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1. Introduction

In the first paper of this series [1], which will be designated I, particular
solutions of various kinds have been found for the iterated equation of
generalized axially symmetric potential theory (GASPT) which, in the
notation defined in I, is

(1) Ln(/) = 0,

where the operator is defined by

Lt{f) =

Among these solutions is a family of the type y"ft where ft is a solution of
the equation Lt(J) = 0.

Weinstein [2] has shown that a general solution of (1) can be formed
by taking a linear combination of n solutions of this type (in all of which
s = 0):

(2) / * + / * - . + • • •+ / * -«« - ! ) •
This means that every function of the form (2) is a solution of (1) and that
every solution of (1) can be expressed in the form (2). Payne [3] has fol-
lowed Weinstein and produced two further general solutions of (1) which
are also linear combinations of n terms of the form y'ft. The first, like Wein-
stein's, is valid for all k:

(3) f*+y2h+2+ • • • +y2(B-2)/*+2c»-2>+y2(B-17*+2(B-i, •

The second, however, requires that k ^ 1—2* for any integer i such that
0 ^ * ^ n—2:

(4) U
In I, the set of all solutions of (1) of the form y'ft has been found and
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278 J. C. Burns [2]

in the present paper a criterion is obtained for deciding whether a given
selection of n of these solutions combine linearly to produce a general
solution of (1).

2. Solutions of L%{f) = 0 of the form ysft

It has been shown in theorem 4.5 of I that all solutions of (1) of the form
y'ft are given by

(5) aaf = y**fk+2a-2fi, 4 a , = i ^ W / M - r t , - * .

where a, /? are non-negative integers such that 0 ^ a + / 3 ^ w — 1. It is
convenient to think of these two classes of solutions as represented by the
points of triangular arrays in the a—/? plane as shown in figure 1 (a) for the
case n = 4.

0 1 2 3
0 • • • • - > ft X X X X X • • • • X • •
1 . . . . . . x . . . x .

2 • • • • X • - X
3 • • X X

I
a

(a) (b) (c) (d)

Figure 1

The terms of Weinstein's solution (2) and Payne's two solutions (3)
and (4) are all of the form aafi and are represented by sets of points such as
those shown in figures 1 (b), (c), (d) respectively.

The notation Am(y, d) will be used to denote the triangular array of
points which represent terms aaff (or Aafi) for which a = y+f, /S = d+rj,
where f, r\ are non-negative integers such that 0 < g+t] s£ m—1. The full
class of solutions aafi of the equation L%(f) = 0 is thus represented by the
set of points An{0, 0).

There are ^n(n-\-l) solutions of each of the types aafi, Aafi and these
are all distinct unless k is an odd integer of the form l±2y where y is an
integer in the range 0 ^ y 5S n— 1. When k = l+2y, each solution &£iY+v

which is represented by a point in the array An_y(0, y) is identical with the
solution AVty+i which is also represented by a point lying in this array.
A similar result holds when k = 1—2y, with the points this time lying in the
array An_y(y, 0). In particular, it will be seen that when y = 0 so that
k = !. a*fi = A*0 f o r all a, /S.
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For the case k = 0, when the equation becomes the polyharmonic
equation, the solutions are all distinct but for other cases of interest (eg.
when n = 2 and k = — 1) some of the Aa/3 may be identical with some
of the aafi. However, it will appear shortly that this is not an important
restriction.

Since solutions of the equation L™(/) = 0 where m < n will also satisfy
the equation Lk (/) = 0, all solutions of L™(/) = 0 of the form y*ft must be
found among the two classes of solutions aafi, Aafi of (1). It is clear that
those members of each of these classes which are represented by points in
the array Jm(0, 0) are solutions of Lk (/) = 0 for all n 2; m.

3. Weinstein's general solution of L%(f) = 0

Weinstein's general solution (2) of the equation Lk(f) — 0 is given in
the notation introduced in (5) by

Weinstein proves that (6) is a general solution by mathematical induction,
making use of the following results which, when they are used later, will be
referred to as Weinstein's lemmas.

