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BOUNDEDNESS OF SEMI-STABLE SHEAVES OF SMALL RANKS
MASAKI MARUYAMA

Introduction

As for the construction of moduli spaces of stable sheaves, the
boundedness of semi-stable sheaves is one of the most important questions
which are left unanswered. In the case of dimension one, the boundedness
was proved by M. F. Atiyah [1]. When the dimension of the base variety
is two and the rank is two, F. Takemoto and D. Mumford showed the
boundedness independently ([13]). The author proved in [7] that the
boundedness holds for every rank in the case of dimension two, and then
D. Gieseker gave another proof of it in [3].

In this article, we shall prove the boundedness in some very special
cases which are not contained in the above results. The author hopes
that his results are enough to give evidences of the boundedness in
general cases.

To state our results, let f: X — S be a smooth, projective, geometrically
integral morphism of noetherian schemes over a ring 4 and let @,(1) be
an f-very ample invertible sheaf on X. Our first main result is

TueoreM 3.1. If S = Spec (k) with an algebraically closed field Fk,
dim X > 2, E is p-semi-stable (Definition 1.1) aend if r(E) < dim X, then
for almost all Y in |0;(1)|, E|y is p-semi-stable.

As for the boundedness, we shall consider three statements; B, .(4).
B, . (4) and B;.(4) ((3.4.1), (3.4.2) and (3.4.3)). Lemma 3.5 shows that
B, (4) implies B .(4) and B, (A4) does B, .(4). When B, (4) holds for a
couple (n, r), we say that the boundedness of semi-stable sheaves holds
in the case of dimension n and rank r (in the category of /-schemes).
As a direct corollary to Theorem 3.1, we see that B, .(4) and B, ,(4) hold
for all n and 4 (Theorem 3.11).

In § 4, we shall show a very interesting result on p-semi-stable vector
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bundles on an algebraic surface (Theorem 4.6) whose proof is almost a
modification of some parts of §4 and §5 of an excellent paper by Barth
([2]). Theorem 4.6 plays an important role in § 5.

The author believes that one of the best ways to prove the bounded-
ness is to show the stronger statement B, .(4). If one reads the proof of
Proposition 5.6 carefully, he may agree with the author. From Proposition
5.6, we can deduce easily that Bj,(4) and B, (4) hold for all n if 4 is a
field of characteristic zero (Theorem 5.7). Unfortunately, Theorem 4.6 is
false if the characteristic of the base field is positive. Thus, so long as
the proof of Proposition 5.6 depends on Theorem 4.6, we are not able to
remove the restriction on 4 from Theorem 5.7. The author found a
weaker result was enough to prove Proposition 5.6, (2) and hence B; (4)
holds and it is going to be written elsewhere (see Remark 5.8).

Throughout this paper, a key role is played by the Harder-Narasimhan
filtration of a torsion free coherent sheaf (Definition 1.3). The author
wishes to express his hearty thanks to Professor M. S. Narasimhan who
pointed out the notion of the filtration to the author when he came to
Kyoto in November, 1976.

§1. Harder-Narasimhan filtration

Throughout this section, we shall fix an arbitrary field £ and %
denotes an algebraic closure of k. Let X be a non-singular projective
variety over & (i.e., a smooth, projective, geometrically integral scheme
over k) and 0x(1) a very ample invertible sheaf on X. For a coherent
sheaf E on X, = X®, K, d(E, 0 (1)) or abbreviately d(E) denotes the degree
of the first Chern class ¢,(E) of E with respect to 0, (1) = 0;(1) ®, K,
where K is an extension field of . We denote the rank of E at the
generic point of X by r(E). When r(E) # 0, u(E) is defined as follows;

HE) = d(E, 0x(1))[r(E) .
Note that for every extension field L of K, w(E) = p(E @y L).

DerFiniTiON 1.1. Let E be a coherent sheaf on X. E is y-semi-stable
if (1) E is torsion free and (2) for every coherent subsheaf F of E; = E
®, k with F = 0, u(F) < p(E).

Remark 1.2. E is torsion free if and only if so is E; because X is
geometrically integral.
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The following notion is due to Harder and Narasimhan ([5]).

DerFINITION 1.3. Let E be a torsion free coherent sheaf on X. A
Harder-Narasimhan filtration of E is a filtration 0=E, & E, & --- C E,
= E with the following properties;

(a) E,E,;_, is p-semi-stable for 1 <i < «,

(b) WE/E; ) > B ,|E) for 1 <i<a— 1

Remark 1.4. It is easy to see that if 0=E, C E, £ --- S E,=FE is
a Harder-Narasimhan filtration, then so is 0= E,®, L E, &, LC ---
C E, & L=EQ,L for every extension field L of k.

The existence and the uniqueness of a Harder-Narasimhan filtration
are proved in [5] when X is a curve and k2 = k. If k£ = k, one can easily
generalize their proof to arbitrary dimensions (see [12]). The results
hold good without assuming %2 = 2. In fact,

PropositioN 1.5. Every torsion free coherent sheaf E on X has a
unique Harder-Narasimhan filtration.

Proof. The uniqueness is easily deduced from Remark 1.4 and the
uniqueness in the case of k = 2. For a proof of existence, take a Harder-
Narasimhan filtration 0=E, C E, S --- CE, =E=E®,k Let ¢ be a
homomorphism of E; to E/E, and § the integer such that im (¢) C E,/E,
and im (¢) & E;_,/JE,. If 8> 1, then we have a non-zero homomorphism
é of E, to E;/E, .. This is not the case because w(E,) > (E,/E,_,) and
both E, and E,/E,_, are p-semi-stable. Therefore, 3 =1 and ¢ =0, and
hence Hom,,, (E, E/E,) = 0.

Let us consider the Quot-scheme @ of E/X/k. Let ¥ be the k-valued
geometric point of @ corresponding to E— E/E, —~ 0 and let x be the
scheme point which is the image of X. The residue field K of ¢,, is a
finite algebraic extension of k. Then, E, = E, ®, k for a coherent sheaf
on E, on X;. If K is not purely inseparable over k, then it contradicts
the uniqueness of E, (see Remark 1.6 below). For the maximal ideal m
of (0q,.) ®, K, m/m*® k = Hom,,, (E, E/E))" =0 (see [4]), and hence
m =0 by Nakayama’s lemma. Therefore, (0,,,) ®, K is a field, which
means that 0,, = K = k. By induction on the length of the filtration,
we have our assertion. q.e.d.

Remark 1.6. Let E be a torsion free coherent sheaf on X and 0 =
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E,CE < -.- S E,=FE the Harder-Narasimhan filtration. Set m, =
max {u(F)|F: coherent subsheaf of E/E;} and H = {F|F: coherent subsheaf
of E/E, with u(F) = m,}. Then E, /E, is a unique maximal member of
H (see [5], the proof of Lemma 1.3.6 and Lemma 1.3.7). Thus, for a
coherent subsheaf F of E/E,, if (F) = w(E;,,/E,), r(F) = r(E,,/E,) and if
(E/E)|F is torsion free, then F = E,,,/E,.

§2. Construction of a subsheaf

In this section, k is assumed to be algebraically closed and the
couple (X, 0,4(1)) is the same as in the preceding section. For a vector
subspace V of H(X, 0,(1)), let L be the linear subsystem of the complete
linear system |0;(1)] defined by V. Assume that L is very ample. Set
P = P(VV) and G = Grass, (VV), the Grassmann variety of 2-dimensional
vector subspaces of V, where VV is the dual vector space of V. P para-
metrizes all the divisors in L and a non-empty open subset G, of G does
all the subschemes of codimension 2 in X which are complete intersections
of two members of L. Let T C P X, G be the flag variety which defines
the incidence correspondence between P and G. Set T, =T X, G, and
let =, (or, m,) be the projection of T, to P (or, T, to G, resp.). On T,
there is an effective Cartier divisor X of X X, 7, such that for a point
te T, X, is the divisor in L ®, k(t) corresponding to =,(t) e P. Moreover,
we are able to construct an effective Cartier divisor ¥ of X such that
for a point te T), Y, is the subscheme of X ®, k() defined by the point
7(t) e G,. Note that both X and ¥ are flat over 7.

