with $\operatorname{Hom}_R(M,R)=0$ by $\mathfrak L$. Then $\mathfrak L$ is closed under taking submodules and direct products and $\mathfrak L$ is closed under taking factors, extensions by elements of $\mathfrak L$, and direct sums. Also, any element of $\mathfrak L$ is isomorphic to a submodule of a direct product of copies of R.

THEOREM 1. The following are equivalent:

- 1. Q is closed under taking essential extensions.
- 2. a) $\mathfrak L$ is closed under taking extensions by elements of $\mathfrak L$, and
 - b) T is closed under taking submodules.

Proof. Assume condition 1 and suppose that B is an extension of A by C with $A, C \in \mathfrak{L}$. By 1, Q(A), $Q(C) \in \mathfrak{L}$ and since Q(A) is injective we obtain the following commutative diagram with exact rows and columns:

$$0 \longrightarrow 0 \qquad 0 \qquad 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow Q(A) \longrightarrow Q(A) \oplus Q(C) \longrightarrow Q(C) \longrightarrow 0,$$

where λ is given by $\lambda(b) = (\mu(b), \pi(b))$. Since $\mathfrak L$ is closed under taking direct products and submodules, $B \in \mathfrak L$. Next suppose $A \subset B$ and $0 \neq f \in \operatorname{Hom}_R(A, R)$. Form the following commutative diagram with exact rows:

$$0 \longrightarrow A \longrightarrow B$$

$$\downarrow^f \qquad \downarrow^f$$

$$0 \longrightarrow R \longrightarrow Q(R),$$

where \bar{f} exists since Q(R) is injective. By 1, $Q(R) \in \mathfrak{L}$ and so Q(R) is a submodule of a direct product of copies of R. Hence $\bar{f} \neq 0$ implies $\operatorname{Hom}_R(B,R) \neq 0$. Conversely, assume condition 2, let $A \in \mathfrak{L}$, and suppose B is an essential extension of A. Let

$$K = \bigcap_{f \in \operatorname{Hom}(B, R)} \operatorname{Ker} f$$
, and $K' = \bigcap_{g \in \operatorname{Hom}(K, R)} \operatorname{Ker} g$.

Then the sequence

$$0 \longrightarrow K/K' \longrightarrow B/K' \longrightarrow B/K \longrightarrow 0,$$

is exact with K/K', $B/K \in \mathfrak{L}$. By 2a, $B/K' \in \mathfrak{L}$. It follows that K' = K so $K \in \mathfrak{T}$. If $K \neq (0)$, then since A is essential in B, $(0) \neq K \cap A \in \mathfrak{T}$ by 2b, contradicting $\mathfrak{L} \cap \mathfrak{T} = (0)$. Hence K = (0) and $B \in \mathfrak{L}$.

Wu, Mochizuki, and Jans [7] proved that for rings with the property that direct products of projective modules are projective, R is left QF-3⁺ if

and only if condition 2 of Theorem 1 holds. In order to prove the corresponding result for semi-primary rings, one must replace QF-3⁺ by QF-3.

THEOREM 2. Let R be a semi-primary ring. The following are equivalent:

- 1. Q is closed under taking essential extensions.
- 2. R is left QF-3.
- 3. $Q(R) \in \mathfrak{L}$.

Proof. Assume condition 1 and let S be a simple left ideal of R. Then $Q(S) \in \mathfrak{L}$. Let $f \in \operatorname{Hom}_R(Q(S), R)$ with $f(S) \neq 0$. Since $\operatorname{Ker} f \cap S = 0$ and S is essential in Q(S), $\operatorname{Ker} f = 0$. Hence Q(S) is isomorphic to a direct summand of R and so is projective. It follows that R is left QF-3 with faithful projective injective left ideal $Q(S_1) \oplus \cdots \oplus Q(S_t)$ where S_1, \cdots, S_t is one of each isomorphism class of simple left ideals of R. Next assume that R is left QF-3. The injective envelope of each simple left ideal of R is projective and hence torsionless. Thus Q(R) is a submodule of a direct product of torsionless modules so is torsionless. Finally, assume condition 3 and let $A \in \mathfrak{L}$. There exists a monomorphism

$$k:A\longrightarrow \Pi R$$
.

If B is an essential extension of A, then B is isomorphic to a submodule of $\Pi Q(R)$. Since $\mathfrak L$ is closed under taking direct products and submodules, $B \in \mathfrak L$.

If M is a left R-module, $Z(M) = Z^1(M) = \{x \in M \mid Ix = 0 \text{ for some essential left ideal } I \text{ of } R\}$ is the singular submodule of M. Inductively, $Z^{n+1}(M) = \{x \in M \mid Ix \subset Z^n(M) \text{ for some essential left ideal } I \text{ of } R\}$. For any ring, $Z^2(M) = Z^3(M)$ and if Z(R) = 0, $Z(M) = Z^2(M)$ [3]. Clearly, $Z^2(M) = 0$ if and only if Z(M) = 0. We define classes \mathfrak{L}_1 and \mathfrak{L}_1 by $\mathfrak{L}_1 = \{M \mid Z(M) = 0\}$ and $\mathfrak{L}_1 = \{M \mid Z^2(M) = M\}$. \mathfrak{L}_1 is closed under taking submodules, direct products, extensions by elements of \mathfrak{L}_1 , and essential extensions. \mathfrak{L}_1 is closed under taking factors, submodules, and direct sums.