LEMMA 3.1 ^(/fc-2 )<-•/*•

(The notation is that introduced in section 4 of I: the lemma states that
for any function fk_2, @fk_2 = y~x dfk_2jdy can be expressed in the form fk

and, conversely, any function fk can be expressed in the form ^(/fc_2). The
two expressions £&(fk_2) and fk are said to be equivalent.)

Equation (18) of I shows that Lk@(fk_2) = 0 so that 2{jk_2) -> fk for
any fk_2. The converse is not so easily proved and is one of the main results
of Weinstein's paper [2].

LEMMA 3.2 Provided k^l, £*(/,) <-»^(/,).

This result is an immediate consequence of equation (20) of I.
Weinstein's solution will be taken as the starting point for the discus-

sion of general solutions of the equation Lk(f) = 0 which consist of the sum
of n terms chosen from the classes aa/}, Aafi given by (5). Such a sum of n
terms will be a general solution if it can be shown to be equivalent to Wein-
stein's general solution.

A set of n terms of the form aafi or Aaft whose sum is a general solution
of (1) will be referred to as a solution set. Any two sets of terms of this
form will be said to be equivalent if their sums are equivalent; in particular,
any two solution sets of the same equation Lk(f) = 0 are equivalent.
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4. Relations between solutions aa0,Aaf

Before sets of n terms aa0, Aa0 can be compared with Weinstein's
solution set, it is necessary to consider a number of relations between the
terms.

4.1 STANDARD SOLUTIONS.

THEOREM. For any a, /?, aa/J<->AaA.

This requires that, for any a, /S,

a result which is given immediately by Weinstein's correspondence principle
(equation (31) of I) which states that fk <->• y1~kf2~k f°r anY &•

The equivalence of aaf and Aafi means that only sets of terms of the
form aa/J need be considered as possible solution sets. Such solution sets,
of which Weinstein's is one, will be called standard sets; the corresponding
general solutions will be called standard solutions; and the set of points in
the array An which represent the terms of a standard set will be called a
standard set of points. In particular, the points representing the terms of
Weinstein's solution will be called a Weinstein set.

It is clear that each standard solution will give rise to a family of
general solutions as some or all of the aa# are replaced by the corresponding
Aafi. The number of general solutions obtained in this way will depend on
whether or not all the Aafi are distinct from the aa0. Thus when k is not of
the form l±2y where y is an integer in 0 ^ y f^n—1, so that all the Aafi

are distinct from the aaf, a standard solution will be representative of a
family of 2" general solutions; at the other extreme, when k = 1, all these
solutions will be identical and the standard solution will represent a family
consisting of just one member. It is the equivalence of aaf and Aafi which
makes the possible identity of some of these solutions for certain values of
k unimportant.

4.2 REFLECTION PRINCIPLE.

THEOREM. If a set of n terms aafi is a standard set, then so also is the set
of the n corresponding terms afia.

Let /£"> denote any solution of (1). Then, since the n terms
aafi = y2afk+Za-2fi form a solution set of (1),

where the sum is taken over the n terms of the solution set. Changing k
to 2—k shows that if /£">* is any solution of L^tf) = 0, then

(8) /&<
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The generalized Weinstein correspondence principle (Theorem 4.8 of I)
states that /£"> <-• yl-kfi%. From (8) it follows that

fP <-> 2 y1-fc+2a/2-,+2«-2/! = 2 Afa.

This means that the set of n terms Afia is a solution set of equation (1); but
theorem 4.1 shows that the standard set equivalent to the set {Afix} is the
set {afix} and this proves the theorem.

The two sets {aaf} and {afix} are represented by standard sets of points
in the array An(0, 0) which are mirror images in the leading diagonal so
the relation proved in this theorem may be called the reflection principle.

Reflection of Weinstein's set in An(0, 0) shows that the set of n points
in the first column is equivalent to Weinstein's set and so also forms a
standard set. (See figure 1 (b), (c).)

The general solution of (1) found in this way is

(9) «oo+«io+«2oH h«B-i,o.

which, in the original notation, is that given by (3), the first of Payne's
solutions. The points of the column which represent the terms of Payne's
solution will be called the Payne set of An (see figure 1 (c)).