(2.1)

Now, for a point u of G, n;* () = Pi,, and =, induces a linear
embedding of Pj., to P. The subscheme of X corresponding to u is the
base locus of the linear pencil in L ®, k(w) defined by z,(Pi.,). From
this view point, G, can be regarded as a parametrizing space of linear
pencils in L which have base loci of codimension 2.

U, denotes the maximal open set of T, over which both X and Y are
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smooth. Then U, is a non-empty open set of 7. Let E be a coherent
torsion free sheaf on X and E = p¥(E). Shrinking U, if necessary, we
may assume that E is flat over U, and for every geometric point ¢ of U,
E ® k() is torsion free (see [8] Proposition 2.1 and [9] Lemma 1.6). Let
v be the generic point of U, and F = E® k(u). Take the Harder-
Narasimhan filtration of F

0=FKCF<--CF =F.

By Proposition 1.5, the above filtration is defined over k(w). Thus the
quotient coherent sheaf F/F; of F defines a morphism s, of Spec (k(w)) to
Q, where @ is the Quot-scheme of E~/)~(U,,/ U,. Since U, is an integral
scheme, there are a non-empty open set U, of U, and a morphism s of
U, to @ with ns = id,, and s ® k(u) = s,, where = is the structure mor-

phism of @ as a Uyscheme. Let E, &E{—)O be the pull-back of
the universal quotient sheaf on X, by s. Applying the above argument
to E{ and F,/F,, we obtain a non-empty open set U, in U, and a surjective

homomorphism (ET’{)U2 ~f2—> E! of U,flat coherent sheaves on X’m such that

¢, ® k(u) is the quotient homomorphism F/F, — F|F,. Repeating these
procedures, we have a non-empty open set U, of U, and surjective
homomorphisms ¢,: E > E,,, (0<i<a—1) of U-flat, coherent sheaves
on X’Z,n such that E; = E, and ¢, ® k(u) is the quotient homomorphism
F|F, — F|F,,,. Set E, = ker (¢, --4,) and E, = 0, then each E, is U,flat
and E, ® k(u) = F,. In this situation, we obtain a non-empty open subset
U’ of U, such that for all points ¢ of U’, evey (Ei/Ei_l) & k(t) is p-semi-
stable ([8] Theorem 2.8). Clearly, for all points ¢ of U’, ;z((E'i/E'i_l) & k(1))
= p(F,/F;_;) and hence,

0=EQk)CEQk)C - CSE QK2 =E®Q k()

is the Harder-Narasimhan filtration of E & k(z).

For the generic point u of U’, F}|s, is a torsion free sheaf ([9] Lemma
1.6), whence F;|y, is a subsheaf of F|p,. Thus there exists a non-empty
open subset U of U’ such that each j*((E,),) = dJ, is a subsheaf of J =
J*((E.),) and that each J/J, is U-flat for 0 < i < «, where j: Y, — X, is
the closed immersion. Then we can find an open subset W, of U, which
may be empty, such that W, = {te U|(J,/J;_) ® k() are p-semi-stable,
1<i<al. Since

T, ® k() = w(ELJE;-,) ® k()
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for all points ¢ of W,
0=J,Qkt) S, Q) S -+ & J, ®k(t) = Els,

is the Harder-Narasimhan filtration of E|s,.
On the other hand, by the same procedure as the construction of
{E} we obtain a filtration 0 = H, ST H, S --- C H s = J, w on a non-empty
open set W of U such that each Hﬂ/Ht is W-flat and that for every point
t of W,

0=HQk) S HRKLC - < H,Qk(t) = El,

is the Harder-Narasimhan filtration of E|s,. Set 4, = min {¢|(J,)y — Jw/H,
is zero on the generic fibre of ¥}. Then there is a non-empty open set
W/ of W such that (Ji)W is contained in (H tJw,. We let C;=Supp (coker ((Ji)W
- (HH)W ). Since q(Ci) is a closed set in W, W, = W/ — q(C,) is an open
subset of T,. On W, J, coincides with Hh Furthermore, W, is non-
empty if and only if, for the generic point u of T, J, ® k(u) = F,lz, is a
filter of the Harder-Narasimhan filtration of E|,.

Summerizing the above results, we have

LemMA 2.2. Let E be a torsion free coherent sheaf on X.

1) There exists a non-empty open set U of T, (see diagram (2.1)) such
that E = p*(E)y has a filtration ©:0=E C E C --- S E, = E with the
following properties (a), (b), (¢c) and (d);

(a) X’U and Y, is smooth over U,

(b) every EJE, is flat over U 1 < i < a),

(c) for every point t of U,

ORK(t):0=FE QK CEQkYC - CE QKL = Els,

is the Harder-Narasimhan filtration of E lg,,

(d) for the closed immersion j: Y, — Xy, each J, = j *(E,) is a subsheaf
of J = j*(E) and each J|J, is flat over U (1 < i < a).

2) There exists an open set W, of U such that for every point t of
W,, the filtration @|s, has the following property (e,) and that W, is non-
empty if and only if @y, has the property (e,) when t is the generic point
of U;

(e) @ly, is the Harder-Narasimhan filtration of J ® k(2).

3) There exists an open set W, (1 < i< &) of U such that for every
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point t of W,, J; ® k(t) has the following property (e;) and that W, is non-
empty if and only if J,® k(t) has the property (e;) when t is the generic
point of U,

(e) J:® k() is a filter of the Harder-Narasimhan filtration of J ® k(2).

Remark 2.3. 1) Let f: X— S be a smooth, projective, geometrically
integral morphism of noetherian schemes, 0;(1) an f-very ample invertible
sheaf on X and E a coherent sheaf on X. Assume that S is irreducible
and reduced. Let F, and F, be coherent subsheaves of E with the fol-
lowing properties;

(@) E|F, and E|F, are flat over S,

(b) r(F) = ry),

(c) for the generic point s of S, E® k(s) is torsion free and both
F, @ k(s) and F,® k(s) are filters of the Harder-Narasimhan filtration of
E® k(s). Then F, = F,.

2) By virtue of 1), the filter @ in 1) of Lemma 2.2 is unique.

Proof of 1). Let @ be the Quot-scheme of E/X/S. By (a), E/F;
defines a section g; of S to @. By virtue of (b), (c) and the uniqueness
of the Harder-Narasimhan filtration, g,,, = &,, as morphisms of Spec (k(s))
to @,. Since @ is separated over S and since S is irreducible and reduced,
g = & q.e.d.

As an application of the above, we have the following which plays
a key role in the sequal.

ProrositioN 2.4. Let E be a torsion free, coherent sheaf on X and
let L be a very ample linear subsystem of |0x(1)|. Assume that dim X > 3
and W, for E in Lemma 2.2 is not empty for some 0 < i < «a. Then there
is a coherent subsheaf E, of E such that pw(E;) = p(Ei ® k() and r(E,) =
r(E, ® k() for a point t of W,

Proof. Since n,: T, — G, is flat, n,(W,) is a non-empty open set of G,.
Pick a k-rational point v of n,(W,). Since the base locus Y of the linear
pencil z7'(v) is smooth and since L is very ample, we see that for every
te z;7'(v), the singular locus of X, is at most a finite set of points. This
and the assumption that dim X > 3 imply that for every te z;y(v), X, is
reduced and irreducible. Moreover, f: Z = X X g, w3 (V) — X is the blow-
ing-up of X with center Y, D = Y X, n;'(v) is the exceptional divisor of
fand D= Y X, n;'(v).
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For each point ¢ of P}, Z, = g7'(t) is the member of the linear pencil
77 (v) corresponding to ¢ and A '(f) = D, = Y as subschemes of Z, C X.
Set V= W, N z;%(v). Then E,=E ®op, Or and 177“, =E, ®,y, Ov are flat over
V and this is a subsheaf of that because of the property (b) of Lemma
2.2. Let B be the subsheaf of torsions of f*(E) and let E’ = f*(E)/B.
Then E’ is g-flat and clearly E; = E, Ttis easy to construct a coherent
subsheaf E; of E’ such that F' = E’|E] is g-flat and Fj = E’V/E’i,,, as
quotient sheaves of E;. Note that f¥(E|;) = E’|p.