PROPOSITION 3. If R is semi-primary then $M \in \mathfrak{L}_1$ if and only if the socle of M is projective.

Proof. Let E denote the left socle of R. Then E is the unique

minimal essential left ideal of R. Suppose $M \in \mathfrak{L}_1$ and let C be a simple submodule of M. Since $EC \neq 0$, there exists a simple left ideal $S \subset R$ with $SC \neq 0$. Then SC = C so $S^2 \neq 0$ and $S \cong C$. Hence S is a direct summand of R and so is projective. Conversely, suppose the socle of M is projective. If EC = 0 for a simple submodule C of M, then C is not isomorphic to a direct summand of R and is not projective. Hence $EC \neq 0$. But if $Z(M) \neq 0$, it contains a simple submodule. Thus Z(M) = 0.

COROLLARY. If R is semi-primary and left QF-3, then $\mathfrak{L}_1 \subset \mathfrak{L}$ and $\mathfrak{T} \subset \mathfrak{T}_1$.

Proof. If $M \in \mathfrak{L}_1$ then the socle of M is projective by Proposition 3 so is in \mathfrak{L} . Thus, by Theorem 2, $M \in \mathfrak{L}$. If $M \in \mathfrak{T}$, then $M/Z^2(M) \in \mathfrak{L}_1 \subset \mathfrak{L}$ so, since \mathfrak{T} is closed under taking homomorphic images and $\mathfrak{T} \cap \mathfrak{L} = (0)$, $M = Z^2(M)$. Hence $M \in \mathfrak{T}_1$.

Proposition 4. The following are equivalent.

- 1. $R \in \mathfrak{L}_1$.
- 2. $\mathfrak{L} \subset \mathfrak{L}_1$.
- 3. $\mathfrak{T}_1 \subset \mathfrak{T}$.

Proof. Condition 2 follows from 1 since \mathfrak{L}_1 is closed under taking direct products and submodules and any torsionless R-module is a submodule of a direct product of copies of R. Assume condition 2. If $M \in \mathfrak{T}_1$, then since $R \in \mathfrak{L} \subset \mathfrak{L}_1$, $Z^2(M) = Z(M) = M$. If $f \in \operatorname{Hom}(M,R)$ and $x \in M$, let I be an essential left ideal of R with Ix = 0. Then If(x) = f(Ix) = 0 so since Z(R) = 0, f(x) = 0. Hence $M \in \mathfrak{T}$. Finally, if $Z(R) \neq 0$ then $Z^2(R) \neq 0$ and $Z^2(R) \in \mathfrak{T}_1$ but $Z^2(R) \notin \mathfrak{T}$. Thus 3 implies 1.

THEOREM 3. Let R be a semi-primary ring. The following are equivalent:

- 1. R is left QF-3 and Z(R) = 0.
- 2. $\mathfrak{L} = \mathfrak{L}_1$.
- 3. $\mathfrak{T} = \mathfrak{T}_1$.

Proof. Condition 1 implies conditions 2 and 3 by the Corollary and Proposition 4. Assume condition 2. Since \mathfrak{L}_1 is closed under taking essential extensions and $\mathfrak{L}_1 = \mathfrak{L}$, R is left QF-3 by Theorem 2 and Z(R) = 0 by Proposition 4. Thus 2 implies 1. Assume condition 3. By Proposition

4, Z(R) = 0. Let S be a simple left ideal of R. Since Z(S) = 0 and S is essential in Q(S), Z(Q(S)) = 0. Hence $\operatorname{Hom}_R(Q(S), R) \neq 0$. Let $0 \neq f \in \operatorname{Hom}_R(Q(S), R)$. If $\operatorname{Ker} f \neq 0$ then $\operatorname{Ker} f$ is essential in Q(S) so $Q(S)/\operatorname{Ker} f \in \mathfrak{T}_1 = \mathfrak{T}$. From this contradiction we conclude that f is a monomorphism and Q(S) is torsionless. Hence $Q(R) \in \mathfrak{L}$ and R is left QF-3 by Theorem 2.

REFERENCES

- [1] Bass, H: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960) 466-488.
- [2] Eilenberg, S: Homological dimension and syzygies, Ann. of Math. 64 (1956) 328-336.
- [3] Goldie, A.W: Torsion-free modules and rings, J.A. 1 (1964) 268-287.
- [4] Harada, M: QF-3 and semi-primary PP rings II, Osaka J. Math. 3 (1966) 21-27.
- [5] Jans, J.P: Projective injective modules, Pac. J. Math. 9 (1959), 1103-1108.
- [6] Thrall, R.M: Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948) 173-183.
- [7] Wu, L.E.T., Mochizuki, H.Y., and Jans, J.P: A characterization of QF-3 rings, Nagoya Math. J. 27 (1966) 7-13.

The University of Kansas