Since the equivalence of Weinstein's and Payne's solutions holds for
all integral values of n 2; 1, it follows that the Weinstein and Payne sets
are equivalent for any array Am(0, 0) included within An(0, 0).

4.3 TRANSLATION PRINCIPLE.

THEOREM. If two sets of m terms {ai}} and {a^} are equivalent, then so
are the two sets of terms {ai+aj+fi} and {«j,+a,,,+,?} (for any integers a, /S provided
that all the terms are represented by points in the array An).

The equivalence of the sets {««}, {«,,,,} is expressed by the relation

2 2/2'/*+2<-2i<-> 2 2/2I7*+2J>-2«.

where the sum is in each case over the members of the set. Changing k to
k-\-2a.~2/3 and multiplying both sides of the resulting relation by y*a gives

which proves the equivalence of {ai+a,i+ff} and {av+a,,+/?}•
The theorem shows that if any two equivalent sets of m points, denoted

say by A(0, 0) and 5(0, 0), in the array Am(0, 0), are translated through
the displacement (a, /5) then they become equivalent sets of points which
may be denoted by A (a, /S) and B(OL, /S) and lie in the array Am(ct, /3). If the
original sets 4(0, 0) and B(0, 0) are standard sets of Am{0, 0), the new sets
A (a, /3), B(a, /S) will be called standard sets of Zlm(oc, j3). For example, the
Weinstein and Payne sets in A3(0,0) (see figure 2), which are equivalent
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become, on translation through the displacement (1, 2), the corresponding
sets in A3(l, 2) which are therefore equivalent and standard sets.

X -^Sa o o
X • o •

o

Figure 2

This example is an illustration of what may be called the extended
reflection principle: if a set of m points A (a, /?) is a standard set in Am(v., /3)
and so is obtained by translation from a set of points A (0, 0) which is a
standard set in Am(0, 0), then the set A (a., /?) is equivalent to the set
B(OL,P) obtained by reflecting the set A(OL, /?) in the leading diagonal
of Jm(a, /?).

4.4 WEINSTEIN-ALMANSI RELATION.

Weinstein [2] quotes Almansi's general solution of the polyharmonic
equation L%(f) = 0 as

where the functions /0>j are arbitrary solutions of the equation L0(f) = 0
i.e. arbitrary harmonic functions; and he proves the equivalence of this
solution and his own solution of the polyharmonic equation, obtained from
(2) by putting k = 0:

/o+/-2+/-4+ ' ' ' +/-2(n-l) •

Almansi's solution (10) of the polyharmonic equation is obtained by
putting k = 0 in the expression

(11) f*,o+y1-kU,i+y2fkA+yS~kf-K3+yifK*+ • • • ( * > • » t e r m s ) ,

where the functions fki and /_M satisfy the equations Lk(f) = 0 and
L_k(f) = 0 respectively. In the notation of (5), (11) becomes

H (t o n terms),

so that this sum of n terms is a member of the family characterised by the
sum of the n terms

(12) «oo+aio+«n+«2i+a22-l ( t0 n terms).

If (11) is to be a general solution of (1), then (12) must be a standard solution
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of (1). The set of terms making up (12) will be called Almansi's set and the
points representing these terms make up a set to be called Almansi's set
of points. These form a staircase as shown in figure 3.

X

X X • • •

• X X •

• • x

Figure 3

THEOREM. Almansi's set of points in An(0, 0) is a standard set.
The theorem is trivial when n = 1; and, when n = 2, Almansi's solu-

tion is identical with Payne's as is seen by comparing (9) and (12). The
theorem is now proved by induction. It is assumed that the Weinstein and
Almansi sets of points in the array Am_1(0, 0) are equivalent. The transla-
tion principle shows that these sets are also equivalent in any array

X X X X X • X X • • • • X • •

• x x • • x x -
• x • - x x

(a) (b) (c)

Figure 4

Consider the Weinstein set of m points from Am(0, 0) in two parts as
indicated in figure 4(a), the first point and the remaining (m— 1) points
being taken separately. The latter points form the Weinstein set of the
array Am(0, 1) and so, from the inductive hypothesis, are equivalent to the
Almansi set of Am(0, 1). The original set of m points is thus transformed
into a new standard set, as shown in figure 4(6), which by the reflection
principle for Am(0, 0) are equivalent to the set of points shown in figure
4(c). These form the Almansi set for Am(0, 0) which is the result required
to set up the inductive proof.