Pick a point ¢ of P{ — V and let N be the torsion part of F; F’' ® k()
(note that Z, is a projective variety with at most a finite number of
singular points). Suppose that codim (Supp (N),Z,) = 1, then »(IN(m)) =
am™'/(n — 1)! 4+ terms of degree < n — 1 with a some positive integer,
where dim X = n + 1. For F, = F' Q k(t,), t,¢ V,

W F{(m)) = x(Fy(m)) = r(Fo)dm™[n! + (d(F5) + r(F)e/2)m* " [(n — 1)!
+ terms of degree <n — 1,

where « is the degree of a canonical divisor of Z, and d is the degree
of X with respect to 0;(1). Thus, for F’ = F]|N,

y(F'(m)) = r(F)dm"/n! + (A(F)) — a + r(F)e/2)m™/(n — 1)!
+ terms of degree <n — 1.

Let us consider the sheaf H = F’|,,. Since F’ is torsion free, we obtain
the following exact sequence;

0— F(-1)—>F —> H—>0.
Thus we have

2(H(m)) = y(F'(m)) — y(F'(m — 1)) = r(H)dm"'[(n — D! + (d(F) — a
+ r(H)'[2m" *[(n — 2)! 4 terms of degree n — 2
and r(H) = r(Fy),

where £’ is the degree of a canonical divisor of D, = Y. Therefore,
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w(H) = (d(F7) — a)[r(H) < d(Fo)[r(F)) = w(Fy) .

On the other hand, E’|p, = j#(E|y) and H is a quotient sheaf of E’|,, with
r(H) = r(F;) = r(F;|p,), where j, is the isomorphism of D, to Y. These
and Theorem 2 of [12] implies that u(H) > u(Filp,) = w(Fy). This is a
contradiction, whence codim (Supp (IV), Z,) > 2. Therefore, if C is the set
of pinch points of F”, i.e., the set of points at which F’ is not locally
free, then

(2.4.1) codim (C,,Z,) > 2 and hence, C, 7 D, for all te P}

Let0=H,C H, < --- & Hy = E|, be the Harder-Narasimhan filtration
of E|, and let H, = f#(H,). Let K be the torsion part of F’|, and let I be
(F'|p)/K. Then, we see that Supp(K) C CN D, I is flat over P; and
I, = F’|p,. Moreover, I coincides with (E’ [D)/ﬁ, for an ¢ by virtue of the
property (e;) for W, and Remark 2.3, (1). Thus C, N D, is j;*(4) if te V,
where A is the set of pinch points of H, From this we infer that
f(CND)y=AU (Uierpi-rj(C. N D). Since P; — V is a finite set, (2.4.1)
shows that f,(C N D) = Y. We have therefore

(24.2) On D — (C N D), F'|, is isomorphic to fF((E|y)/H,) as quotient
sheaf of E’|, and f,(C N D) = Y.

By replacing E by E(m), m > 0, we may assume that E is generated
by its global sections:

i 0%% —> E——>0.

Pulling back 4 to Z and composing it with the homomorphism f*(E) — E’,
we have surjective homomorphisms 7, and z,;

71 Ty
oY — E' —» F'.

Let C’ be the set of pinch points of E. Then, for general points ¢ of
P, codim (f"'(CYN Z,,Z)> 2 and codim (C' N Y,Y) > 2. Set Z, = Z —
YU ), X,=X~—-f(C)U C’" and f, = flz,. The restrictions of r,
and 7, to Z, define a morphism wv:Z, — Flag (M, r(E’), r(F’)); the flag
variety of pairs of quotient vector spaces (V, V,) of an M-dimensional
vector space such that dim V, = r(E’), dim V, = r(F’) and V, is a quotient
vector space of V.. By (2.4.2), f¥(E|y)/H,) = F’|, on Z, N D as quotient
bundles of E’|;,,, and hence, v(f™'(y)) is one point for all ye Y N X,.
Thus v factors through X, that is, v = v/f, for a v': X,— Flag (M, r(E’), r(F")).
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This means that there are locally free quotient coherent sheaves 7,: 0%¥
— E, and 7,:E,— F, such that ff(E,) = E'|;, = [F(E|x), fF(F) = F'|z,
fif(p) = =, and f¥(y,) = 7,. Since E, = fufF(E) = fufF(Elx,) = Elx,, 7. induces
a surjective homomorphism of E|z, to F,. Then we can extend this to a
surjective

(:E—-F with F torsion free .

Set E, = ker ({), then E; meets our requirement. In fact, for general
te P, identify Z, by f(Z)). Flixonzy = Folixenzy = F'lz,, and from (2.4.1)
and (2.4.2) we can deduce codim (Z, — X, N Z,, Z,) > 2. Hence d(F'|;,) =
d(F'\z) and r(F|z) = r(F’|z,), which imply that d(Eith) = d(E,|z,) and
rE)z) = r(li)i lz). Therefore, W(E) = w(E|;) = w(E, ® k() and r(E) =
r(E:lz) = r(E; @ k(). q.e.d.

§3. Boundedness of semi-stable sheaves of rank 2

In this section, we shall prove the boundedness of p-semi-stable
sheaves of rank 2. In the first place, let us show the following interest-
ing result which can be derived from Proposition 2.4 directly.

THEOREM 3.1. Let X be a non-singular projective variety over an
algebraically closed field k and 0x(1) a very ample invertible sheaf on X.
Let E be a torsion free coherent sheaf on X and L a very ample linear
subsystem of |0x(1)|. Assume that dim X > 2, r(E) < dim X and that E is
p-semi-stable with respect to Ox(1). Then, for general members Y of L,
E|, is p-semi-stable with respect to 0y(1) = Ox(1)|y.

Proof. We shall prove our assertion by induction on r(E). If r(E)
= 1, then it is enough to show that E|, is torsion free and it follows
from Lemma 1.6 of [9]. Assume that r(E) > 1. Take the open set U of
T, and the filtration

0:0=EcEc..-CE =E

of Lemma 2.2. Pick a k-rational point ¢ in U. Elg, is not p-semi-stable
if and only if @« > 1. 77 (f) N U is regarded as an open set of the linear
system Trg, (). Now, assume that E|z, is not p-semi-stable. Then,
r(B,JE,.) ® k() < r(E) < dim X,. Thus, by our induction hypothesis,
for general members D of Try, (L), every (Ei/E;_,) ® k(t)|, is p-semi-stable.
We may assume, therefore, that our filtration @ of E and open set U
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have the property (e,) of Lemma 2.2. Since dim X > r(E) > 2, the above
and Proposition 2.4 provide us with a coherent subsheaf E, of E with
(E) > (E). This contradicts the assumption that E is p-semi-stable.
Hence, E|z, is p-semi-stable. g.e.d.

Before showing the main result in this section, let us observe our
problem from general view point and make it clear. Let f: X— S be a
smooth, projective, geometrically integral morphism of noetherian schemes
over a ring 4 and let 04(1) be an f-very ample invertible sheaf on X.
Assume that the dimensions of fibres of f are constant n. For a coherent
sheaf £ on a fibre X, of X over S, we can write

(32) 2Bm) = 3 a®(™ T )
with some integers a,(E), - - -, a,(FE), where E(m) = E @, Ox(m).
For an integer r and a sequence of integers (a,, - - -, a,), Xxs(n,r, a,
-+, a,) is the family of the classes of coherent sheaves on the fibres of
X over S such that E on a fibre X, is contained in %, n,r a, ---,a,)

if and only if it has the following two properties:

(8.3.1) E is p-semi-stable with respect to 0y (1) = 0,(1) ®,, k(s).
8.3.2) a((E)=rd, a(E) = a, and a (E) > a, for 2 < i< n, where d
is the degree of X, with respect to 0 (1).

The property (3.3.2) implies that, for Ee 2y (n,r, a, ---,a,), r(E) =
r and the degree of E is constant on each connected component of S.

For integers r, a, and a,, X%,s(n, 1, a;, @,) is the family of the classes
of coherent sheaves on the fibres of X over S such that E on a fibre X,
is contained in X%.(n,r, a, ;) if and only if E has the property (3.3.1)
and the following two properties:

(3.3.3) E satisfies Serre’s condition (S;) (EGA Ch. 1V, 5.7.2).

8.3.4) a(E) = rd, a,(E) = a, and a,(F) > a,, where d is the same as
in (3.3.2).

Finally let us introduce another family. For a numerical polynomial
h(m) of degree n, 3% s(n, r, h(m)) is the family of the classes of coherent
sheaves on the fibres of X over S such that E is a member of
3%,n, r, l(m)) if and only if E has the property (3.3.1) and the following
property:
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3.3.5) r(E)=r and yx(E@m)) = h(m).
Let us consider the following statements:

(84.1) B, ,(A):Xys(n, 1 ay---,a,) is bounded for all f: X — S, 0,(1)
and (a,, ---, a,) whenever n, r and 4 are fixed.

(8.4.2) B, (A):2%,in,r,a,a,) is bounded for all f: X — S, 0,(1) and
(a,, @) whenever n, r and 4 are fixed.

(3.4.3) B (A):2%,(n,r, h(m)) is bounded for all f: X — S, 0x(1) and
h(m) whenever n, r and A are fixed.

LEmmA 3.5. (1) B, (4) implies By ,(A).
(2) B,,(4) implies By ,(4).

Proof. (1) is trivial. Take a coherent sheaf E on X, which is con-
tained in 3%,s(n, r, h(m)). We have only to show that E is a (b)-sheaf
for a sequence (b) = (b, - -+, b,) of integers which depends only on the
family 3%,s(n, r, h(m)) (see [6] Théoréme 1.13). Let Y be the set of pinch
points of E and i: X — Y — X the natural immersion. Then i, i*(E) = E’
is torsion free and coherent because E is a subsheaf of a coherent,
locally free sheaf F and hence E’ is a quasi-coherent subsheaf of i,i*(F)
= F. Moreover, E’ satisfies the condition (S;) because codim (Y, X) > 2
(EGA Ch. 1V, 5.10.5). Consider the exact sequence

00— E—E —>T—0.

Since codim (Supp (T), X) > 2, y(T(m)) = cm™* + terms of degree <n — 2,
¢ > 0. Therefore, E’ is a member of 2%,(n,r, a, a,), where
h(m):rd<m+ n)+ﬁai(m+n,—i).
n =1 n—1i
B, .(4) implies that there exists a sequence (b) = (b,, - - -, b,) of integers
such that every member of X% (n, r, a,, a,) is a (b)-sheaf. Since for gen-

eral members s;, ---,s, of H(X,,0x,1)), Ely, is a subsheaf of E’|,, E is
also a (b)-sheaf, where Y, is the zero scheme of s, ---,s,. q.e.d.

Let p be the natural morphism of D = Divy,s to P = Picy,s and Y
the universal family on X XsD. 04(1) defines a section ¢q: S— P and
(D X 8,Y X»8) parametrizes all the members of |0x,(1)], s€S. Let S’
be the maximal open set of D X, S over which ¥ X, S is smooth and
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set X’ = (¥ X, 8S)|¢. Thus we obtain a smooth, projective, geometrically
integral morphism f’: X’ — S’ of 4-schemes which parametrizes all the
smooth members of |0, (1)], s€ S

X s Xx.8 55X

f’l lf
S’ > S
and 0;.(1) = j*z*(04(1)) is very ample over S’.

PropPoSITION 3.6. Let & (or, ') be a subfamily of 2y,s(n,r,a, ---,a,)
(or, 2% ,s(n, r, a, a,), resp.). Assume that if E is a coherent sheaf on X,
contained in & (or, '), then for general members Y of |0,(1)|, Ely is p-
semi-stable. If B,_, (A) (or, B,_, (A1), resp.) is true, then F (or, F', resp.)
is bounded.

Proof. Let Ec % (or, #’) and ¢ a general element of H(X,, 0,(1)).
We have the exact sequence

3.6.1) 0—> E(—1) E—> E|, >0,
where Y is the zero scheme of o.

Lemma 3.7. (1) If E satisfies (S,), then H'(X,, E(— £))=0=H'(X,, E(— %))
for sufficiently large 4.

(2) If o is sufficiently general and if E satisfies (S,), then E|, satisfies
(S, too.

Proof. There exists a resolution of E by locally free, coherent sheaves

fn~2 .f’ll—3 fl fO

0—E, ,—EFE,, E, E—>0

and E satisfies (S,) if and only if for the set of pinch points Y, of ker (f,),
dimY, < n —i— 4 (cf. [8] Proof of Lemma 2.2).

(1) This is well-known (see [11]). We shall give a proof for com-
pleteness. Since every E, is locally free and coherent, there is an integer
4, such that for all £ > ¢,, H(X,E(—¥£) =0, 0<j<m, 0<i<n—2
Set ker (f;) = K,. Then by induction on i and the exact sequences

- 0——>K,—>E,—> K, ,—>0,

we have H/(X,, K(—4¢)) =0for 0<j<i+ 2 and ¢ > 4, Thus, from the
exact sequence
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00— K, E—E—0

we have H'(X,, E(—¢)) = 0 = H'(X,, E(—¢)) for all ¢ > 4,.
(2) If ¢ is sufficiently general, then

0 >E, .|y > B, sy > > By > Ely —> 0

is exact and dim(Y; N Y) < n — i — 5. Since the set of pinch points of
ker (f;ly) is Y N Y,, we see that for the above Y, E|, satisfies (S,). q.e.d.

Now let us come back to the proof of Proposition 3.6. The exact
sequence (3.6.1) implies that y((E|,)(m)) = 4y(E (m)) = y(E(m)) — y(E(m—1)).
This and the above lemma show that if E|, is p-semi-stable, then E|, ¢
e n—1,ra,- - -,a,.,) or 24%,e(n — 1,1, a,a,) according as Ec F or
Ec #’. Replacing & (or, #') by F(m)={Em)|Ec F} (or, F'(m) =
{E(m)|Eec %'}, resp.), m > 0, we may assume that (i) HY(Y,(E;)¥) =0
foralli > 0,all 4 > Oand all Ec % (or, Ec &/, resp.), (ii) dim H*(Y, (E|;)(£))
< ¢, dim H(Y, (E|,)(¢)) < ¢, for all Ec & (or, Ec %/, resp.) and all £, (iii)
Hay(Em)|Eec F (or, Eec %/, resp.)} < co and (iv) there is a sequence
(b) = (b, ---, b,) of integers such that E|, is (b)-sheaf for all Ec # (or,
Ee &', resp.) (see [6] Definition 1.5) because B,_, (4) (or, B,_, (1), resp.)
is true. Moreover, in the case of #’, we may assume that (v) there is
an integer ¢, such that HY, (E|,)(—¢)) = 0 = H\(Y, (E|;)(—¥£)) for all
4> 14, and all Ec %#’. The exact sequence (3.6.1) and (i) yield that
H{(X,, E) = H(X,, E(¥)) for all i > 2 and ¢ > 0, whence HYX,, E) = 0 for
all i > 2. Therefore,

(3.6.2) dim H'(X,, E) — dim H(X,, E)=y(E)=rd + a, + &y + - - - + d,,,

where y(E(m)) = rd(m + n) + a1<m +n= 1) -+ i} di(m +n - i).

n n—1 i=2 n—1i
On the other hand, dim H(X,, E(¢))—dim H(X,, E(¢—1))<dim H(Y, (E|)(£))
< ¢, and since E is p-semi-stable, H'(X,, E(4)) = 0 if d(E(4), 0,,1)) <O.
Thus, dim HA*X,,E) < ¢, +c¢_;+ --+ + c_, = b,, where « is independent
of the choice of E. Combining this with (3.6.2), we have

(3.6.3) by > dimH(X,,E)>rd + a,+ dy + -+ + d,.

By virtue of (iii) above, d,, ---,d,_, range over a finite set and hence, d,
is bounded from above. In the case of %, d, is bounded because d, > a,.
Thus ${y(E(m))|Ee #} < oo. Assume that E is contained in #’. The
exact sequence (3.6.1) shows that dim H'(X,, E(4)) — dim H\(X,, E(¢ — 1))
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< dim H(Y, (E|p)(¥)) < ¢;. (v) implies that, for 4> ¢, and all Ee %,
H\(X,, E(—?¢)) = H(X,, E(—¥¢,). By virtue of this and Lemma 3.7, we
have that H(X,, E(—¥4)) = 0 for all £ > ¢, and all Ec &#’. Therefore,

0 < dlmHl(XsyE) < C(,) + cl_l + e Ci_go = C.
This and (3.6.2) imply that
—c<rd+a+d+ - +d,.