This equivalence relation between the Weinstein and Almansi sets
for any array will be referred to as a Weinstein-Almansi relation. The
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theorem shows that the expression (11) is a general solution of (1) and
provides an alternative proof of the equivalence of Weinstein's and Alman-
si's solutions for the polyharmonic equation.

4.5 PAYNE RELATIONS.

All the results of section 4 so far have been valid for all values of k.
Some further results are now obtained which are subject to some restriction
on k and for this purpose a preliminary result is needed.

PAYNE'S LEMMA. Provided k =£ 1, fh ->• fk-2+y2fk+z-

For k ^ 1, fh can be written as

The result follows from Weinstein's first lemma (3.1) and the case
n — 1 of another result given by Weinstein [4]: for any integer n ^ 0,

(The relation is not reversible: it is not the case that fk-2+yifk+2 -*• h
because, in replacing the terms fk_2 and y2fk+2 by expressions involving fk,
there can be no guarantee that the arbitrarily chosen fk_2 and fk+2 will give
rise to the same function fk as is necessary if the resulting expression is
to reduce simply to fk.)

This result is called Payne's Lemma because it was suggested by
Payne's proof [3] that the expression given in (4) is equivalent to Payne's
general solution (3) of equation (1) and so is itself a general solution of (1).
The lemma is now used to prove a more general theorem which includes
this result.

The terms making up Payne's general solution (3) will now be called
Payne's first set to distinguish them from Payne's second set, the terms
which make up the expression (4). The sets of points representing these
terms in the array An(0, 0) (see figure 1 (c), (d)) will be called Payne's first
and second sets respectively and the corresponding sets of points for any
array Am(a., /?) are obtained by translation.

THEOREM. Payne's first and second sets of points for the array Am(<x., /?)
are equivalent, provided k =fi 1—2a+2j8—2* where i = 0, 1, 2, • • • (m—2).

The theorem is proved first for n = 2 and for a = /S = 0. If y2/*+2,
where fk+2 is arbitrary, is added to both sides of the relation of Payne's
lemma, then, provided k ^ 1,

(13) /* + y2/*+2^ /*-2+2/2/*+2.

because the sum of any two functions fk+2 can be expressed simply as fk+2.
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On the other hand, (5) shows that fk_2 is a solution of L\{f) = 0 so that
Payne's first solution (3) gives

Adding y2fk+2 to both sides of this relation gives

(14) /*-2+2/2/*+2->/*+2/2W

Relations (14) and (15) together show that, provided k =£ 1,

so that the two Payne sets are equivalent for A2(0, 0). The translation
principle is now used to derive the corresponding result for A2(a., /?) and
since this involves changing k to A+2a—2/3, the result is that, provided
k # 1—2a+2/3, the two Payne sets are equivalent for the array A2{OL, /?).
The theorem is thus true for n = 2 and the general result is proved by in-
duction.

Assume that the Payne sets for any array Am_x((*., /3) are equivalent
provided k # 1—2a+2/3—2i for i = 0, 1, 2, • • • (m—3). Consider the first
Payne set for the array Am(x, /?) in two parts as indicated in figure 5(a),

: • • •
: • • «-» •

: • x
< X

(a)

x • • •
x • •
X • <->

•

(b)
Figure 5

• X

• X

• X

• X

X

(c)

the first (m—1) points and the last point being considered separately. The
first (m— 1) points form the first Payne set for A m_x («,/?) and so, from
the inductive hypothesis, are equivalent to the second Payne set for this
array. The original set of m points is thus transformed into a new set, shown
in figure 5(6), which is equivalent to the original set, provided k ^ 1—2i
where i = 0, 1, 2, • • • (m—3). In this new set there are two points remaining
in the first column of Am(<x., /?) and these form the first Payne set of the
array A2(x-\-m—2,p). Since the theorem has already been proved for an
array of this size, these two points can be replaced by the second Payne set
of this array provided k =£ 1—2a+2/?— (m—2). This leads to the set of
points shown in figure 5(c), the second Payne set for Am{<x., /S) and the
equivalence of the two Payne sets is established for k =fc 1—2a-f2/?—2t
where i — 0, 1, 2, • • • (m—2). The inductive proof can now be completed.
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Payne's relation can be applied successively to produce a series of
standard sets of points for Am{a., /3), starting with Payne's first set, as in-
dicated in figure 6.

x • •
x • •
X •

X

•

•

X

X

X

X

• • •

•

^—^

X

Figure 6

•
•

X

x •
X

*

J V

\ f

X

•
•

X

X

X

These successive transformations are valid provided k ^ 1—2<x+2/?—2i
where i is an integer which for the first transformation lies in 0 5S i <: m—2,
for the second in 1 5S i ^ m—2, for the third in 2 ^ i ^ m—2 and so on.
The first condition includes all the others so all of the sets are standard
sets provided this condition holds.

5. General solutions of Lf(/) = 0

The main purpose of this paper is to decide which sets of n terms
chosen from the ^n(n-\-l) terms aafi give standard solutions of equation (1).
This is done by examining the geometrical patterns of sets of n points
chosen from the array An(0, 0) and deciding whether these are standard
sets. A criterion will be given in terms of an operation con defined as follows:
the operation <on, applied to an array An and a set of n points chosen from
it, consists of the removal from An of the n points which lie along one of its
three sides in such a way that just one of the chosen points is removed. If
it is possible to apply the operation con, an array An_1 remains which con-
tains («— 1) of the chosen points and it may or may not be possible to
apply the operation con_1.

The required criterion states: provided k =£ 1—2i where i = 0, 1, 2, • • •
(n—2), a set of n points chosen from the array An(0, 0) form a standard
set if it is possible to apply in succession the operations <on, a>n_1( • • •, co2-
(This series of operations will be denoted by Qn.)

The criterion is a special case of the following theorem which, being
more general, is rather more easily proved.

THEOREM. Provided k # 1—2a+2/3—2* where i = 0, 1, 2, • • • (m—2),
a set of m points chosen from the array Am(x, /S) form a standard set if it is
possible to apply the series of operations Qm.

For m = 2, there are three possible choices of two points from
A2(cc, /?) and, as shown in figure 7, the operation <o2 can be applied to each
of them, (a) is Weinstein's set, (6) is Payne's first set and (c) is Payne's
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X I X
I

I

I

(a)

X X

X X

(b)

Figure 7

(c)

second set. (a) and (b) are known to be standard sets for all k while (c)
has been proved to be a standard set for k ^ 1—2a+2/S (section 4.5). The
theorem is thus true for m = 2 and the general result is proved by induc-
tion.

On the assumption that the theorem is true for any array Am_1(x, /?),
it must be proved that the set of m chosen points form a standard set in
Am(a., /?) if the operations Qm can be applied. These operations are applied
in two phases, eom first and then the remaining operations Qm^x, and there
are three cases to consider according as the array which remains after the
operation of cam is A^x, P), 4 _ I ( « + 1 , p) or Am_x{<*., p+1).

(i) If the chosen point removed by eom represents a term of the form
a*+r,l>+m-i-r>tne remaining (m— 1) chosen points lie in Am_1(x, /?). Consider
the cases 0 +1)] as shown in figure 8 (for the case m = 5).