Since d,, ---,d,_, range over a finite set, d, is bounded from below.
Thus, d, is bounded in the case of %', too. Hence #{y(E(m))|Ee F'}
< . On the other hand, (iv) and (3.6.3) show that Ee % (or, Ec %)
is (b, b,, - - -, b,)-sheaf. Then, the boundedness of &# or &’ follows from
Théoreme 1.13 of [6]. q.e.d.

Using the above proposition, we have

ProrosiTion 3.8. B, (4) and B, (1) hold for all n and A and hence,
B.(A) is true for all n and A.

Proof. Xy(1,1,a,) = 2%,(1,1, a,, a,) is the family of the classes of
invertible sheaves on curves with fixed degree. Then, its boundedness is
well-known. Pick an L in 2,n,1,a,---,a,) or X4n,1,a,a). For
general Y of |0x(1)|, Ly is torsion free or equivalently y-semi-stable.
Using induction on n, our assertion follows from Proposition 3.6. q.e.d.

Remark 3.9. Proposition 3.8 is a special case of Théoréme 3.13 of [6].

We have proved the boundedness of the family of semi-stable sheaves
with fixed Chern classes on a surface ([7] Theorem 2.5 and Corollary
2.5.3). Using Proposition 3.8 instead of Step B in the proof of Theorem
2.5 of [7], the same method is applicable to proving that a similar asser-
tion to Theorem 2.5 of [7] holds for the families Xy/s(2, r, @i, ;). Then,
as the proofs Corollary 2.5.2 and Corollary 2.5.3 of [7], we can show
that B, ,(4) holds. In this case, B, ,(4) is stronger than B; (/).

TarorEM 3.10. B, ,(4) and B;,(4) hold and hence, B; . (/A) does for
all r and A.

This and Theorem 3.1 yield

TaEOREM 3.11. B, (1) and B, (A) hold and hence, B, (A) is true for
all n and A.
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Proof. The case of n =1 is well-known and the case of n = 2 is a
special case of Theorem 3.10. Assume n > 3 and take a p-semi-stable
sheaf E of rank 2 on a fibre X,. By virtue of Theorem 3.1, for general
member Y of |0y ,(1)], E|; is p-semi-stable. Thus, applying Proposition 3.6
to F =23ygs0n, 20, ,a,) and F' = 3%n,2 a,0a), we see that
Sxs(n, 2,0, -+ -, a,) and X%,5(n, 2, a;, a;) are bounded. q.ed.

§4. A technique of Barth®

Let X be a non-singular projective surface over an algebraically
closed field %, 05x(1) a very ample invertible sheaf on X and L a very
ample linear subsystem of the complete linear system |0x(1)|. As in the
first paragraph of § 2, we have the following diagram:

xE2 X

y

Py = P(VY)

where V is the linear subspace of H(X, 0,(1)) defining L and ¢: X — PY
parametrizes all the divisors of L. Note that p is a PY *-bundle and
hence, X is smooth.

Let E be a locally free, coherent sheaf on X of rank r. Assume the
following:

(4.1.1) E is p-semi-stable with respect to 0,(1).

(4.1.2) For the generic point u of PY,p*(E)® k(u) = E contains
subbundle F of rank r — 1 such that u(F) > u(E).

As in the proof of Lemma 2.2, there is a non-empty open set U of
PY and a coherent subsheaf F, of p*(E), such that F ®ku) =F and
p"‘(E)U/ﬁ'0 is U-flat. Then, on a non-empty open set W of U, (F,), is a
subbundle of p*(E),. Furthermore, there is a coherent subsheaf F of
p*(E) = E such that F,=F, and E~/F~ is torsion free.

P(FV)|y, is a projective subbundle of P(EV)|y,. Let I' be the closure
of P(FV)|y, in P(EV). If I' is regarded as a subscheme of P(EV) with
reduced structure, then it is a divisor of P(EY). Since P(EV) = P(EV) X y X,
we have the following commutative diagram;

*# The argument of this section is a modification of some parts of §4 and §5 of [2].
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P(EY) <2 P(EY) =P(EV)Y X XOT

zl lﬁ

x £ %X Lopr

Lemma 4.2. g(I") = P(EV).

Proof. Assume that g(I") = P(EV), then g(I") is an irreducible divisor
of P(EV) because I' is a projective subbundle of P(EV) at general points
of X and a divisor of P(EV). Moreover, for a general point x of X, g,
is a hyperplane of P(EV), = P™'. Thus, g(I") is a projective subbundle
of P(EV) outside a finite set of points {x,, ---, x,} of X. This means that
there is a quotient bundle G of EV|y, such that P(G) = g(I")s,, where
X =X—{x, -+, %} Therefore, P(G) XX = I vz, and hence,
@lz)¥(GV)y = F,. Let C be a smooth curve which passes through none
of x,, ---,x, and corresponds to a point v of W< PY. Then, C C p~ (X))
and u(F Q® k() = u(F) > w(E) = p(E). Let G’ be a coherent subsheaf of
E such that G’|y, = G¥. For this G, we have

UG) = (G'lo) = UGV]o) = w(F @ k(v)) = (F) > W(E),
which contradicts the assumption (4.1.1). q.e.d.
Now let us assume
(4.3) k is a field of characteristic zero.

Then, since I' is a variety and g is surjective, g|r is smooth on a non-
empty open set 4 of I',. Pick a k-rational point y of the open set q#(4)
such that C = X’V is smooth. C is regarded as a curve in X, too. I
cuts out a projective subbundle A = P(FY ® k(y)) on P(EV),. B = g(A)
is also a projective subbundle of P(EV), and g induces isomorphisms of
P(EV), to P(EV), and of A to B.

AcTl —X

ol

Bc P(EV) > X

From these we obtain the following commutative diagram of normal
bundles;
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NA/I" —> “*(NC/x)

dg’l l“*(dp)

Nypiry —> @*(Ngyx)

where « is the projection of A to C which is identified with the projec-
tion of B to C (note that I" is smooth along A). Since g’ is smooth on
4 and CN 4+ ¢, dg’ is generically surjective. It is easy to see that
Nys = V' ®,0, and Nyx = 0,1) = 0x(1)|,, where V’/ = im (f) defined by
the homomorphism
0: V— H'(X, 0;(1)) —> H(C, 0,1)) .
Moreover, the map dp is identified with the natural homomorphism
V' ®; Og —> H(C, 0,(1)) ®; 0o —> 0,(1) .

Thus, we obtain the following exact commutative diagram

dp
Nyg —> Nojx

0— H,—> V&, 0,—> 0,1) —> 0

where H, is a locally free sheaf of rank N — 1 which is uniquely deter-
mined by C. On the other hand, the following exact commutative diagram
is obtained;

0 > NB/P(EV)C ? NB/P(EV) ’ NP(EV)C/P(EV)‘B >0

|
| a*(Ng/x)
l
0—> (@R M|y —> Nypzv) —> a*(0(1)) —>0
where @ = E|,/F ® k(y) and M is the tautological line bundle of EY|; on
P(EV);,. The above three diagrams provide us with following exact com-
mutative diagram;

*(d
*(Noyz) =T 44N yyw) —> 0

lz

0—> a*(H;) —> Nyr —> a*(0,(1))—> 0

| dg'
" gl
00— a*( Q) M|—> Nyipigry —> a*(0(1)) —> 0
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Since dg’ is generically surjective, so is y. We have, therefore,
(4.4) 07 e Hom,, (¢*(Hy), a*(Q) ® M|;) = Hom,, (H,, @ ® (F® k(y))").

LEMMA 4.5. Every non-trivial coherent subsheaf G of H, has a negative
degree.

Proof. If N= 2, then H, = 0,—1). Our assertion is obvious in this
case. Assume that N > 2. We may assume that G is a subbundle of H,.
Since H, is a subbundle of 0%", so is G. Therefore, deg G = deg (det G)
< 0. If deg G = 0, then GV is a quotient sheaf of ¢0%" whose degree is
zero. Thus GY = 0%, that is, G = 0%. This implies that dim H°(C, H,)
> dim H%C, G) = s > 0. On the other hand, we have the exact sequence

0—> HY(C, Hy) —> HY(C, 0%) —2> HY(C, 04(1))

and by the definition of H,, J is injective. Hence H*(C, H;) = 0. This
is a contradiction. Therefore, deg G < 0. q.e.d.

Let E be a coherent torsion free sheaf on a non-singular projective
surface X with very ample invertible sheaf 0,(1). E is a subsheaf of a
locally free sheaf E’ with dim (Supp (E’/E)) < 0. Such an E’ is unique
up to isomorphisms. Assume that r(E) = 2. For a non-singular curve
Cin L, set

d(E, C) = min {deg ((E’|,)/D) ® DV) = deg E — 2deg D| D: line subbundle
of E’|;} and

d(E) = max {d(E, C)|C: non-singular curve in L} .

Then, there exists a non-empty open set U of L such that d(E) = d(E, C)
for all C in U.

THEOREM 4.6. Let X be a non-singular projective surface over an
algebraically closed field k of characteristic zero, O.(1) a very ample
invertible sheaf on X and L a very ample linear subsystem of |04(1)|.

(1) Let E be a coherent sheaf of rank 2 on X. Assume that E is p-
semi-stable with respect to Ox(1).

(a) If X = P® and 0,(1) is the line bundle corresponding to lines of
P?, then d(E) > —1.

(b) Otherwise, d(E) > —C* for a Ce L.

(2) Let E be a coherent sheaf on X having the properties (4.1.1) and
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(4.1.2). Then, (E/F)® FV contains a non-zero subbundle M with deg M
> —C* for a CeL and r(M) < N — 1 or with degM > —C® and r(M) =
N -1,

Proof. Replacing E by E’ defined just before this theorem, we may
assume that E is locally free.

(1) If, for every general member C of L, E|, is p-semi-stable, then
our assertion is trivial. Otherwise, for the generic member D of L, we
have the Harder-Narasimhan filtration 0 £ F € E|, of E|,. For this F,
we have the property (4.1.2). If C is general, E|, has the Harder-
Narasimhan filtration 0 C F & E|,. Moreover, when C is sufficiently
general, Hom,, (H,, det (E|;) ® F®?) =0 by (4.4). If N =2, then H, =
0,—1), whence degE — 2deg F > —C*. This case can happen only
when X = P? and 04(1) is the invertible sheaf corresponding to lines of
P:, Assume that N > 2. By Lemma 4.5, every quotient coherent sheaf
of H; has a degree >—C? Therefore, deg £ — 2deg F' > —C% If C is
sufficiently general, d(E) = deg E — 2deg F' because F is a filter of the
Harder-Narasimhan filtration of E|,. Thus our proof is completed.

(2) A similar argument to the above is applicable to this case.
Hence, we omit the proof.

Remark 4.7. Theorem 4.6 is false unless we assume that the charac-
teristic of k& is zero. For example, on P?, T'%" is pu-semi-stable and T'%"|,
= 0(p") @ 0,2p") for every line £ of P?, where T%" is the pull-back of
the tangent bundle T'p. of P? by r-th Frobenius morphism.

ExampLE 4.8. (1) Let us consider the case where X = P? 0,(1) =
0p:(2). For general member C of |0,(1)|, we have the exact sequence
defining H,

0—>H,—> V' ®, 0, —> 0,1) —> 0 .

In this case, H'({) is bijective and HY(C, V' ®, 0, = 0. Thus H*(C, H,)
= 0= H'C,H;). For a quotient line bundle L of H,, H'(C, L) = 0 because
HYC,H;) = 0. Thus degL > —1. Therefore, d(E) > —1 for every p-
semi-stable sheaf E of rank 2 on P* (see the proof of Theorem 4.6). On
the other hand, d(E, 0,(1)) is even and every smooth member of |0,(1)| is
isomorphic to P'. Thus we see that d(E) = 0 (cf. [2] p. 137).

(2) Let us consider the case of rank 3 on (P% 0p(1)). Take a p-
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semi-stable sheaf E of rank 3 on P* and a general line C=P'. E|; is
isomorphic to Op.(a,) @ Op(a,) ® Opla,) with a;, > a, > a,.

(1) If a, > a,, then we see that Op.(a;, — a,) @ Op.(a, — a,) contains a
line subbundle of degree >-—1 by Theorem 4.6, (2). Thus ¢, — a, > —1.

(i) If a, > a,, then we see a, — @, > —1 by applying Theorem 4.6,
(2) to the dual sheaf EV of E.

After twisting suitably, we may assume that d = d(E, 0p.(1)) =0, 1
or 2. By (i) and (ii) above, we have

(a) if d = 0, then (a, a;, a;) = (1,0, —1) or (0,0, 0),

(b) if d =1, then (a, a, a;) = (1,0, 0),

(¢) if d = 2, then ((a, a,,a;) = (1,1, 0).
Can all the cases happen?

§5. Boundedness of semi-stable sheaves of rank 3 and 4

We shall begin with the following.

LemMmA 5.1, Assume that X%,s(n, r, a,, a,) is bounded (for the notation,
see §3). Let &F be the family of the classes of coherent sheaves on the
fibres of X over S such that E is a member of & if and only if r(E)=r,
a,(E) = a, and E is p-semi-stable. Then, {a,(E)|Eec %} is bounded from
above.

Proof. Assume that a coherent sheaf £ on a fibre X, is contained
in #. Let Y be the set of pinch points of E and let { the open immer-
sion of X — Y to X. Then, E' = i, i*(E) satisfies (S,), a(E) = a(E’), E’ is
p-semi-stable and a,(E’) > a,(E) (see the proof of Lemma 3.5). Thus we
may replace & by F' = {Ee & |E satisfies (S))}. If Ec #” is not contained
in Y, n,r, a,a,), then a, > a,(E). Since 2%(n,r, a, a) is bounded,
Hy(E(m))|Ee 2% s(n, r, a;, a,)} < oo, a fortiori, {a,(E)|E e 3% s(n, 1, a;, @)} is
bounded from above by an integer b. Therefore, {a.(E)|Ee %’} is
bounded from above by b. q.e.d.

Let X be a smooth, projective, integral scheme over an algebraically
closed field & of characteristic zero. L a very ample linear subsystem of
a complete linear system |04(1)] and E a torsion free coherent sheaf on
X. E|, is not p-semi-stable with respect to @,(1)|, for the generic mem-
ber D of L if and only if E|, is not p-semi-stable with respect to @,(1)
= (04(1)|; for every k-rational member Z of a non-empty open subset of
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L. Thus we may say that E|, is not p-semi-stable for every general
member Y of L.

LemmMmA 5.2. Under the above situation, assume that r(E) = dim X > 2,
E is p-semi-stable and E|, is not u-semi-stable with respect to 0,(1) for
every general member Z of L. Then, for general members Z of L, E|, has
the Harder-Narasimhan filtration

0=E0QE1QE2=EIZ

such that (1) r(E)=1 or r(E)—1 and (2) —d < r(E)d(E,01)) —
r(E)d(E,, 0x(1)) < 0, where d is the degree of X with respect to Ox(1).

Proof. We shall prove our assertion by induction on dim X. When
dim X = 2, our assertion follows directly from Theorem 4.6, (1). Assume
that dim X > 3. Take the open set U of T, and the filtration

0=EcEc. .. -CE=E

of Lemma 2.2. If r(E,/E, ) <dimX — 1 for every 1< i<, then for
general point u of U, 0 = E,|y, S E,ls, S -+ & Ea|7u =K |z, is the Harder-
Narasimhan filtration of E~|,-,u = E|p, by virtue of Theorem 3.1. Thus, E
has a coherent subsheaf E’ with w(E’) = w(E, ® k(w)) > wE ® k() = w(E)
by virtue of Proposition 2.4. This can not happen because E is p-semi-
stable. Therefore, we see that « = 2 and r(E) =1 or r(E) — 1. Assume
that r(&) = r(E) — 1. If for general Y,, E~1|yu is p-semi-stable, then we
see that E is not u-semi-stable by the similar argument to the above.
Fix a general member Z of L such that E|, has the Harder-Narasimhan
filtration

0=E0;E1QE2=E|Z

and for every general member Y of Tr, (L), E,|, is not p-semi-stable.
Applying the induction hypothesis to (&, Z, L’ = Tr,(L)), E,|; has the
Harder-Narasimhan filtration for general Y of L’

0=FCFCF,=E|

such that r(F,) = 1or r(E) — 2 and —d < r(F)d(E,, 0,(1)) — r(E)d(F,, 05x(1))
< 0. If W(F,/F) > (E,/E) for every general Z and Y, the open set W,
of Lemma 2.2 is not empty and hence, £ has a coherent subsheaf E’
with W(E') = W(E) > w(E|;)=p(E). This is not the case because E is pu-
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semi-stable. Thus w(F,/F,) < (E,/E,). Setting r = r(E), we have two
cases:

Case 1. r(F,) = r — 2; then we obtain
(r— 2)d(E) — (r — 1)d(F)) < —d and d(E) — d(F) < d(E) — d(E) .
Thus —d < (r — 2)d(E,) + (r — 1)d(E) — 2(r — 1)d(E,) = (r — 1)d(E) — rd(E,).
Case II. r(F,) =1, then we get
dE) — (r—1Dd(F,) < —d and d(E) — d(F) < (r— 2)d(E) — d(E) .
Hence we have
(r — Dd(E) — rd(E)) > —d[(r — 1) > —d

The inequality (r — 1)d(E) — rd(E,) < 0 follows from the fact that E, is
a filter of the Harder-Narasimhan filtration of E|,.