X X X X / X X X X

• * X>

(a) (c)

The (m—1) chosen points which remain in Am_1(<m, /?) are such that the
operations Qm_1 can be applied to them and so, by the inductive hypothesis,
provided k =£ 1—2<x+2/S—2i where i = 0, 1, 2, • • • (m—3), they form a
standard set. They are therefore equivalent to any other standard set and
in particular to Weinstein's set, as in figure 8(a), or to standard sets which
can be derived from Weinstein's set by the application of the Weinstein-
Almansi relation, as in figure 8(6) and (c). These standard sets in Am_1(<x., /?)
are constructed so that they combine with the chosen point which has been
excluded by com to produce in each case a set of m points in Am(a., /5) which
is a standard set because it is Weinstein's set for this array or can be trans-
formed to this set by the use of a Weinstein-Almansi relation. This shows
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that the original set of m chosen points is equivalent to a standard set and
so is itself a standard set. The inductive proof can now be completed for
this case.

If r is such that [f(«+l)] < f ^ tn—1, the set of m points is first
reflected in the leading diagonal to obtain a set of the type just considered,
this new set is shown to be a standard set and the extended reflection
principle then shows that the original set is a standard set.

It will be noted that only Weinstein-Almansi relations have been used
so far and that these introduce no restrictions on k. Hence if all the operations
u>m, com_lt • • ', <w2 are of the kind considered in this section of the proof,
the theorem can be proved without restrictions on k.

(ii) In the second case, the chosen point removed by com represents
a term of the form ciaj+r where 0 ^ r ^ (m—1) and the remaining (m— 1)
chosen points lie in /lTO_i(a+l, /J). The operations Qm-.^ can be applied to
these points, so, by the inductive hypothesis, provided k ^ 1—2a+2/?—2i
where i = 1, 2, • • • (m—2), these points form a standard set in -dm_1(a+l,j5).
They are therefore equivalent to any other standard set and in particular
to Payne's first set or to one of the sets which were shown in section 4.5
to be equivalent to it (these sets are shown in figure 6). These sets are all
standard sets under the restriction already imposed on k. The appropriate
sets are shown in figure 9 for the case m = 4 and are constructed so that

X • • • • X • • • • X • • • • X

x • •
X •

X

•

•

X

x •
X

•

•

X

Figure 9

•

X

X
•

X

•

X

X

they combine with the point excluded by com to give sets of m points
in Am(<x., /?) which are standard sets, again because they are sets which
have been shown to be equivalent to Payne's first set, provided that
k =£ 1—2oc+2£—2t where i = 0, 1, 2, • • • (m—2). Thus the original set of
m points is a standard set provided this condition is satisfied. The induc-
tive proof can now be completed.

(iii) The third case, when com removes a point which represents a
term of the form aa+rj can be reduced to the previous case by the use of
the extended reflection principle.

The three cases having been considered, the theorem is proved. The
restrictions imposed on k are strong enough to allow the use of any Payne
relation which may be needed. In particular cases, a set of points in
^m(a» P) to which the operations Qm can be applied may be a standard set
for values of k not included in the statement of the theorem. The extreme
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case when no Payne relations are needed and there are no restrictions on
k has already been noted.

It is natural to ask how many of the possible sets of n points chosen
from the array An(0, 0) satisfy the criterion and so form standard sets
(under appropriate conditions on k), thus leading to general solutions of
the equation ££(/) = 0. It appears not to be a trivial matter to find this
number for general n. When n = 2, it has already been noted that all three
possible sets of two points chosen from A^lfi, 0) are standard sets; when
n = 3, 16 of the 20 possible sets of 3 points chosen from A3(0, 0) satisfy the
criterion; and when n = 4, 119 of the 210 possible sets of 4 points chosen
from z!4(0, 0) satisfy the criterion and so are standard sets.

What can be said about the sets of points which do not satisfy the
criterion? The four sets for the case w = 3 which do not satisfy the criterion
are shown in figure 10.

X

(d)

The sets shown in figures 10(a), (b), (c) are not standard sets of ^3(0, 0).
Since, in each case, the three points lie in an array A2, any two of them
form a standard set in this array. This means that one of the terms represen-
ted by the points can be expressed as a combination of the other two so
that there are in effect only two independent terms which clearly do not
form a general solution of L%(f) = 0. The set shown in figure 10(d) cannot
be dismissed so easily and it remains an open question whether or not this
forms a standard set.
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