In the case of r(E,) = 1, we can prove our assertion similarly to the
above. q.e.d.

In the case of r(E) = dim X + 1, a similar result is obtained.

LemmA 5.3. Under the same situation as in Lemma 5.2, assume that
r(E£) —1=dim X > 2, E is p-semi-stable and that E|, is not y-semi-stable
with respect to 0,(1) for every general Z of L. Then, for general Z of L,
E |, has the Harder-Narasimhan filtration

0=ECECZ. ---CE =E|

such that (1) p(E) —d < pEJE_ )< pE)+d for 1<i<ea d=
d(05(1), 0x(1)) and (2) one of the following properties (i) and (ii) is enjoyed;
(i) a=3and(r(E), r(E,/E,), r(E/E,)) is a permutation of (1,1, r(E) — 2),
(i) =2 and (r(E),r(E/E)) is a permutation of (1,r(E)—1) or
@2, r(E) — 2).

Proof. If we would give a complete proof, we should exhaust many
cases. Thus we shall discuss only some typical cases. Our proof is by
induction on dim X. Assume that dim X = 2. Then r(£) = 3. By Lemma
2.2, we have only to show the lemma for the generic member Z of L.
Let us consider the case where E|, has the Harder-Narasimhan filtration

@:Oon;E1;E2QE3=E|Z-
Set (E,/E;_;) = d(E,/E,_,) = m,. Applying Theorem 4.6 to F = E,, we see
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that E/E, ® E\ contains a subbundle M with d(M) > —d. If r(M) =2,
then 2m, — m, — m, > —d and if r(M) = 1, then m; — m, > —d. Taking
the dual filtration @V of @

0V:0 S (E/E)Y < (Es/El)V CEY = Ev]z ’

we have that m, + m, — 2m, > —d or m; — m; > —d. Combining these
with m, 4+ m, + m, = 3u(E) and m, > m, > m,, the desired inequalities
wWE)y —d< UEJE,_) < (E) + d are obtained. The proof of the other
cases is similar to the above and easier.

Assume that dim X > 2. By the same argument as in the proof of
Lemma 5.2, for every general Z in L, E|, has the Harder-Narasimhan
filtration

V:0=ECEC---C K =E|

with either (i) or (ii). Let us consider the case where ¥ has the property
(i) and r(E,/E) = r(E) — 2= dim Z. By virtue of Lemma 5.2, for every
general Y of Tr, (L), F = (E,/E,) |, has the Harder-Narasimhan filtration

O0=F,CFCF,=F
with p(F) < p(F)) < p(F) + d and u(F) — d < p(F\[F;) < (F). Let
0=G <G < - <SG =E)|
be the Harder-Narasimhan filtration of E,|.
SuBLEmMA 5.4. w(G,/G,_,) > (FIF) > w(F) — d.

Proof. Let F| be the inverse image of F; to E,|,. Then, the filtration
0=E,), S E|, C F C E,, induces a filtration 0 S E, € F, = G = G,/G,_,.
Since all the E,|,, F{/(E,|y) = F, and (E,|y)/F; = F|F, are u-semi-stable, we
have that d(E) > r(E)uEly), d(F.E) > r(F/E)(F) and d(G/F)>
r(G/F)u(FIF). On the other hand, u(Eil) > u(F) > u(FIF), iFy) > u(F)
> W(F|F) and W(F|F) > p(F) — d. Thus d(G,/G;_) = r(G;/Gy_)u(FIF,) >
r(G4/G,_)((F) — d). q.e.d.

Now, if p(G,/Gs_y) > ((E[E,), then E,|, is a filter of the Harder-
Narasimhan filtration of E|,, whence W, in Lemma 2.2 is not empty.
Then, this contradicts the p-semi-stability of E by Proposition 2.4.
Therefore, p(F) — d < w(G,/G,_,) < (Ey[E;). By a similar argument we
see also that w(E,) < u(F) + d. From these, we can easily deduce the
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required inequalities w(E) — d < p(E,/E;_)) < (E) 4+ d. The other cases
of @ = 3 can be proved by the same way. When ¥ has the property (i),
a similar but easier argument is applicable by using Lemma 5.2 or our
induction hypothesis. q.e.d.

If E is a torsion free coherent sheaf on a non-singular variety, then
there is a torsion free coherent sheaf E’ containing E such that E’
satisfies (S;) and codim (Supp (E’/E)) > 2 (see the proof of Lemma 3.5).
Such an E’ is unique up to isomorphisms and, as a matter of fact, E' =
(EV)Y. E’ is written «(E). For a family &% of torsion free coherent
sheaves on non-singular varieties, ¢# denotes {¢(E)|E e F}.

LEmma 5.4. Let f: X — S be a smooth, projective, geometrically integral
morphism of noetherian schemes with dim X/S = n and let 05(1) be an
f-very ample invertible sheaf on X. Let #,%, and &%, be families of the
classes of coherent sheaves on the fibres of X over S. Assume the follow-
ing;

(1) every member of & is an extension of a member of ¥, by a
member of F,,

(2) every member of #, and &, is torsion free,

(8) every member of F satisfies the condition (S,),

(4) both F, and eF, are bounded,

B6) {a(E)|Ee Z,} is a bounded set.

Then, & is bounded.

Proof. Take a member E of #. Then we have an exact sequence

with E, ¢ #, and E,c &#,. Assume that E, E, and E, are on a fibre X..
There exists a sequence Y, ---, Y,_, of members of |0, (1)| such that for
every 0<i<n—2,2Z,=Y, ---Y,(Z = X,) has the following properties;
(a) Z, is smooth and dim Z, = n — i, (b) E|,, satisfies (S,), (¢) E\l;, Elz
and e(E,)|;, are torsion free, (d) the restriction of the exact sequence @
to Z, is also exact and (e) e(E,)|z, = e(E,|z,). Set F© = {E|,,|Ec F}, FP@
={E,|;|Ee #}, F{ = {E,|,|Ee F} and «(F,)? = {(E) || Ee F} = eFP.
We shall prove the boundedness of #® by descending induction on i.
Since &, and %, are bounded, so are F{® and &(%,). Thus #{y(F(m))|F
€ FP} < oo and #x(G(m))|G e (F,)®} < co. On the other hand, o(G)
= a(e(G)) and ¢o,(G) = a(e(G)). Moreover, aE,) = aXF,|;). Thus, in
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particular, {y(G(m))|Ge F{?} < o by the assumption (5). Since every
member of F{"® is a subsheaf of a member of the bounded family
e(F,)"?, the above result implies that F{? is bounded. Therefore,
F® ig bounded. Thus our assertion is proved for i = n — 2. Assume
that # is bounded for an i < n — 2. Replacing # by F(m) = {E(m)|E
€ F}, m>0, we may assume that (1) H(Z,(E|;,)¥) =0 for all j > 1,
£ >0and Ec %, (ii) dim H(Z, (E|;)¥) < ¢,, dim H'(Z,, (E|;)(¢)) < ¢, for
all Ee &, (1) #{3((Elz)m))|Ee F} < oo, (iv) there is a sequence of
integers (b) = (b, -- -, b,_,.,) such that E|;, is a (b)-sheaf for all Ec &
and (v) there is an integer ¢, such that H(Z,, (E|;)(—¢)) = H(Z,, (E|;)(—?))
=0 for all ¢ > 4, Since H(Z;_,, (E.|z,_)(¢)) S HZ;.,, («(E)|z, ,(£)) by (e),
&(E,)|z,_, is torsion free by (c) and (e) and since «(F,)*"¥ is bounded, we
see that there is an integer ¢, such that H%Z,.,, G(—¥¢)) = 0 for all ¢
>4, and Ge F§{ P, On the other hand, since F& v is bounded and
every member of & {*-? is torsion free, we may assume that H*(Z,_,, F(—4¥))
=0 for all Fe #{" and ¢ > ¢,. Therefore, H(Z,_,, (E|;,_)—¥£)) = 0 for
all Ee¢ & and ¢ > ¢4,. Thanks to this and (i)—(v) above, we can employ
the same argument as in the proof of Proposition 3.6 and know that
F Y is bounded. g.e.d.

Now, we are ready to prove the following.

Prorosrtion 5.6. (1) If B,_, (4) holds and if r < n — 1, then B, (4)
holds.

(2) Assume that A is a field of characteristic zero. If B,_, .(4) and
B, _1,.-1(4) hold, then so does B, .(4).

(8) Assume that A is a field of characteristic zero. If Bj_, ._(4),
B, _,.(4) and B]_,,...(4) hold, then so does B, .(4).

Proof. (1) is an immediate consequence of Theorem 3.1 and Proposi-
tion 3.6. To prove (2), let # be the subfamily of 3%(n, n, a,, a,) such
that E on a fibre X, is contained in & if and only if E is a member of
2% s(n, n, a;, ;) and for general Y in |0,,(1)|, E|, is p-semi-stable. Since
B,_,.(4) holds, # is bounded by virtue of Proposition 3.6. If E is con-
tained in #’ = X%,4(n, n, a,, @) — &, then E|, is not p-semi-stable for
every general member Z in |0, (1) Lemma 5.2 provides us with the
Harder-Narasimhan filtration

0=E0;E1;E‘z
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for general Ze|0x(1)] such that r(E)=1 or r(£) —1 and —d<
r(E)d(E, 0, (1)) — r(E)d(E,, 0,(1)) < 0, where d is the maximum of the
degrees of X, with respect to 0, (1). We may assume that E|, satisfies
the condition (S,) (Lemma 3.7). Since a,(E) is fixed, {a(E)|Ee F'} is
bounded. Setting E, = (E|,)/E,, we have the exact sequence

0O—>E —>E|,—>E,—>0

and {a,(E,)|Eec %’} is bounded. Now, let us consider two families %, =
{E\|Ee #'} and 9, = {E,|Ec #'}. Since {a,(E,)|E,c %,} is bounded and
since B;_;,,.(4) and Bj_,(4) hold, {a(E)|E, € %,} bounded from above by
b, (Lemma 5.1). From this and the fact that ayE|;) = a(E) > a,, we
infer that {e,(E)|E,c %} is bounded from below by a, — b,. Similarly,
{a(E)| E, € %,} is bounded from below by a, — b,. Therefore, we have

(5.6.1) {a(E)|E e g}, {a(E)|E, e %}, {a(E)|E; € G}
and {a,(E,)|E, e %,} are bounded sets of integers.

Since E, is torsion free and E|; satisfies (S,), E, does (S,). Thus we see
that ¢, is contained in a finite union of X%, ,+(n — 1,n — 1, a, b)’s and
hos(n — 1,1, a, b)’s, where X’/S’ is the same as before Proposition 3.6.
Therefore,

(5.6.2) %, is bounded.

e(E,) satisfies (S)), a,(e(E,)) = a(E;) and a,(e(E,) > a,(E,) (see the proof
of Lemma 3.5). Thus, for the same reason as ¢, we have

(5.6.3) (%,) is bounded.

By virtue of (5.6.1), (5.6.2) and (5.6.3), we can apply Lemma 5.5 to
{E || Ee #'} and we see that {E|;| Ec %’} is bounded. Then the same
argument as in the proof of Proposition 3.6 shows that %’ is bounded.
We see therefore that 3% s(n, n, a,, a,) = F U Z#’ is bounded.

Next, let us prove (38). Let # and %’ be the subfamilies of
Xy n + 1, a;, a,) defined similarly to &# and &’ in the proof of (2).
For the same reason as (2), & is bounded. By virtue of Lemma 5.3, we
have the Harder-Narasimhan filtration

OZE()QE1Q"';E¢=E]Z

for E€ &%’ and general Ze|0, (1) with the properties (1) and (2). As
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before, we may assume that E|, satisfies (S,). By the property (1),
{a(E)|Ee #'} is bounded. Since B]_,, ), B,_,4), B;_..(4) and
B._, .(4) hold, we see that {a,(E,/E,.,)|Ee '} is bounded from above,
whence {a,(E,_,)|E € #'} is bounded from below. Repeating this procedure,
it is seen that {a,(E,)|Ee %’} is a bounded set. Hence, {a,(E,/E,)|E¢c '}
is bounded and so on. Thus we have

(5.64) {a(EJE; )|Ee #'} and {a,(E,JE,.)) | Ec #'} are bounded.

Set #, ={E, ||EecF'}, #,={E,|E,.,|Ec F'}, #;={E|EecF'} and

Y ={E,,/E,| Ee &'}. Since every member of i, is torsion free and
E|, satisfies (S,), every member of 5, satisfies (S,) and hence, so does every
member of #,. Since B;_,,(4), B,_ 14, Bj_1,._(4) and B,_, .(4) hold, we
see that J#, and «(o#7) is bounded by (5.6.4). Since each member of #,
is an extension of a member of #7 by a member of #;, #, is bounded
by virtue of (5.6.4) and Lemma 5.5. Then, applying Lemma 5.5 to &, =
Hy F ={E|;|EeF'} and F,= #, we know that {E|,|Eec F'} is
bounded. Therefore, %' is bounded similarly to (2). Thus, 2%,(n, n+1, a,, ;)
=% U £’ is bounded. q.e.d.

As a direct corollary to Proposition 5.6, we have

THEOREM b.7. If A is a field of characteristic zero, then B, (1) and
B, (4) hold for all n and hence, so do B, (A) and B, (A) (for the notation,
see (8.4.2) and (3.4.3)).

Proof. B (4) and Bj,(4) are well-known and B, ,(4) and B, (4) are
special cases of Theorem 3.10. Assume that n >3 and Bj_,,(4) and
B,_.,{4) hold. Since B,_,,4) holds by Theorem 3.11, Proposition 5.6
implies that B, (4) and B; (4) hold. Therefore, by induction on n, we
see that B, (4) and B, (4) hold for all n. q.e.d.

Remark 5.8. (1) To remove the restriction on 4 from Theorem 5.7,
we should replace Lemma 5.2 and Lemma 5.3 by suitable lemmas. If the
characteristic is positive, Lemma 5.2 and Lemma 5.3 are false as was
shown in Remark 4.7. The author has a result which can play the same
role in the proof of Proposition 5.6 as Lemma 5.2. Thus Proposition 5.6,
(1), (2) and hence B, (1) hold for all 4 and n. But almost all the parts
of its proof consist of complicated computations. Hence, I will write it
elsewhere.
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(2) The proof of Proposition 5.6 shows that B, ,(4) holds for all n
and r if and only if the following statement M, ,(4) holds for all n» and
r.

M, (4): Let E on a fibre X, be a member of X% n,r, a,a,). If E|,
is not p-semi-stable for almost all Z in |0y,(1)|, then for sufficiently gen-
eral members Z of |0y (1)|, E|; has the Harder-Narasimhan filtration

OZEogElggEazE\z

such that w(E) — v < (E,/E,_,) < w(E) + v with v a constant depending
only on the family X% (n, r, a;, a,).

Theorem 3.1, Lemma 5.2 and Lemma 5.3 show that M, (4) holds
withyv=d if r<n -+ 1 and 4 is a field of characteristic zero.

Let M,,s(H) be the moduli scheme of semi-stable sheaves obtained
in Theorem 4.11 of [10]. Corollary 5.9.1 of [10], Theorem 3.10, Theorem
3.11 and Theorem 5.7 provide us with the following

THEOREM 5.9. (1) If dim X/S < 2, then M,,(H) is a projective
scheme over S.

(2) If the rank is two, then My,s(H) is a projective scheme over S.

3) If S is a scheme over a field of characteristic zero and if the rank
is three or four, then My, (H) is a projective scheme over S.
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